organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3R,4R,5S)-4-Hydr­­oxy-3-methyl-5-[(2S,3R)-3-methyl­pent-4-en-2-yl]-4,5-di­hydro­furan-2(3H)-one

aFakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
*Correspondence e-mail: hans.preut@udo.edu

(Received 18 November 2009; accepted 23 November 2009; online 28 November 2009)

The relative configuration of the title compound, C11H18O3, which was synthesized using a catalytic asymmetric Gosteli–Claisen rearrangement, a diastereoselective reduction with K-Selectride and an Evans aldol addition, was corroborated by single-crystal X-ray diffraction analysis. The five-membered ring has an envelope conformation with a dihedral angle of 29.46 (16)° between the coplanar part and the flap (the hydr­oxy-bearing ring C atom). In the crystal, mol­ecules are connected via bifurcated O—H⋯(O,O) hydrogen bonds, generating [010] chains.

Related literature

For further synthetic details, see: Abraham et al. (2001[Abraham, L., Czerwonka, R. & Hiersemann, M. (2001). Angew. Chem. Int. Ed. 40, 4700-4703.], 2004[Abraham, L., Körner, M., Schwab, P. & Hiersemann, M. (2004). Adv. Synth. Catal. 346, 1281-1294.]); Brown (1973[Brown, C. A. (1973). J. Am. Chem. Soc. 95, 4100-4102.]); Evans et al. (1981[Evans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc. 103, 2127-2129.], 1999[Evans, D. A., Miller, S. J., Lectka, T. & Matt, V. P. (1999). J. Am. Chem. Soc. 121, 7559-7573.]); Otera et al. (1992[Otera, J., Niibo, Y. & Nozaki, H. (1992). Tetrahedron Lett. 33, 3655-3658.]). For the structure of the major diastereisomer arising from the same reaction, see: Gille et al. (2008[Gille, A., Schürmann, M., Preut, H. & Hiersemann, M. (2008). Acta Cryst. E64, o1835.]).

[Scheme 1]

Experimental

Crystal data
  • C11H18O3

  • Mr = 198.25

  • Monoclinic, P 21

  • a = 7.7265 (10) Å

  • b = 6.4798 (8) Å

  • c = 11.0598 (16) Å

  • β = 92.563 (14)°

  • V = 553.17 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.50 × 0.18 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur S CCD diffractometer

  • Absorption correction: none

  • 3255 measured reflections

  • 1129 independent reflections

  • 737 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.048

  • S = 0.99

  • 1129 reflections

  • 131 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.84 2.52 3.023 (2) 120
O3—H3⋯O2i 0.84 2.10 2.931 (3) 171
Symmetry code: (i) x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis CCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, (I), was synthesized using a catalytic asymmetric Gosteli-Claisen rearrangement (Abraham et al., 2001; Abraham et al., 2004), a diastereoselective reduction with K-Selectride (Brown, 1973) and an Evans aldol addition (Evans et al., 1981). In order to verify the relative configuration of the obtained diastereomeric aldol adducts, 4-(tert-butyldimethylsilyloxy)-3-hydroxy-2,5,6-trimethyloct-7-enoyl) -4-isopropyloxazolidin-2-one, (III), the γ-lactones (II) and (I) were prepared by removal of the silyl protecting group (Otera et al., 1992) and subsequent in situ lactonization. The diastereomeric mixture of the γ-lactones could be separated by column chromatography. An X-ray crystal structure analysis of the major diastereomer (II) has already been published (Gille et al., 2008). Fig. 1 depicts the structure of the isolated minor diastereomer (I). The configuration of the chiral C atoms in (I) can be attributed to the stereochemical course of the Evans aldol addition (C3 R and C4 R), the diastereoselective reduction with K-Selectride (C5 S) and the catalytic asymmetric Claisen rearrangement (C[2] S and C[3] R) using the chiral Lewis acid [Cu{(S,S)-tert-butyl-box}](H2O)2(SbF6)2 (Evans et al., 1999).

Related literature top

For further synthetic details, see: Abraham et al. (2001, 2004); Brown (1973); Evans et al. (1981, 1999); Otera et al. (1992). For the structure of the major diastereisomer arising from the same reaction, see: Gille et al. (2008).

Experimental top

The title compound, (I), was synthesized from the corresponding aldol adduct, (III), using tetrabutylammonium fluoride (TBAF) in the presence of acetic acid (Otera et al., 1992) to remove the silyl protecting group. The subsequent lactonization proceeded in situ .

To an ice-cooled solution of crude (III) (dr = 49/51, 0.04 g, 0.10 mmol, 1 eq) in THF (1 ml, 11 ml/mmol III) was added a solution of AcOH (0.5 µl, 0.010 mmol, 0.1 eq) in THF (0.1 ml, 1.1 ml/mmol III) and TBAF (1 M in THF, 0.11 ml, 0.11 mmol, 1.1 eq). After 15 min at 273 K, the reaction mixture was diluted by the addition of saturated aqueous NH4Cl solution. The aqueous layer was extracted with CH2Cl2 (4x) and the combined organic phases were dried (MgSO4) and concentrated under reduced pressure. Purification by flash chromatography (crude product charged on silica gel, cyclohexane/ethyl acetate 10/1 to 5/1) afforded lactone (I) (0.006 g, 0.03 mmol, 30%) as a single diastereomer and additionally a mixture of (I) and the diastereomer (II) (0.013 g, 0.07 mmol, 69%, dr = 70/30) as colourless crystals. Subsequent recrystallization of (I) by vapor diffusion technique from isohexane and ethyl acetate provided a colourless plate of (I) single-crystal suitable for an X-ray crystal structure analysis. Rf 0.35 (cyclohexane/ethyl acetate 2/1); mp 378 K; 1H NMR (CDCl3, 400 MHz, δ): 0.92 (d, 3J = 7.1 Hz, 3H), 1.00 (d, 3J = 7.0 Hz, 3H), 1.32 (d, 3J = 7.2 Hz, 3H), 1.85 (dqd, 3J = 8.2, 7.1, 4.9 Hz, 1H), 2.1 (br. s, 1H), 2.51–2.63 (m, 1H), 2.63 (dq, 3J = 8.4, 7.2 Hz, 1H), 3.92 (dd, 3J = 7.4, 8.2 Hz, 1H), 4.07 (dd, 3J = 8.4, 7.4 Hz, 1H), 5.04 (dd, 3J(E) = 17.8 Hz, 2J = 1.3 Hz, 1H), 5.05 (dd, 3J(Z) = 10.0 Hz, 2J = 1.3 Hz, 1H), 5.81 (ddd, 3J(E) = 17.8 Hz, 3J(Z) = 10.0 Hz, 3J = 6.8 Hz, 1H); 13C NMR (CDCl3, 101 MHz, δ): 10.1 (CH3), 12.9 (CH3), 13.7 (CH3), 37.8 (CH), 41.4 (CH), 44.4 (CH), 78.0 (CH), 84.7 (CH), 114.5 (CH2), 142.6 (CH), 176.4 (C); IR (cm-1): 3400(br,s) (ν O—H, OH in H-bridges), 3085(w) (ν C—H, olefin), 2970(s) 2925(s) 2890(m) 2855(m) (ν C—H, CH, CH3), 1735(s) (ν C=O, lactone), 1640(w) (ν C=C), 1455(m) (δas C—H, CH), 1380(m) (δs C—H, CH3), 1095(s) (ν C—O, alcohol), 1010(s) 910(s) (δ C—H, olefin); Anal. Calcd. for C11H18O3: C, 66.6; H, 9.2; Found: C, 66.6; H, 9.4; [α]D20 +16.0 (c 0.6, CHCl3); C11H18O3, M = 198.26 g/mol.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis CCD (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I) with displacement ellipsoids shown at the 30% probability level.
(3R,4R,5S)-4-Hydroxy-3-methyl-5-[(2S,3R)-3- methylpent-4-en-2-yl]-4,5-dihydrofuran-2(3H)-one top
Crystal data top
C11H18O3F(000) = 216
Mr = 198.25Dx = 1.190 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1159 reflections
a = 7.7265 (10) Åθ = 2.6–29.1°
b = 6.4798 (8) ŵ = 0.09 mm1
c = 11.0598 (16) ÅT = 173 K
β = 92.563 (14)°Plate, colourless
V = 553.17 (13) Å30.50 × 0.18 × 0.04 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
737 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.040
Graphite monochromatorθmax = 25.5°, θmin = 2.6°
Detector resolution: 16.0560 pixels mm-1h = 1010
ω scansk = 78
3255 measured reflectionsl = 1414
1129 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.011P)2]
where P = (Fo2 + 2Fc2)/3
1129 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C11H18O3V = 553.17 (13) Å3
Mr = 198.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.7265 (10) ŵ = 0.09 mm1
b = 6.4798 (8) ÅT = 173 K
c = 11.0598 (16) Å0.50 × 0.18 × 0.04 mm
β = 92.563 (14)°
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
737 reflections with I > 2σ(I)
3255 measured reflectionsRint = 0.040
1129 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.048H-atom parameters constrained
S = 0.99Δρmax = 0.14 e Å3
1129 reflectionsΔρmin = 0.15 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2173 (2)0.1438 (2)0.07628 (15)0.0251 (5)
O20.2731 (2)0.0175 (3)0.10413 (17)0.0328 (6)
O30.1599 (2)0.6838 (3)0.05289 (17)0.0370 (6)
H30.20320.77300.00820.056*
C10.2453 (3)0.1658 (5)0.0428 (2)0.0267 (8)
C20.2329 (4)0.3900 (4)0.0771 (2)0.0251 (8)
H20.11280.41680.11090.030*
C30.2533 (3)0.4969 (4)0.0446 (2)0.0275 (8)
H3A0.37900.52300.06450.033*
C40.1847 (4)0.3431 (4)0.1331 (3)0.0251 (7)
H40.05690.36300.13820.030*
C50.2674 (4)0.3375 (4)0.2598 (2)0.0293 (8)
H50.39540.32800.25120.035*
C60.2135 (4)0.1458 (4)0.3322 (2)0.0314 (8)
H60.22920.02380.27840.038*
C70.3345 (4)0.1158 (5)0.4405 (3)0.0409 (9)
H70.45460.11470.42550.049*
C80.2950 (4)0.0912 (5)0.5523 (2)0.0487 (10)
H8A0.17700.09100.57300.058*
H8B0.38410.07350.61340.058*
C90.3607 (3)0.4531 (4)0.1730 (2)0.0350 (9)
H9A0.47890.41820.14430.053*
H9B0.35230.60220.18720.053*
H9C0.33230.37930.24870.053*
C100.2329 (4)0.5418 (4)0.3243 (2)0.0401 (9)
H10A0.29220.65410.28360.060*
H10B0.27650.53290.40870.060*
H10C0.10800.56890.32180.060*
C110.0231 (3)0.1493 (5)0.3622 (2)0.0434 (9)
H11A0.00820.01670.39790.065*
H11B0.04840.17280.28810.065*
H11C0.00330.26050.42010.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0324 (13)0.0134 (13)0.0295 (11)0.0005 (11)0.0026 (10)0.0004 (11)
O20.0385 (14)0.0195 (12)0.0403 (14)0.0003 (11)0.0013 (11)0.0058 (12)
O30.0427 (14)0.0116 (11)0.0573 (15)0.0053 (11)0.0087 (11)0.0052 (12)
C10.0145 (16)0.0214 (18)0.044 (2)0.0032 (17)0.0048 (15)0.003 (2)
C20.0219 (17)0.0155 (18)0.038 (2)0.0004 (14)0.0015 (15)0.0037 (15)
C30.0222 (18)0.0125 (16)0.048 (2)0.0004 (16)0.0007 (16)0.0048 (16)
C40.0229 (17)0.0143 (16)0.0380 (19)0.0038 (15)0.0020 (15)0.0005 (16)
C50.0261 (17)0.0224 (19)0.039 (2)0.0040 (16)0.0001 (16)0.0068 (17)
C60.048 (2)0.0133 (19)0.0330 (18)0.0029 (17)0.0011 (16)0.0060 (17)
C70.049 (2)0.038 (2)0.0359 (17)0.0078 (19)0.0001 (17)0.0032 (18)
C80.054 (3)0.052 (2)0.039 (2)0.003 (2)0.005 (2)0.0019 (19)
C90.0337 (19)0.0271 (19)0.045 (2)0.0014 (17)0.0090 (16)0.0070 (17)
C100.046 (2)0.025 (2)0.049 (2)0.0045 (17)0.0060 (18)0.0113 (17)
C110.049 (2)0.037 (2)0.0442 (19)0.010 (2)0.0005 (17)0.007 (2)
Geometric parameters (Å, º) top
O1—C11.352 (3)C6—C71.499 (3)
O1—C41.463 (3)C6—C111.523 (3)
O2—C11.201 (3)C6—H61.0000
O3—C31.415 (3)C7—C81.296 (3)
O3—H30.8400C7—H70.9500
C1—C21.504 (4)C8—H8A0.9500
C2—C31.516 (3)C8—H8B0.9500
C2—C91.536 (3)C9—H9A0.9800
C2—H21.0000C9—H9B0.9800
C3—C41.510 (3)C9—H9C0.9800
C3—H3A1.0000C10—H10A0.9800
C4—C51.515 (3)C10—H10B0.9800
C4—H41.0000C10—H10C0.9800
C5—C101.533 (3)C11—H11A0.9800
C5—C61.544 (4)C11—H11B0.9800
C5—H51.0000C11—H11C0.9800
C1—O1—C4111.3 (2)C7—C6—C5110.2 (2)
C3—O3—H3109.5C11—C6—C5112.7 (2)
O2—C1—O1120.4 (3)C7—C6—H6106.6
O2—C1—C2129.9 (2)C11—C6—H6106.6
O1—C1—C2109.7 (3)C5—C6—H6106.6
C1—C2—C3102.4 (2)C8—C7—C6127.8 (3)
C1—C2—C9113.4 (2)C8—C7—H7116.1
C3—C2—C9116.5 (2)C6—C7—H7116.1
C1—C2—H2108.1C7—C8—H8A120.0
C3—C2—H2108.1C7—C8—H8B120.0
C9—C2—H2108.1H8A—C8—H8B120.0
O3—C3—C4109.1 (2)C2—C9—H9A109.5
O3—C3—C2114.6 (2)C2—C9—H9B109.5
C4—C3—C2104.4 (2)H9A—C9—H9B109.5
O3—C3—H3A109.5C2—C9—H9C109.5
C4—C3—H3A109.5H9A—C9—H9C109.5
C2—C3—H3A109.5H9B—C9—H9C109.5
O1—C4—C3103.4 (2)C5—C10—H10A109.5
O1—C4—C5107.6 (2)C5—C10—H10B109.5
C3—C4—C5118.0 (2)H10A—C10—H10B109.5
O1—C4—H4109.1C5—C10—H10C109.5
C3—C4—H4109.1H10A—C10—H10C109.5
C5—C4—H4109.1H10B—C10—H10C109.5
C4—C5—C10109.6 (2)C6—C11—H11A109.5
C4—C5—C6112.7 (2)C6—C11—H11B109.5
C10—C5—C6113.4 (2)H11A—C11—H11B109.5
C4—C5—H5106.9C6—C11—H11C109.5
C10—C5—H5106.9H11A—C11—H11C109.5
C6—C5—H5106.9H11B—C11—H11C109.5
C7—C6—C11113.6 (2)
C4—O1—C1—O2179.5 (2)C2—C3—C4—O128.3 (3)
C4—O1—C1—C20.1 (3)O3—C3—C4—C590.1 (3)
O2—C1—C2—C3162.7 (3)C2—C3—C4—C5147.0 (2)
O1—C1—C2—C318.0 (3)O1—C4—C5—C10178.7 (2)
O2—C1—C2—C936.3 (4)C3—C4—C5—C1064.9 (3)
O1—C1—C2—C9144.4 (2)O1—C4—C5—C651.4 (3)
C1—C2—C3—O3147.4 (2)C3—C4—C5—C6167.8 (2)
C9—C2—C3—O388.3 (3)C4—C5—C6—C7163.9 (2)
C1—C2—C3—C428.1 (3)C10—C5—C6—C770.9 (3)
C9—C2—C3—C4152.4 (2)C4—C5—C6—C1168.0 (3)
C1—O1—C4—C318.0 (3)C10—C5—C6—C1157.3 (3)
C1—O1—C4—C5143.6 (2)C11—C6—C7—C80.8 (5)
O3—C3—C4—O1151.2 (2)C5—C6—C7—C8128.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.842.523.023 (2)120
O3—H3···O2i0.842.102.931 (3)171
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H18O3
Mr198.25
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)7.7265 (10), 6.4798 (8), 11.0598 (16)
β (°) 92.563 (14)
V3)553.17 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.18 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur S CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3255, 1129, 737
Rint0.040
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.048, 0.99
No. of reflections1129
No. of parameters131
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.842.523.023 (2)120
O3—H3···O2i0.842.102.931 (3)171
Symmetry code: (i) x, y+1, z.
 

References

First citationAbraham, L., Czerwonka, R. & Hiersemann, M. (2001). Angew. Chem. Int. Ed. 40, 4700–4703.  Web of Science CrossRef CAS Google Scholar
First citationAbraham, L., Körner, M., Schwab, P. & Hiersemann, M. (2004). Adv. Synth. Catal. 346, 1281–1294.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrown, C. A. (1973). J. Am. Chem. Soc. 95, 4100–4102.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc. 103, 2127–2129.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. A., Miller, S. J., Lectka, T. & Matt, V. P. (1999). J. Am. Chem. Soc. 121, 7559–7573.  Web of Science CrossRef CAS Google Scholar
First citationGille, A., Schürmann, M., Preut, H. & Hiersemann, M. (2008). Acta Cryst. E64, o1835.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtera, J., Niibo, Y. & Nozaki, H. (1992). Tetrahedron Lett. 33, 3655–3658.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds