organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-2-Iodo-3,4-di­hydro­naphthalen-1(2H)-one

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 17 November 2009; accepted 18 November 2009; online 21 November 2009)

In the title compound, C10H9IO, the asymmetric unit contains two mol­ecules, in which the iodo-bearing six-membered rings adopt envelope conformations [displacements of the flap atoms = 0.419 (3) and 0.431 (3) Å]. In both mol­ecules, the I atoms are disordered over two set of sites in 0.54 (4):0.46 (4) and 0.71 (3):0.29 (3) ratios. In the crystal, the packing features a weak C—H⋯π inter­action.

Related literature

For a related structure, see: Haddad (1986[Haddad, S. F. (1986). Acta Cryst. C42, 581-584.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9IO

  • Mr = 272.07

  • Monoclinic, P 21 /c

  • a = 6.115 (5) Å

  • b = 19.658 (4) Å

  • c = 15.896 (5) Å

  • β = 90.551 (5)°

  • V = 1910.7 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.31 mm−1

  • T = 296 K

  • 0.28 × 0.20 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.685, Tmax = 0.717

  • 19043 measured reflections

  • 4397 independent reflections

  • 3632 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.059

  • S = 1.07

  • 4397 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg3 0.93 2.95 3.700 (4) 139
Cg3 is the centroid of the C11–C16 ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) is an intermediate for the total synthesis of steroidal hormones. The ctystal structures of (II) 2,2-Dibromo-3,4-dihydro-1(2H)-naphthalenone (Haddad, 1986) has been published, which seems relavent to (I).

The asymmetric unit of title compound consists of two individual molecules which are clearly racemate. In the molecule having (S)-configuration, the I-atom containing ring A (C1/C6/C7—C10) is twisted with maximum puckering amplitude QT = 0.431 (3) Å, whereas in (R)-configuration the puckering parameter is QT = 0.419 (3) Å. In two molecules the groups of benzene rings along with two adjacent C-atoms, C (C1—C6/C7/C10) and D (C11—C16/C17/C20) are planar with maximum r. m. s. deviations of 0.0114 and 0.0280 Å respectively, from the respective mean square planes. The dihedral angle between C/D is 66.83 (7) Å. In the first molecule the I-atom is disordered over two set of sites having occupancy ratio of 0.54 (4):0.46 (4). Similarly in the other molecule the I-atom is disordered over two set of sites having occupancy ratio of 0.71 (3):0.29 (3). The molecules are stabilized due to C–H···π interactions (Table 1).

Related literature top

For a related structure, see: Haddad (1986). Cg3 is the centroid of the C11–C16 ring.

Experimental top

A solution of I2 (7.75 g, 30.5 mmol) in CHCl3 was added as drops to a solution of 1-tetralone (2.198 g, 15.2 mmol) in acetic acid (9.156 g, 0.1526 mol) and refluxed for 28 h. The H2O (30 ml) was added for partitioning. The reaction mixture was extracted with CHCl3 (3 × 15 ml). The combined organic layer was concentrated in vacuo, the crude was dissolved in ethyl acetate, washed with 5% Na2S2O3 (2 × 15 ml), dried over anhydrous Na2SO4, filtered, boiled with charcoal, concentrated under reduce pressure and allowed for crystallization, which afforded colourless prisms (89%) of (I).

Refinement top

The other H-atoms were positioned geometrically (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with the I atoms having greater occupancies. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of (I) with the I atoms having lesser occupancies. The displacement ellipsoids are drawn at the 30% probability level.
rac-2-Iodo-3,4-dihydronaphthalen-1(2H)-one top
Crystal data top
C10H9IOF(000) = 1040
Mr = 272.07Dx = 1.892 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4397 reflections
a = 6.115 (5) Åθ = 2.4–27.8°
b = 19.658 (4) ŵ = 3.31 mm1
c = 15.896 (5) ÅT = 296 K
β = 90.551 (5)°Prism, colourless
V = 1910.7 (17) Å30.28 × 0.20 × 0.18 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4397 independent reflections
Radiation source: fine-focus sealed tube3632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 7.50 pixels mm-1θmax = 27.8°, θmin = 2.4°
ω scansh = 87
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2524
Tmin = 0.685, Tmax = 0.717l = 2020
19043 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0273P)2 + 0.6672P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
4397 reflectionsΔρmax = 0.39 e Å3
238 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00283 (17)
Crystal data top
C10H9IOV = 1910.7 (17) Å3
Mr = 272.07Z = 8
Monoclinic, P21/cMo Kα radiation
a = 6.115 (5) ŵ = 3.31 mm1
b = 19.658 (4) ÅT = 296 K
c = 15.896 (5) Å0.28 × 0.20 × 0.18 mm
β = 90.551 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4397 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3632 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.717Rint = 0.026
19043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.07Δρmax = 0.39 e Å3
4397 reflectionsΔρmin = 0.50 e Å3
238 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I1A0.8199 (5)0.0828 (2)0.36895 (19)0.0502 (6)0.54 (4)
I1B0.8299 (7)0.0783 (3)0.3658 (2)0.0622 (8)0.46 (4)
O10.6627 (3)0.25061 (10)0.31382 (12)0.0512 (6)
C10.9910 (4)0.17057 (12)0.15222 (17)0.0408 (8)
C20.9965 (5)0.16572 (14)0.06450 (19)0.0573 (10)
C30.8386 (6)0.19473 (15)0.01454 (19)0.0637 (10)
C40.6694 (6)0.23029 (15)0.05043 (19)0.0621 (11)
C50.6596 (4)0.23677 (13)0.13679 (17)0.0473 (9)
C60.8181 (3)0.20662 (11)0.18883 (15)0.0350 (7)
C70.8027 (3)0.21515 (11)0.28175 (15)0.0356 (7)
C80.9707 (4)0.17888 (13)0.33563 (17)0.0439 (8)
C91.1881 (4)0.16933 (15)0.2919 (2)0.0546 (9)
C101.1619 (4)0.13632 (14)0.20632 (19)0.0518 (9)
I2A0.2833 (4)0.51127 (14)0.4019 (2)0.0524 (4)0.71 (3)
I2B0.2948 (9)0.5150 (3)0.3949 (5)0.0551 (13)0.29 (3)
O20.1573 (3)0.33920 (10)0.34826 (14)0.0590 (7)
C110.4861 (4)0.42382 (11)0.19085 (17)0.0395 (8)
C120.4975 (5)0.42831 (14)0.1038 (2)0.0593 (11)
C130.3390 (7)0.39932 (18)0.0525 (2)0.0735 (13)
C140.1666 (6)0.36502 (18)0.0870 (2)0.0725 (12)
C150.1531 (4)0.35857 (13)0.1724 (2)0.0528 (10)
C160.3121 (3)0.38740 (11)0.22589 (16)0.0366 (7)
C170.2928 (4)0.37754 (11)0.31794 (16)0.0385 (7)
C180.4509 (4)0.41620 (12)0.37374 (17)0.0431 (8)
C190.6704 (4)0.42740 (14)0.33282 (19)0.0504 (9)
C200.6513 (4)0.45891 (14)0.24640 (19)0.0496 (9)
H21.110500.142150.039430.0687*
H30.845620.190420.043640.0763*
H40.561890.249930.016530.0746*
H50.546220.261440.160680.0568*
H80.995190.205360.387100.0527*
H9A1.258100.213270.285370.0654*
H9B1.282680.141260.326860.0654*
H10A1.300980.137650.177570.0620*
H10B1.122100.088950.213800.0620*
H120.613980.451260.079530.0712*
H130.349570.403130.005670.0882*
H140.059080.346190.052360.0868*
H150.036790.334710.195470.0632*
H180.472900.390740.426140.0517*
H19A0.758600.456800.368520.0605*
H19B0.745370.384090.328330.0605*
H20A0.610440.506340.252230.0596*
H20B0.793020.457320.219570.0596*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I1A0.0533 (13)0.0521 (9)0.0453 (9)0.0069 (5)0.0019 (5)0.0139 (8)
I1B0.084 (2)0.0428 (9)0.0599 (13)0.0067 (6)0.0130 (10)0.0018 (11)
O10.0456 (10)0.0531 (11)0.0550 (12)0.0073 (8)0.0063 (8)0.0161 (9)
C10.0450 (12)0.0273 (12)0.0504 (16)0.0049 (9)0.0138 (11)0.0004 (11)
C20.0773 (19)0.0391 (15)0.0561 (19)0.0096 (13)0.0319 (16)0.0049 (13)
C30.102 (2)0.0490 (17)0.0402 (16)0.0163 (17)0.0091 (16)0.0025 (14)
C40.083 (2)0.0521 (18)0.0510 (19)0.0057 (15)0.0130 (16)0.0118 (14)
C50.0502 (14)0.0387 (14)0.0530 (17)0.0023 (11)0.0036 (12)0.0000 (12)
C60.0370 (11)0.0243 (11)0.0439 (14)0.0035 (9)0.0054 (10)0.0011 (10)
C70.0322 (11)0.0297 (12)0.0448 (14)0.0045 (9)0.0018 (10)0.0046 (10)
C80.0442 (13)0.0389 (14)0.0485 (15)0.0046 (10)0.0082 (11)0.0064 (11)
C90.0346 (12)0.0499 (16)0.079 (2)0.0019 (11)0.0078 (12)0.0078 (15)
C100.0379 (13)0.0419 (15)0.076 (2)0.0064 (10)0.0160 (13)0.0039 (14)
I2A0.0475 (8)0.0585 (9)0.0512 (5)0.0129 (3)0.0063 (3)0.0177 (5)
I2B0.077 (3)0.0322 (19)0.0562 (13)0.0131 (8)0.0055 (13)0.0043 (12)
O20.0550 (11)0.0514 (12)0.0709 (14)0.0111 (9)0.0206 (10)0.0053 (10)
C110.0416 (12)0.0274 (12)0.0496 (16)0.0011 (9)0.0093 (11)0.0039 (10)
C120.0745 (19)0.0488 (17)0.0551 (19)0.0020 (14)0.0204 (15)0.0010 (14)
C130.105 (3)0.071 (2)0.0446 (18)0.006 (2)0.0004 (18)0.0078 (16)
C140.086 (2)0.064 (2)0.067 (2)0.0004 (18)0.0220 (19)0.0170 (17)
C150.0511 (15)0.0381 (14)0.069 (2)0.0081 (11)0.0073 (13)0.0075 (13)
C160.0355 (11)0.0259 (12)0.0484 (15)0.0012 (9)0.0025 (10)0.0033 (10)
C170.0356 (11)0.0283 (12)0.0517 (15)0.0032 (9)0.0071 (10)0.0012 (10)
C180.0445 (13)0.0427 (14)0.0420 (15)0.0102 (10)0.0023 (11)0.0008 (11)
C190.0341 (12)0.0504 (16)0.0665 (19)0.0033 (10)0.0068 (12)0.0087 (13)
C200.0347 (12)0.0433 (15)0.071 (2)0.0092 (10)0.0103 (12)0.0039 (13)
Geometric parameters (Å, º) top
I1A—C82.170 (5)C9—H9B0.9700
I1B—C82.211 (6)C10—H10A0.9700
I2A—C182.180 (4)C10—H10B0.9700
I2B—C182.192 (7)C11—C121.389 (4)
O1—C71.220 (3)C11—C161.402 (3)
O2—C171.223 (3)C11—C201.503 (4)
C1—C61.404 (3)C12—C131.384 (5)
C1—C21.398 (4)C13—C141.370 (5)
C1—C101.506 (4)C14—C151.367 (5)
C2—C31.369 (5)C15—C161.405 (4)
C3—C41.377 (5)C16—C171.482 (4)
C4—C51.381 (4)C17—C181.511 (4)
C5—C61.400 (4)C18—C191.513 (4)
C6—C71.490 (4)C19—C201.510 (4)
C7—C81.510 (4)C12—H120.9300
C8—C91.518 (4)C13—H130.9300
C9—C101.514 (4)C14—H140.9300
C2—H20.9300C15—H150.9300
C3—H30.9300C18—H180.9800
C4—H40.9300C19—H19A0.9700
C5—H50.9300C19—H19B0.9700
C8—H80.9800C20—H20A0.9700
C9—H9A0.9700C20—H20B0.9700
C2—C1—C6118.2 (2)C12—C11—C16118.3 (2)
C2—C1—C10121.1 (2)C12—C11—C20121.1 (2)
C6—C1—C10120.7 (2)C16—C11—C20120.6 (2)
C1—C2—C3121.8 (3)C11—C12—C13121.3 (3)
C2—C3—C4120.0 (3)C12—C13—C14120.3 (3)
C3—C4—C5119.9 (3)C13—C14—C15119.8 (3)
C4—C5—C6120.8 (2)C14—C15—C16121.0 (3)
C1—C6—C5119.3 (2)C11—C16—C15119.3 (2)
C1—C6—C7121.5 (2)C11—C16—C17121.8 (2)
C5—C6—C7119.21 (19)C15—C16—C17118.9 (2)
O1—C7—C6122.0 (2)O2—C17—C16122.1 (2)
O1—C7—C8120.6 (2)O2—C17—C18120.7 (2)
C6—C7—C8117.38 (18)C16—C17—C18117.2 (2)
I1A—C8—C7105.13 (17)I2A—C18—C17104.62 (17)
I1A—C8—C9112.4 (2)I2A—C18—C19112.60 (18)
I1B—C8—C7106.32 (18)I2B—C18—C17105.0 (2)
I1B—C8—C9109.5 (2)I2B—C18—C19109.1 (2)
C7—C8—C9113.1 (2)C17—C18—C19112.7 (2)
C8—C9—C10112.3 (2)C18—C19—C20112.9 (2)
C1—C10—C9112.9 (2)C11—C20—C19113.1 (2)
C1—C2—H2119.00C11—C12—H12119.00
C3—C2—H2119.00C13—C12—H12119.00
C2—C3—H3120.00C12—C13—H13120.00
C4—C3—H3120.00C14—C13—H13120.00
C3—C4—H4120.00C13—C14—H14120.00
C5—C4—H4120.00C15—C14—H14120.00
C4—C5—H5120.00C14—C15—H15119.00
C6—C5—H5120.00C16—C15—H15119.00
I1A—C8—H8109.00I2A—C18—H18109.00
I1B—C8—H8111.00I2B—C18—H18112.00
C7—C8—H8109.00C17—C18—H18109.00
C9—C8—H8109.00C19—C18—H18109.00
C8—C9—H9A109.00C18—C19—H19A109.00
C8—C9—H9B109.00C18—C19—H19B109.00
C10—C9—H9A109.00C20—C19—H19A109.00
C10—C9—H9B109.00C20—C19—H19B109.00
H9A—C9—H9B108.00H19A—C19—H19B108.00
C1—C10—H10A109.00C11—C20—H20A109.00
C1—C10—H10B109.00C11—C20—H20B109.00
C9—C10—H10A109.00C19—C20—H20A109.00
C9—C10—H10B109.00C19—C20—H20B109.00
H10A—C10—H10B108.00H20A—C20—H20B108.00
C6—C1—C2—C30.3 (4)C16—C11—C12—C131.7 (4)
C10—C1—C2—C3177.9 (3)C20—C11—C12—C13176.3 (3)
C2—C1—C6—C50.6 (3)C12—C11—C16—C151.8 (3)
C2—C1—C6—C7178.9 (2)C12—C11—C16—C17177.3 (2)
C10—C1—C6—C5178.8 (2)C20—C11—C16—C15176.2 (2)
C10—C1—C6—C72.9 (3)C20—C11—C16—C174.7 (3)
C2—C1—C10—C9156.0 (2)C12—C11—C20—C19157.1 (2)
C6—C1—C10—C925.8 (3)C16—C11—C20—C1925.0 (3)
C1—C2—C3—C40.5 (5)C11—C12—C13—C140.3 (5)
C2—C3—C4—C50.2 (5)C12—C13—C14—C151.0 (5)
C3—C4—C5—C61.1 (4)C13—C14—C15—C160.9 (5)
C4—C5—C6—C11.3 (4)C14—C15—C16—C110.6 (4)
C4—C5—C6—C7179.6 (2)C14—C15—C16—C17178.6 (3)
C1—C6—C7—O1174.4 (2)C11—C16—C17—O2171.0 (2)
C1—C6—C7—C84.7 (3)C11—C16—C17—C188.1 (3)
C5—C6—C7—O14.0 (3)C15—C16—C17—O28.1 (3)
C5—C6—C7—C8177.1 (2)C15—C16—C17—C18172.9 (2)
O1—C7—C8—I1A87.3 (2)O2—C17—C18—I2A89.8 (2)
O1—C7—C8—C9149.8 (2)O2—C17—C18—C19147.6 (2)
C6—C7—C8—I1A93.7 (2)C16—C17—C18—I2A91.2 (2)
C6—C7—C8—C929.3 (3)C16—C17—C18—C1931.5 (3)
I1A—C8—C9—C1066.6 (3)I2A—C18—C19—C2065.9 (3)
C7—C8—C9—C1052.2 (3)C17—C18—C19—C2052.1 (3)
C8—C9—C10—C150.1 (3)C18—C19—C20—C1148.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg30.932.953.700 (4)139

Experimental details

Crystal data
Chemical formulaC10H9IO
Mr272.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.115 (5), 19.658 (4), 15.896 (5)
β (°) 90.551 (5)
V3)1910.7 (17)
Z8
Radiation typeMo Kα
µ (mm1)3.31
Crystal size (mm)0.28 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.685, 0.717
No. of measured, independent and
observed [I > 2σ(I)] reflections
19043, 4397, 3632
Rint0.026
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.059, 1.07
No. of reflections4397
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.50

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg30.932.953.700 (4)139
 

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHaddad, S. F. (1986). Acta Cryst. C42, 581–584.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds