metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1631-m1632

Ammonium tris­­(3-amino­pyrazine-2-carboxyl­ato-κ2N1,O)nickelate(II) trihydrate

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 14 November 2009; accepted 14 November 2009; online 21 November 2009)

The NiII atom in the title hydrated salt, (NH4)[Ni(C5H4N3O2)3]·3H2O, is N,O-chelated by the three 3-aminopyrazine-2-carboxyl­ate ligands, resulting in a distorted octa­hedral mer-NiN3O3 geometry for the metal. In the crystal, the complex anion, ammonium cation and uncoordinated water mol­ecules are linked by extensive N—H⋯N, N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For the crystal structure of diaqua­bis(3-amino­pyrazine-2-carboxyl­ato)nickel(II), see: Ptasiewicz-Bak & Leciejewicz (1999[Ptasiewicz-Bak, H. & Leciejewicz, B. (1999). Pol. J. Chem. 73, 717-725.]).

[Scheme 1]

Experimental

Crystal data
  • (NH4)[Ni(C5H4N3O2)3]·3H2O

  • Mr = 545.14

  • Monoclinic, P 21 /n

  • a = 11.2092 (3) Å

  • b = 14.7061 (4) Å

  • c = 13.7540 (4) Å

  • β = 97.5214 (8)°

  • V = 2247.75 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 293 K

  • 0.28 × 0.22 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.780, Tmax = 0.843

  • 21341 measured reflections

  • 5114 independent reflections

  • 4322 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.02

  • 5114 reflections

  • 380 parameters

  • 25 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 2.0476 (13)
Ni1—O3 2.0526 (13)
Ni1—O5 2.0567 (13)
Ni1—N7 2.0561 (14)
Ni1—N4 2.0805 (14)
Ni1—N1 2.0857 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H31⋯O2 0.85 (1) 2.08 (2) 2.740 (3) 134 (2)
N6—H61⋯O4 0.85 (1) 2.01 (2) 2.701 (3) 138 (2)
N6—H62⋯N5i 0.85 (1) 2.15 (1) 2.992 (2) 175 (2)
N9—H91⋯O6 0.86 (1) 2.07 (2) 2.733 (2) 134 (2)
N9—H92⋯O3ii 0.85 (1) 2.10 (1) 2.924 (2) 164 (2)
N10—H101⋯O2 0.86 (1) 1.91 (1) 2.756 (3) 169 (3)
N10—H102⋯O1w 0.86 (1) 1.94 (1) 2.779 (3) 164 (3)
N10—H103⋯O2w 0.85 (1) 2.07 (1) 2.919 (3) 172 (3)
N10—H104⋯N8iii 0.84 (1) 2.36 (2) 3.018 (3) 135 (2)
O1w—H1w1⋯O1 0.84 (1) 2.25 (2) 2.964 (3) 143 (4)
O1w—H1w2⋯N2iv 0.85 (1) 2.00 (1) 2.842 (3) 171 (4)
O2w—H2w1⋯O5v 0.85 (1) 2.03 (1) 2.869 (2) 168 (3)
O2w—H2w2⋯O6vi 0.84 (1) 1.96 (1) 2.766 (2) 159 (3)
O3w—H3w1⋯O4 0.85 (1) 2.39 (5) 2.812 (3) 111 (4)
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structure of diaquabis(3-aminopyrazine-2-carboxylato)nickel(II), see: Ptasiewicz-Bak & Leciejewicz (1999).

Experimental top

Nickel dichloride hexahydrate (0.48 g, 2 mmol), 3-aminopyrazine-2-carboxylic acid (0.56 g, 4 mmol) and sodium hydroxide (0.16 g 4 mmol) were dissolved in a water/DMF (v/v = 10 ml:1 ml) mixture. The solution was sealed in a 50 ml Teflon-lined stainless steel bomb and held at 443 K for 3 days. The bomb was gradually cooled to room temperature;, and green blocks of (I) were obtained after several days. The presence of the ammonium counterion is explained by the decomposition of DMF.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) = 1.2U(C). The amino and water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H = O–H = 0.85±0.01 Å; their Uiso values were refined.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Ammonium tris(3-aminopyrazine-2-carboxylato-κ2N1,O)nickelate(II) trihydrate top
Crystal data top
(NH4)[Ni(C5H4N3O2)3]·3H2OF(000) = 1128
Mr = 545.14Dx = 1.611 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 17239 reflections
a = 11.2092 (3) Åθ = 3.2–27.5°
b = 14.7061 (4) ŵ = 0.93 mm1
c = 13.7540 (4) ÅT = 293 K
β = 97.5214 (8)°Block, green
V = 2247.75 (11) Å30.28 × 0.22 × 0.19 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5114 independent reflections
Radiation source: fine-focus sealed tube4322 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scanθmax = 27.4°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.780, Tmax = 0.843k = 1919
21341 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.5222P]
where P = (Fo2 + 2Fc2)/3
5114 reflections(Δ/σ)max = 0.001
380 parametersΔρmax = 0.47 e Å3
25 restraintsΔρmin = 0.26 e Å3
Crystal data top
(NH4)[Ni(C5H4N3O2)3]·3H2OV = 2247.75 (11) Å3
Mr = 545.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.2092 (3) ŵ = 0.93 mm1
b = 14.7061 (4) ÅT = 293 K
c = 13.7540 (4) Å0.28 × 0.22 × 0.19 mm
β = 97.5214 (8)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5114 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4322 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.843Rint = 0.028
21341 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03525 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.47 e Å3
5114 reflectionsΔρmin = 0.26 e Å3
380 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.31748 (2)0.668273 (15)0.689311 (16)0.03143 (9)
O10.42705 (12)0.74401 (9)0.78914 (10)0.0399 (3)
O20.46912 (13)0.77268 (10)0.94948 (10)0.0483 (3)
O30.37891 (13)0.72843 (9)0.57068 (10)0.0446 (3)
O40.33775 (17)0.83556 (12)0.45711 (12)0.0616 (5)
O50.21564 (11)0.57245 (9)0.60709 (9)0.0391 (3)
O60.22619 (12)0.43404 (11)0.54208 (12)0.0536 (4)
O1W0.5686 (2)0.8674 (2)0.67787 (15)0.0930 (8)
O2W0.53958 (16)1.06663 (15)0.88906 (13)0.0643 (5)
O3W0.3437 (3)0.8148 (3)0.25454 (17)0.0980 (8)
N10.25466 (14)0.62854 (10)0.81904 (11)0.0341 (3)
N20.15754 (17)0.62107 (13)0.99403 (13)0.0500 (4)
N30.2905 (2)0.73064 (15)1.06019 (13)0.0525 (5)
N40.19233 (13)0.77229 (10)0.65903 (10)0.0327 (3)
N50.03798 (15)0.91375 (11)0.59648 (12)0.0410 (4)
N60.14458 (19)0.94291 (14)0.46855 (15)0.0560 (5)
N70.44529 (13)0.56953 (10)0.67977 (10)0.0307 (3)
N80.60635 (14)0.44427 (11)0.62184 (12)0.0389 (4)
N90.45018 (16)0.36067 (12)0.54171 (13)0.0418 (4)
N100.6367 (2)0.88322 (17)0.87878 (16)0.0609 (5)
C10.40689 (16)0.73693 (12)0.87734 (13)0.0352 (4)
C20.30163 (16)0.67882 (12)0.89515 (13)0.0331 (4)
C30.25094 (18)0.67630 (13)0.98471 (14)0.0389 (4)
C40.1158 (2)0.56992 (16)0.91715 (16)0.0528 (5)
H40.05210.53070.92290.063*
C50.16254 (19)0.57242 (14)0.82959 (15)0.0429 (4)
H50.13050.53540.77780.052*
C60.31612 (18)0.79401 (13)0.53101 (13)0.0385 (4)
C70.21035 (17)0.82128 (11)0.58056 (13)0.0321 (4)
C80.13109 (17)0.89357 (12)0.54759 (13)0.0368 (4)
C90.02365 (18)0.86309 (14)0.67384 (14)0.0413 (4)
H90.04100.87580.70770.050*
C100.09911 (17)0.79277 (14)0.70670 (13)0.0390 (4)
H100.08550.75960.76180.047*
C110.27182 (16)0.50055 (13)0.58777 (13)0.0345 (4)
C120.40521 (15)0.49993 (12)0.62341 (12)0.0294 (3)
C130.48649 (16)0.43358 (12)0.59462 (12)0.0316 (4)
C140.64164 (17)0.51541 (14)0.67792 (15)0.0418 (4)
H140.72370.52350.69700.050*
C150.56347 (16)0.57786 (13)0.70937 (14)0.0379 (4)
H150.59240.62520.75070.045*
H1W10.518 (4)0.826 (3)0.681 (3)0.16 (2)*
H1W20.587 (4)0.871 (3)0.6200 (14)0.138 (16)*
H2W10.4664 (10)1.071 (2)0.8988 (19)0.079 (10)*
H2W20.586 (2)1.078 (3)0.9408 (15)0.123 (15)*
H3W10.366 (6)0.861 (2)0.290 (3)0.20 (3)*
H3W20.325 (6)0.772 (3)0.292 (3)0.21 (3)*
H310.3539 (16)0.7617 (16)1.056 (2)0.064 (8)*
H320.259 (2)0.724 (2)1.1133 (13)0.076 (9)*
H610.2078 (15)0.9305 (16)0.4426 (16)0.054 (7)*
H620.0924 (18)0.9821 (13)0.4466 (18)0.058 (7)*
H910.3745 (10)0.3567 (18)0.5212 (19)0.059 (7)*
H920.5008 (17)0.3270 (13)0.5183 (17)0.048 (7)*
H1010.592 (2)0.8458 (15)0.9058 (17)0.079 (10)*
H1020.627 (3)0.871 (2)0.8169 (8)0.106 (13)*
H1030.612 (3)0.9371 (9)0.887 (2)0.16 (2)*
H1040.7095 (10)0.876 (2)0.902 (2)0.124 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03054 (14)0.03344 (14)0.03110 (13)0.00615 (9)0.00699 (9)0.00153 (9)
O10.0392 (7)0.0421 (7)0.0402 (7)0.0052 (6)0.0123 (6)0.0010 (6)
O20.0463 (8)0.0536 (8)0.0440 (7)0.0107 (7)0.0029 (6)0.0063 (7)
O30.0452 (8)0.0472 (7)0.0454 (7)0.0188 (6)0.0214 (6)0.0114 (6)
O40.0649 (11)0.0760 (11)0.0496 (9)0.0243 (9)0.0285 (8)0.0262 (8)
O50.0292 (6)0.0472 (7)0.0400 (7)0.0099 (6)0.0012 (5)0.0059 (6)
O60.0326 (7)0.0540 (9)0.0713 (10)0.0016 (6)0.0046 (7)0.0237 (8)
O1W0.0979 (17)0.131 (2)0.0520 (11)0.0539 (16)0.0174 (11)0.0013 (12)
O2W0.0414 (9)0.0925 (13)0.0577 (10)0.0038 (9)0.0021 (8)0.0103 (10)
O3W0.0917 (18)0.144 (2)0.0590 (12)0.0021 (17)0.0121 (12)0.0216 (15)
N10.0345 (8)0.0350 (8)0.0325 (7)0.0019 (6)0.0037 (6)0.0027 (6)
N20.0528 (11)0.0581 (11)0.0419 (9)0.0058 (9)0.0163 (8)0.0059 (8)
N30.0585 (12)0.0643 (12)0.0360 (9)0.0039 (10)0.0113 (9)0.0049 (9)
N40.0335 (8)0.0342 (7)0.0312 (7)0.0067 (6)0.0067 (6)0.0003 (6)
N50.0408 (9)0.0391 (8)0.0427 (8)0.0131 (7)0.0042 (7)0.0013 (7)
N60.0556 (12)0.0564 (11)0.0582 (11)0.0224 (10)0.0161 (10)0.0245 (10)
N70.0276 (7)0.0340 (7)0.0303 (7)0.0042 (6)0.0032 (6)0.0011 (6)
N80.0298 (8)0.0432 (8)0.0443 (8)0.0071 (7)0.0074 (7)0.0015 (7)
N90.0349 (9)0.0419 (9)0.0498 (9)0.0042 (7)0.0107 (8)0.0092 (8)
N100.0507 (12)0.0779 (16)0.0551 (12)0.0199 (11)0.0108 (10)0.0007 (11)
C10.0343 (9)0.0340 (9)0.0374 (9)0.0032 (7)0.0053 (7)0.0006 (8)
C20.0325 (9)0.0349 (9)0.0317 (8)0.0058 (7)0.0037 (7)0.0029 (7)
C30.0408 (10)0.0432 (10)0.0329 (9)0.0067 (8)0.0054 (8)0.0042 (8)
C40.0518 (13)0.0584 (13)0.0501 (12)0.0145 (11)0.0138 (10)0.0067 (11)
C50.0442 (11)0.0436 (10)0.0407 (10)0.0084 (9)0.0046 (8)0.0021 (8)
C60.0408 (10)0.0426 (10)0.0335 (9)0.0070 (8)0.0104 (8)0.0023 (8)
C70.0338 (9)0.0319 (8)0.0306 (8)0.0043 (7)0.0039 (7)0.0011 (7)
C80.0387 (10)0.0340 (9)0.0368 (9)0.0043 (8)0.0014 (8)0.0007 (7)
C90.0376 (10)0.0478 (11)0.0393 (9)0.0113 (9)0.0084 (8)0.0069 (9)
C100.0387 (10)0.0461 (10)0.0339 (9)0.0089 (8)0.0111 (8)0.0001 (8)
C110.0280 (8)0.0433 (10)0.0321 (8)0.0044 (7)0.0036 (7)0.0003 (8)
C120.0269 (8)0.0330 (8)0.0288 (8)0.0038 (7)0.0050 (6)0.0027 (7)
C130.0315 (9)0.0335 (8)0.0306 (8)0.0042 (7)0.0076 (7)0.0037 (7)
C140.0253 (9)0.0500 (11)0.0496 (11)0.0033 (8)0.0027 (8)0.0003 (9)
C150.0304 (9)0.0412 (10)0.0409 (9)0.0008 (8)0.0006 (7)0.0029 (8)
Geometric parameters (Å, º) top
Ni1—O12.0476 (13)N6—C81.332 (3)
Ni1—O32.0526 (13)N6—H610.853 (10)
Ni1—O52.0567 (13)N6—H620.849 (10)
Ni1—N72.0561 (14)N7—C121.326 (2)
Ni1—N42.0805 (14)N7—C151.340 (2)
Ni1—N12.0857 (15)N8—C141.329 (3)
O1—C11.267 (2)N8—C131.356 (2)
O2—C11.252 (2)N9—C131.329 (2)
O3—C61.274 (2)N9—H910.860 (10)
O4—C61.237 (2)N9—H920.848 (10)
O5—C111.276 (2)N10—H1010.861 (9)
O6—C111.237 (2)N10—H1020.861 (9)
O1W—H1W10.84 (1)N10—H1030.853 (9)
O1W—H1W20.85 (1)N10—H1040.844 (9)
O2W—H2W10.85 (1)C1—C21.503 (3)
O2W—H2W20.84 (1)C2—C31.423 (3)
O3W—H3W10.85 (1)C4—C51.375 (3)
O3W—H3W20.86 (1)C4—H40.9300
N1—C21.332 (2)C5—H50.9300
N1—C51.345 (3)C6—C71.498 (3)
N2—C41.332 (3)C7—C81.421 (2)
N2—C31.344 (3)C9—C101.374 (3)
N3—C31.339 (3)C9—H90.9300
N3—H310.854 (10)C10—H100.9300
N3—H320.858 (10)C11—C121.511 (2)
N4—C71.335 (2)C12—C131.426 (2)
N4—C101.339 (2)C14—C151.377 (3)
N5—C91.326 (3)C14—H140.9300
N5—C81.347 (3)C15—H150.9300
O1—Ni1—O393.69 (6)H103—N10—H104111.9 (14)
O1—Ni1—O5169.25 (5)O2—C1—O1125.01 (18)
O3—Ni1—O594.48 (6)O2—C1—C2118.53 (16)
O1—Ni1—N793.74 (6)O1—C1—C2116.43 (16)
O3—Ni1—N786.83 (5)N1—C2—C3120.28 (17)
O5—Ni1—N779.76 (5)N1—C2—C1115.18 (16)
O1—Ni1—N493.66 (6)C3—C2—C1124.54 (17)
O3—Ni1—N479.14 (5)N3—C3—N2118.03 (19)
O5—Ni1—N494.73 (6)N3—C3—C2121.75 (19)
N7—Ni1—N4164.51 (6)N2—C3—C2120.16 (18)
O1—Ni1—N179.56 (6)N2—C4—C5123.1 (2)
O3—Ni1—N1170.67 (6)N2—C4—H4118.5
O5—Ni1—N193.05 (6)C5—C4—H4118.5
N7—Ni1—N199.95 (6)N1—C5—C4119.79 (19)
N4—Ni1—N194.76 (6)N1—C5—H5120.1
C1—O1—Ni1115.52 (12)C4—C5—H5120.1
C6—O3—Ni1116.28 (12)O4—C6—O3124.70 (18)
C11—O5—Ni1115.38 (11)O4—C6—C7119.59 (17)
H1W1—O1W—H1W2111 (2)O3—C6—C7115.71 (16)
H2W1—O2W—H2W2111 (2)N4—C7—C8120.49 (17)
H3W1—O3W—H3W2108 (2)N4—C7—C6115.85 (15)
C2—N1—C5119.07 (16)C8—C7—C6123.65 (17)
C2—N1—Ni1111.95 (12)N6—C8—N5117.76 (17)
C5—N1—Ni1127.91 (13)N6—C8—C7122.34 (18)
C4—N2—C3117.56 (18)N5—C8—C7119.90 (17)
C3—N3—H31117.1 (19)N5—C9—C10123.55 (18)
C3—N3—H32118 (2)N5—C9—H9118.2
H31—N3—H32124 (3)C10—C9—H9118.2
C7—N4—C10119.01 (15)N4—C10—C9119.64 (18)
C7—N4—Ni1112.91 (12)N4—C10—H10120.2
C10—N4—Ni1128.06 (13)C9—C10—H10120.2
C9—N5—C8117.40 (16)O6—C11—O5125.35 (17)
C8—N6—H61114.4 (17)O6—C11—C12119.08 (16)
C8—N6—H62120.9 (18)O5—C11—C12115.57 (16)
H61—N6—H62125 (2)N7—C12—C13120.69 (15)
C12—N7—C15119.61 (15)N7—C12—C11115.47 (15)
C12—N7—Ni1113.37 (11)C13—C12—C11123.71 (16)
C15—N7—Ni1125.84 (12)N9—C13—N8117.77 (16)
C14—N8—C13117.41 (16)N9—C13—C12122.88 (16)
C13—N9—H91116.9 (18)N8—C13—C12119.35 (16)
C13—N9—H92120.5 (17)N8—C14—C15123.63 (17)
H91—N9—H92121 (2)N8—C14—H14118.2
H101—N10—H102107.1 (13)C15—C14—H14118.2
H101—N10—H103108.6 (14)N7—C15—C14119.21 (17)
H102—N10—H103108.8 (13)N7—C15—H15120.4
H101—N10—H104110.0 (13)C14—C15—H15120.4
H102—N10—H104110.3 (14)
O3—Ni1—O1—C1170.89 (13)O1—C1—C2—C3167.48 (17)
O5—Ni1—O1—C149.7 (3)C4—N2—C3—N3177.4 (2)
N7—Ni1—O1—C1102.05 (13)C4—N2—C3—C20.1 (3)
N4—Ni1—O1—C191.56 (13)N1—C2—C3—N3175.23 (18)
N1—Ni1—O1—C12.61 (13)C1—C2—C3—N33.6 (3)
O1—Ni1—O3—C696.17 (15)N1—C2—C3—N22.0 (3)
O5—Ni1—O3—C690.82 (15)C1—C2—C3—N2179.12 (17)
N7—Ni1—O3—C6170.28 (15)C3—N2—C4—C51.0 (3)
N4—Ni1—O3—C63.15 (14)C2—N1—C5—C42.1 (3)
O1—Ni1—O5—C1153.7 (3)Ni1—N1—C5—C4164.99 (16)
O3—Ni1—O5—C1185.68 (13)N2—C4—C5—N10.0 (4)
N7—Ni1—O5—C110.27 (13)Ni1—O3—C6—O4177.33 (18)
N4—Ni1—O5—C11165.13 (13)Ni1—O3—C6—C73.5 (2)
N1—Ni1—O5—C1199.84 (13)C10—N4—C7—C80.6 (3)
O1—Ni1—N1—C28.76 (12)Ni1—N4—C7—C8178.20 (13)
O5—Ni1—N1—C2179.11 (12)C10—N4—C7—C6179.78 (17)
N7—Ni1—N1—C2100.76 (12)Ni1—N4—C7—C61.0 (2)
N4—Ni1—N1—C284.10 (13)O4—C6—C7—N4179.16 (19)
O1—Ni1—N1—C5176.63 (17)O3—C6—C7—N41.6 (3)
O5—Ni1—N1—C511.24 (17)O4—C6—C7—C80.0 (3)
N7—Ni1—N1—C591.37 (17)O3—C6—C7—C8179.19 (17)
N4—Ni1—N1—C583.77 (17)C9—N5—C8—N6178.60 (19)
O1—Ni1—N4—C795.17 (13)C9—N5—C8—C71.0 (3)
O3—Ni1—N4—C72.10 (12)N4—C7—C8—N6178.67 (19)
O5—Ni1—N4—C791.56 (13)C6—C7—C8—N60.5 (3)
N7—Ni1—N4—C723.2 (3)N4—C7—C8—N50.9 (3)
N1—Ni1—N4—C7174.97 (12)C6—C7—C8—N5179.97 (17)
O1—Ni1—N4—C1086.20 (16)C8—N5—C9—C100.8 (3)
O3—Ni1—N4—C10179.26 (17)C7—N4—C10—C90.4 (3)
O5—Ni1—N4—C1087.08 (16)Ni1—N4—C10—C9178.17 (14)
N7—Ni1—N4—C10155.4 (2)N5—C9—C10—N40.5 (3)
N1—Ni1—N4—C106.39 (17)Ni1—O5—C11—O6177.70 (16)
O1—Ni1—N7—C12175.68 (12)Ni1—O5—C11—C123.4 (2)
O3—Ni1—N7—C1290.82 (12)C15—N7—C12—C130.5 (2)
O5—Ni1—N7—C124.31 (12)Ni1—N7—C12—C13168.81 (12)
N4—Ni1—N7—C1265.9 (3)C15—N7—C12—C11175.57 (16)
N1—Ni1—N7—C1295.64 (12)Ni1—N7—C12—C117.23 (18)
O1—Ni1—N7—C1516.83 (15)O6—C11—C12—N7173.77 (17)
O3—Ni1—N7—C1576.67 (15)O5—C11—C12—N77.2 (2)
O5—Ni1—N7—C15171.80 (16)O6—C11—C12—C1310.3 (3)
N4—Ni1—N7—C15101.6 (2)O5—C11—C12—C13168.66 (16)
N1—Ni1—N7—C1596.87 (15)C14—N8—C13—N9177.44 (18)
Ni1—O1—C1—O2174.82 (15)C14—N8—C13—C122.5 (3)
Ni1—O1—C1—C23.5 (2)N7—C12—C13—N9177.08 (17)
C5—N1—C2—C33.1 (3)C11—C12—C13—N97.2 (3)
Ni1—N1—C2—C3166.01 (13)N7—C12—C13—N82.9 (2)
C5—N1—C2—C1177.96 (16)C11—C12—C13—N8172.81 (16)
Ni1—N1—C2—C112.97 (18)C13—N8—C14—C150.1 (3)
O2—C1—C2—N1166.99 (16)C12—N7—C15—C142.1 (3)
O1—C1—C2—N111.5 (2)Ni1—N7—C15—C14164.65 (14)
O2—C1—C2—C314.1 (3)N8—C14—C15—N72.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···O20.85 (1)2.08 (2)2.740 (3)134 (2)
N6—H61···O40.85 (1)2.01 (2)2.701 (3)138 (2)
N6—H62···N5i0.85 (1)2.15 (1)2.992 (2)175 (2)
N9—H91···O60.86 (1)2.07 (2)2.733 (2)134 (2)
N9—H92···O3ii0.85 (1)2.10 (1)2.924 (2)164 (2)
N10—H101···O20.86 (1)1.91 (1)2.756 (3)169 (3)
N10—H102···O1w0.86 (1)1.94 (1)2.779 (3)164 (3)
N10—H103···O2w0.85 (1)2.07 (1)2.919 (3)172 (3)
N10—H104···N8iii0.84 (1)2.36 (2)3.018 (3)135 (2)
O1w—H1w1···O10.84 (1)2.25 (2)2.964 (3)143 (4)
O1w—H1w2···N2iv0.85 (1)2.00 (1)2.842 (3)171 (4)
O2w—H2w1···O5v0.85 (1)2.03 (1)2.869 (2)168 (3)
O2w—H2w2···O6vi0.84 (1)1.96 (1)2.766 (2)159 (3)
O3w—H3w1···O40.85 (1)2.39 (5)2.812 (3)111 (4)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+3/2, y+1/2, z+3/2; (iv) x+1/2, y+3/2, z1/2; (v) x+1/2, y+1/2, z+3/2; (vi) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula(NH4)[Ni(C5H4N3O2)3]·3H2O
Mr545.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.2092 (3), 14.7061 (4), 13.7540 (4)
β (°) 97.5214 (8)
V3)2247.75 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.28 × 0.22 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.780, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
21341, 5114, 4322
Rint0.028
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.02
No. of reflections5114
No. of parameters380
No. of restraints25
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.26

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Ni1—O12.0476 (13)Ni1—N72.0561 (14)
Ni1—O32.0526 (13)Ni1—N42.0805 (14)
Ni1—O52.0567 (13)Ni1—N12.0857 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···O20.85 (1)2.08 (2)2.740 (3)134 (2)
N6—H61···O40.85 (1)2.01 (2)2.701 (3)138 (2)
N6—H62···N5i0.85 (1)2.15 (1)2.992 (2)175 (2)
N9—H91···O60.86 (1)2.07 (2)2.733 (2)134 (2)
N9—H92···O3ii0.85 (1)2.10 (1)2.924 (2)164 (2)
N10—H101···O20.86 (1)1.91 (1)2.756 (3)169 (3)
N10—H102···O1w0.86 (1)1.94 (1)2.779 (3)164 (3)
N10—H103···O2w0.85 (1)2.07 (1)2.919 (3)172 (3)
N10—H104···N8iii0.84 (1)2.36 (2)3.018 (3)135 (2)
O1w—H1w1···O10.84 (1)2.25 (2)2.964 (3)143 (4)
O1w—H1w2···N2iv0.85 (1)2.00 (1)2.842 (3)171 (4)
O2w—H2w1···O5v0.85 (1)2.03 (1)2.869 (2)168 (3)
O2w—H2w2···O6vi0.84 (1)1.96 (1)2.766 (2)159 (3)
O3w—H3w1···O40.85 (1)2.39 (5)2.812 (3)111 (4)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+3/2, y+1/2, z+3/2; (iv) x+1/2, y+3/2, z1/2; (v) x+1/2, y+1/2, z+3/2; (vi) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (No. 1054 G036), Heilongjiang University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPtasiewicz-Bak, H. & Leciejewicz, B. (1999). Pol. J. Chem. 73, 717–725.  CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1631-m1632
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds