organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(1-Phenyl­ethyl­­idene)isonicotinohydrazide

aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China, and bEast China University of Science and Technology, School of Chemical Engineering, Shanghai 200237, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 12 November 2009; accepted 16 November 2009; online 21 November 2009)

The title compound, C14H13N3O, was prepared from hypnone and isoniazid. The dihedral angle between the aromatic rings is 12.21 (2)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into chains propagating in [001] and C—H⋯O inter­actions consolidate the packing.

Related literature

For background on Schiff bases, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145-153.]). For a related structure, see: Chen et al. (2006[Chen, S.-S., Zhang, S.-P., Huang, C.-B. & Shao, S.-C. (2006). Acta Cryst. E62, o31-o32.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N3O

  • Mr = 239.27

  • Monoclinic, P 21 /c

  • a = 25.878 (5) Å

  • b = 5.7100 (11) Å

  • c = 8.3089 (17) Å

  • β = 90.94 (3)°

  • V = 1227.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.25 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 11394 measured reflections

  • 2821 independent reflections

  • 2024 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.205

  • S = 1.03

  • 2821 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.87 (2) 2.04 (3) 2.914 (2) 177 (2)
C4—H4A⋯O1i 0.93 2.43 3.123 (3) 131
C7—H7A⋯O1i 0.96 2.31 3.095 (3) 138
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have received considerable attention in the literature. They are attractive from several points of view, such as the possibility of analytical application (Cimerman et al., 1997). As part of our search for new schiff base compounds we synthesized the title compound(I) and report its crystal structure herein.

In the title compound (I) (Fig. 1), the C8=N2 bond, 1.285 (3) Å, and the C6—N3 bond, 1.351 (3) Å, are both longer than those in a related compound (Chen et al., 2006). All other bond lengths are within normal ranges. The dihedral angle between the benzene and pyridine rings is 12.21 (2)°. The structure of (I) is stabilized by C—H···O,N—H···O and C—H···N hydrogen bonds (Table 1).

Related literature top

For background on Schiff bases, see: Cimerman et al. (1997). For a related structure, see: Chen et al. (2006).

Experimental top

A mixture of the isoniazid (0.05 mol) and hypnone (0.05 mol) was stirred in refluxing ethanol(30 ml) for 2 h to afford the title compound (yield 78%). Colourless bars of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

The N-bound H atom was located in a difference map and freely refined. The other H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.97 Å, and Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
N'-(1-Phenylethylidene)isonicotinohydrazide top
Crystal data top
C14H13N3OF(000) = 504
Mr = 239.27Dx = 1.295 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2024 reflections
a = 25.878 (5) Åθ = 3.2–27.5°
b = 5.7100 (11) ŵ = 0.09 mm1
c = 8.3089 (17) ÅT = 293 K
β = 90.94 (3)°Bar, colourless
V = 1227.6 (4) Å30.35 × 0.25 × 0.25 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2024 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
ω scansh = 3333
11394 measured reflectionsk = 77
2821 independent reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.205H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1014P)2 + 0.6215P]
where P = (Fo2 + 2Fc2)/3
2821 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H13N3OV = 1227.6 (4) Å3
Mr = 239.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 25.878 (5) ŵ = 0.09 mm1
b = 5.7100 (11) ÅT = 293 K
c = 8.3089 (17) Å0.35 × 0.25 × 0.25 mm
β = 90.94 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2024 reflections with I > 2σ(I)
11394 measured reflectionsRint = 0.046
2821 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.205H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
2821 reflectionsΔρmin = 0.29 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.28050 (6)0.2893 (3)0.9742 (2)0.0401 (4)
N20.23151 (7)0.3104 (3)1.0394 (2)0.0414 (5)
C60.31164 (7)0.1224 (4)1.0382 (2)0.0366 (5)
O10.30052 (6)0.0099 (3)1.15887 (18)0.0472 (4)
C90.15153 (7)0.4982 (4)1.0663 (2)0.0364 (5)
C80.20515 (8)0.4938 (4)1.0019 (2)0.0356 (5)
C30.36258 (7)0.0813 (4)0.9583 (2)0.0375 (5)
C40.38721 (8)0.2432 (4)0.8623 (3)0.0446 (5)
H4A0.37190.38700.83900.054*
C70.22348 (9)0.6943 (4)0.9029 (3)0.0492 (6)
H7A0.25830.66580.87040.074*
H7B0.22230.83560.96540.074*
H7C0.20160.71070.80920.074*
C100.13477 (8)0.3243 (4)1.1704 (3)0.0476 (6)
H10A0.15740.20581.20210.057*
C130.06659 (9)0.6712 (5)1.0781 (3)0.0591 (7)
H13A0.04370.78871.04680.071*
C110.08489 (9)0.3254 (5)1.2275 (3)0.0564 (7)
H11A0.07440.20921.29820.068*
C140.11683 (9)0.6724 (5)1.0213 (3)0.0501 (6)
H14A0.12730.79110.95240.060*
C20.38778 (9)0.1288 (5)0.9907 (3)0.0526 (6)
H2B0.37280.24141.05610.063*
N10.45942 (8)0.0143 (5)0.8287 (3)0.0630 (7)
C120.05063 (8)0.4978 (5)1.1801 (3)0.0558 (7)
H12A0.01690.49651.21700.067*
C50.43514 (9)0.1864 (5)0.8015 (3)0.0564 (7)
H5A0.45140.29660.73730.068*
C10.43566 (10)0.1669 (5)0.9235 (4)0.0658 (8)
H1B0.45230.30780.94600.079*
H3A0.2875 (9)0.349 (5)0.881 (3)0.045 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0333 (9)0.0442 (10)0.0431 (9)0.0044 (7)0.0129 (7)0.0055 (8)
N20.0334 (9)0.0454 (11)0.0459 (9)0.0043 (7)0.0134 (7)0.0031 (8)
C60.0323 (9)0.0408 (11)0.0368 (9)0.0011 (8)0.0055 (8)0.0025 (8)
O10.0431 (8)0.0558 (11)0.0431 (8)0.0037 (7)0.0106 (7)0.0078 (7)
C90.0321 (9)0.0400 (11)0.0372 (10)0.0010 (8)0.0026 (8)0.0047 (8)
C80.0348 (10)0.0366 (11)0.0355 (9)0.0004 (8)0.0044 (8)0.0050 (8)
C30.0308 (9)0.0431 (12)0.0387 (10)0.0001 (8)0.0042 (8)0.0065 (9)
C40.0328 (10)0.0499 (13)0.0513 (12)0.0003 (9)0.0073 (9)0.0020 (10)
C70.0497 (13)0.0392 (13)0.0590 (13)0.0002 (9)0.0154 (11)0.0030 (10)
C100.0359 (11)0.0496 (14)0.0573 (13)0.0044 (9)0.0049 (10)0.0088 (11)
C130.0416 (12)0.0639 (18)0.0720 (17)0.0195 (11)0.0061 (12)0.0028 (13)
C110.0399 (12)0.0642 (17)0.0654 (15)0.0024 (11)0.0128 (11)0.0112 (13)
C140.0454 (12)0.0478 (14)0.0572 (13)0.0081 (10)0.0071 (11)0.0061 (11)
C20.0435 (12)0.0449 (14)0.0697 (15)0.0046 (10)0.0102 (11)0.0025 (12)
N10.0366 (10)0.0716 (17)0.0813 (16)0.0040 (10)0.0147 (10)0.0137 (13)
C120.0310 (10)0.0702 (19)0.0662 (15)0.0045 (10)0.0087 (10)0.0048 (13)
C50.0349 (11)0.0729 (19)0.0619 (14)0.0045 (11)0.0135 (10)0.0007 (13)
C10.0445 (13)0.0534 (16)0.100 (2)0.0129 (11)0.0110 (14)0.0080 (15)
Geometric parameters (Å, º) top
N3—C61.351 (3)C7—H7C0.9600
N3—N21.392 (2)C10—C111.382 (3)
N3—H3A0.87 (2)C10—H10A0.9300
N2—C81.285 (3)C13—C121.371 (4)
C6—O11.229 (2)C13—C141.391 (3)
C6—C31.504 (3)C13—H13A0.9300
C9—C141.387 (3)C11—C121.378 (4)
C9—C101.391 (3)C11—H11A0.9300
C9—C81.496 (3)C14—H14A0.9300
C8—C71.492 (3)C2—C11.385 (3)
C3—C41.384 (3)C2—H2B0.9300
C3—C21.390 (3)N1—C51.324 (4)
C4—C51.385 (3)N1—C11.332 (4)
C4—H4A0.9300C12—H12A0.9300
C7—H7A0.9600C5—H5A0.9300
C7—H7B0.9600C1—H1B0.9300
C6—N3—N2116.69 (17)C11—C10—C9120.8 (2)
C6—N3—H3A119.8 (16)C11—C10—H10A119.6
N2—N3—H3A121.1 (16)C9—C10—H10A119.6
C8—N2—N3117.33 (18)C12—C13—C14120.4 (2)
O1—C6—N3122.91 (18)C12—C13—H13A119.8
O1—C6—C3119.80 (19)C14—C13—H13A119.8
N3—C6—C3117.27 (18)C12—C11—C10120.4 (2)
C14—C9—C10118.20 (19)C12—C11—H11A119.8
C14—C9—C8121.05 (19)C10—C11—H11A119.8
C10—C9—C8120.74 (18)C9—C14—C13120.6 (2)
N2—C8—C7125.95 (18)C9—C14—H14A119.7
N2—C8—C9114.75 (18)C13—C14—H14A119.7
C7—C8—C9119.30 (18)C1—C2—C3118.5 (2)
C4—C3—C2117.99 (19)C1—C2—H2B120.7
C4—C3—C6124.4 (2)C3—C2—H2B120.7
C2—C3—C6117.5 (2)C5—N1—C1116.4 (2)
C3—C4—C5118.5 (2)C13—C12—C11119.6 (2)
C3—C4—H4A120.8C13—C12—H12A120.2
C5—C4—H4A120.8C11—C12—H12A120.2
C8—C7—H7A109.5N1—C5—C4124.5 (2)
C8—C7—H7B109.5N1—C5—H5A117.8
H7A—C7—H7B109.5C4—C5—H5A117.8
C8—C7—H7C109.5N1—C1—C2124.1 (3)
H7A—C7—H7C109.5N1—C1—H1B117.9
H7B—C7—H7C109.5C2—C1—H1B117.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.87 (2)2.04 (3)2.914 (2)177 (2)
C4—H4A···O1i0.932.433.123 (3)131
C7—H7A···O1i0.962.313.095 (3)138
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H13N3O
Mr239.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)25.878 (5), 5.7100 (11), 8.3089 (17)
β (°) 90.94 (3)
V3)1227.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.25 × 0.25
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11394, 2821, 2024
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.205, 1.03
No. of reflections2821
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.29

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.87 (2)2.04 (3)2.914 (2)177 (2)
C4—H4A···O1i0.932.433.123 (3)131
C7—H7A···O1i0.962.313.095 (3)138
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors would like to thank the National Natural Science Foundation of Shandong Province (Y2008B29) and the Yuandu Scholar Fund of Weifang City for support.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, S.-S., Zhang, S.-P., Huang, C.-B. & Shao, S.-C. (2006). Acta Cryst. E62, o31–o32.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds