organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-4-methyl­benzo­nitrile

aInstitute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
*Correspondence e-mail: munawaralimunawar@yahoo.com

(Received 16 November 2009; accepted 17 November 2009; online 21 November 2009)

The title mol­ecule, C8H6BrN, is almost planar (r.m.s. deviation for the non-H atoms = 0.008 Å). In the crystal, weak ππ stacking inter­actions [centroid–centroid separations = 3.782 (2) and 3.919 (2) Å] generate [100] columns of mol­ecules.

Related literature

For the synthesis, see: Johnson & Sandborn (1941[Johnson, J. R. & Sandborn, L. T. (1941). Org. Synth. Coll. 1, 111-116.]). 2-Bromo-4-methyl­benzonitrile derivatives are used as inter­mediates in the synthesis of phthalocyanine dyes. For applications of phthalocyanine dyes in photo redox reactions and photodynamic cancer therapy, see: Simon & Sirlin (1989[Simon, J. & Sirlin, C. (1989). Pure Appl. Chem. 61, 1625-1629.]); Simon et al. (1989[Simon, J., Bassoul, P. & Norvez, S. (1989). New. J. Chem. 13, 13-31.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6BrN

  • Mr = 196.05

  • Triclinic, [P \overline 1]

  • a = 7.5168 (11) Å

  • b = 7.8383 (11) Å

  • c = 7.9428 (11) Å

  • α = 69.243 (7)°

  • β = 64.375 (8)°

  • γ = 87.567 (8)°

  • V = 391.14 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.17 mm−1

  • T = 296 K

  • 0.41 × 0.28 × 0.19 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.226, Tmax = 0.440

  • 8084 measured reflections

  • 1921 independent reflections

  • 1244 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.01

  • 1921 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Synthesis of 2-bromo-4-methylbenzonitrile derivatives are important compounds due to their use as intermediates in the synthesis of phthalocyanine dyes. The substituted phthalocyanine dyes have been used for photo redox reactions (Simon & Sirlin, 1989) and photodynamic cancer therapy (Simon et al.. 1989).

The title compound(I) is almost planar. The cyano plane (C4/C8/N1) is oriented at a dihedral angle of 79.7 (3)° with respect to aromatic ring (C1/C2/C3/C4/C5/C6). The dihedral angle between the plane containing the methyl carbon (C1/C2/C6/C7) and aromatic ring plane is 0.22 (0.18)°. No significant intermolecular or intramolecular hydrogen bonding interaction has been observed in the molecule.

Related literature top

For the synthesis, see: Johnson & Sandborn (1941). 2-Bromo-4-methylbenzonitrile derivatives are used as intermediates in the synthesis of phthalocyanine dyes. For applications of phthalocyanine dyes in photo redox reactions and photodynamic cancer therapy, see: Simon & Sirlin (1989); Simon et al. (1989).

Experimental top

3-Bromo-4-amino toluene (10 g, 54 mmol) (Johnson & Sandborn, 1941) was dissolved in HCl (30 ml, 17%). The mixture was cooled to 273 K in an ice-salt mixture. Over 5 min, an aqueous solution (9 ml) of NaNO2 (4.3 g) was added to the above mixture. The temperature was maintained at 273-278 K. A mixture of aqueous solution (6%) of Cu(I)cyanide and KCN (40%) was heated to 333 K and added to the above cold neutralized diazonium salt solution. After work up of reaction, colourless blocks of (I) were obtained by the slow evaporation of water.

Refinement top

The H atoms were geometrically placed (C—H = 0.93–0.96Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% displacement ellipsoids.
[Figure 2] Fig. 2. Unit cell packing diagram.
2-bromo-4-methylbenzonitrile top
Crystal data top
C8H6BrNZ = 2
Mr = 196.05F(000) = 192
Triclinic, P1Dx = 1.665 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5168 (11) ÅCell parameters from 3073 reflections
b = 7.8383 (11) Åθ = 2.2–21.2°
c = 7.9428 (11) ŵ = 5.17 mm1
α = 69.243 (7)°T = 296 K
β = 64.375 (8)°Block, colourless
γ = 87.567 (8)°0.41 × 0.28 × 0.19 mm
V = 391.14 (10) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1921 independent reflections
Radiation source: fine-focus sealed tube1244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 28.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.226, Tmax = 0.440k = 1010
8084 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.2649P]
where P = (Fo2 + 2Fc2)/3
1921 reflections(Δ/σ)max < 0.001
92 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C8H6BrNγ = 87.567 (8)°
Mr = 196.05V = 391.14 (10) Å3
Triclinic, P1Z = 2
a = 7.5168 (11) ÅMo Kα radiation
b = 7.8383 (11) ŵ = 5.17 mm1
c = 7.9428 (11) ÅT = 296 K
α = 69.243 (7)°0.41 × 0.28 × 0.19 mm
β = 64.375 (8)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1921 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1244 reflections with I > 2σ(I)
Tmin = 0.226, Tmax = 0.440Rint = 0.025
8084 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.01Δρmax = 0.44 e Å3
1921 reflectionsΔρmin = 0.49 e Å3
92 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.32613 (7)0.89370 (4)0.35907 (6)0.07874 (19)
C10.2019 (4)0.3498 (4)0.7427 (4)0.0525 (7)
C20.2395 (4)0.5395 (4)0.6606 (4)0.0512 (7)
H20.24190.60330.73870.061*
C30.2732 (4)0.6352 (4)0.4660 (4)0.0457 (6)
C40.2711 (4)0.5439 (4)0.3461 (4)0.0445 (6)
C50.2349 (5)0.3537 (4)0.4270 (5)0.0532 (7)
H50.23370.28990.34850.064*
C60.2008 (5)0.2588 (4)0.6222 (5)0.0582 (8)
H60.17650.13100.67470.070*
C70.1639 (6)0.2446 (5)0.9569 (5)0.0764 (10)
H7A0.21910.31911.00060.115*
H7B0.22530.13390.96540.115*
H7C0.02310.21361.04150.115*
C80.3088 (5)0.6413 (4)0.1400 (5)0.0540 (7)
N10.3389 (5)0.7126 (4)0.0230 (5)0.0771 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1226 (4)0.0413 (2)0.0893 (3)0.01752 (18)0.0609 (3)0.02676 (18)
C10.0514 (18)0.0578 (18)0.0451 (17)0.0061 (14)0.0231 (14)0.0136 (14)
C20.0571 (18)0.0587 (18)0.0515 (18)0.0159 (14)0.0288 (15)0.0308 (15)
C30.0525 (17)0.0403 (14)0.0491 (17)0.0096 (12)0.0251 (14)0.0193 (13)
C40.0449 (16)0.0480 (16)0.0410 (16)0.0047 (12)0.0188 (13)0.0174 (13)
C50.0641 (19)0.0478 (16)0.0525 (18)0.0029 (14)0.0249 (15)0.0249 (14)
C60.069 (2)0.0437 (16)0.056 (2)0.0005 (14)0.0258 (16)0.0151 (15)
C70.086 (3)0.085 (3)0.050 (2)0.007 (2)0.0321 (19)0.0132 (18)
C80.0586 (19)0.0560 (18)0.0478 (19)0.0003 (14)0.0225 (15)0.0205 (15)
N10.098 (2)0.077 (2)0.0512 (18)0.0056 (17)0.0332 (17)0.0171 (16)
Geometric parameters (Å, º) top
Br1—C31.882 (3)C4—C81.440 (4)
C1—C21.380 (4)C5—C61.371 (4)
C1—C61.384 (4)C5—H50.9300
C1—C71.503 (4)C6—H60.9300
C2—C31.368 (4)C7—H7A0.9600
C2—H20.9300C7—H7B0.9600
C3—C41.384 (4)C7—H7C0.9600
C4—C51.383 (4)C8—N11.133 (4)
C2—C1—C6118.2 (3)C6—C5—H5119.9
C2—C1—C7121.0 (3)C4—C5—H5119.9
C6—C1—C7120.8 (3)C5—C6—C1121.2 (3)
C3—C2—C1121.0 (3)C5—C6—H6119.4
C3—C2—H2119.5C1—C6—H6119.4
C1—C2—H2119.5C1—C7—H7A109.5
C2—C3—C4120.8 (3)C1—C7—H7B109.5
C2—C3—Br1119.6 (2)H7A—C7—H7B109.5
C4—C3—Br1119.6 (2)C1—C7—H7C109.5
C5—C4—C3118.6 (3)H7A—C7—H7C109.5
C5—C4—C8119.6 (3)H7B—C7—H7C109.5
C3—C4—C8121.8 (3)N1—C8—C4177.7 (3)
C6—C5—C4120.3 (3)

Experimental details

Crystal data
Chemical formulaC8H6BrN
Mr196.05
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.5168 (11), 7.8383 (11), 7.9428 (11)
α, β, γ (°)69.243 (7), 64.375 (8), 87.567 (8)
V3)391.14 (10)
Z2
Radiation typeMo Kα
µ (mm1)5.17
Crystal size (mm)0.41 × 0.28 × 0.19
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.226, 0.440
No. of measured, independent and
observed [I > 2σ(I)] reflections
8084, 1921, 1244
Rint0.025
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.01
No. of reflections1921
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.49

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

Muhammad Shahid acknowledges the Higher Education Commission of Pakistan for providing funds, the Institute of Chemistry, University of the Punjab, for providing research facilities and the Education Department, Government of the Punjab, for their co-operation.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJohnson, J. R. & Sandborn, L. T. (1941). Org. Synth. Coll. 1, 111–116.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimon, J., Bassoul, P. & Norvez, S. (1989). New. J. Chem. 13, 13–31.  CAS Google Scholar
First citationSimon, J. & Sirlin, C. (1989). Pure Appl. Chem. 61, 1625–1629.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds