metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1669-m1670

(2,2′-Bipyrid­yl)bis­­[N-(2-hy­droxy­ethyl)-N-n-propyl­di­thio­carbamato-κ2S,S′]cadmium(II) aceto­nitrile solvate

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 19 November 2009; accepted 19 November 2009; online 25 November 2009)

The title complex, [Cd(C6H12NOS2)2(C10H8N2)]·CH3CN, features a distorted octa­hedral N2S4 geometry for the CdII centre defined by a pair of asymmetrically chelating dithio­carbamate ligands as well as a 2,2′-bipyridine ligand. Supra­molecular chains along [001] are formed in the crystal structure, mediated by O—H⋯S hydrogen bonds; the acetonitrile solvent mol­ecules are associated with the chains via O—H⋯N hydrogen bonds.

Related literature

For background to supra­molecular polymers of zinc-triad 1,1-dithiol­ates, see: Tiekink (2003[Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.]); Lai et al. (2002[Lai, C. S., Lim, Y. X., Yap, T. C. & Tiekink, E. R. T. (2002). CrystEngComm, 4, 596-600.]); Chen et al. (2006[Chen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51-58.]); Benson et al. (2007[Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-940.]). For the synthesis, see: Lai & Tiekink (2004[Lai, C. S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 593-605.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C6H12NOS2)2(C10H8N2)]·C2H3N

  • Mr = 666.21

  • Monoclinic, P 21 /c

  • a = 7.3277 (7) Å

  • b = 23.822 (2) Å

  • c = 17.1159 (18) Å

  • β = 99.786 (1)°

  • V = 2944.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 98 K

  • 0.36 × 0.22 × 0.11 mm

Data collection
  • Rigaku AFC12K/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.828, Tmax = 1

  • 18201 measured reflections

  • 6043 independent reflections

  • 5711 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.09

  • 6043 reflections

  • 331 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected bond lengths (Å)

Cd—N3 2.361 (2)
Cd—N4 2.406 (2)
Cd—S1 2.5872 (7)
Cd—S3 2.6539 (7)
Cd—S4 2.6704 (7)
Cd—S2 2.7816 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N5 0.84 2.06 2.898 (3) 174
O2—H2o⋯S2i 0.84 2.55 3.388 (2) 175
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Crystal engineering studies on the zinc-triad 1,1-dithiolates have generated 1-D, 2-D and 3-D architectures (Lai et al., 2002; Tiekink, 2003; Chen et al., 2006), in particular with dithiocarbamate ligands functionalized with hydrogen-bonding capacity (Benson et al., 2007). As a continuation of studies in this field, the structure of the title compound, (I), was investigated.

The molecular structure of (I) features a hexa-coordinated CdII centre defined by two asymmetrically chelating dithiocarbamate ligands (Cd–S1, S2 = 2.5872 (7) and 2.7816 (7) Å, and Cd–S3, S4 = 2.6539 (7) and 2.6704 (7) Å) and a chelating 2,2'-bipyridyl ligand (Cd–N3, N4 = 2.361 (2), 2.406 (2) Å). The resulting N2S4 donor set defines a distorted octahedral geometry.

The crystal packing is dominated by O–H···O and O–H···N hydrogen bonds, Table 1. The latter involve the O1-hydroxyl group and the nitrile-N5 atom of the solvent acetonitrile molecule. The O2-hydroxyl group forms hydrogen bonds with the dithiocarbamate-S2 atom to generate a supramolecular chain along [0 0 1], Table 1 and Fig. 2.

Related literature top

For background to supramolecular polymers of zinc-triad 1,1-dithiolates, see: Tiekink (2003); Lai et al. (2002); Chen et al. (2006); Benson et al. (2007). For the synthesis, see: Lai & Tiekink (2004).

Experimental top

Compound (I) was prepared following the standard literature procedure from the reaction of Cd[S2CN(CH2CH2OH)(n-Pr)]2 and 2,2'-bipyridyl (Lai & Tiekink, 2004). Colourless crystals were obtained from the slow evaporation of an acetonitrile solution of (I). IR (KBr, cm-1): 1471 (m) ν(C=N); 1183 (s) ν(C—S).

Refinement top

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). A rotating group model was used for the methyl groups. The O-bound H-atoms were located in a difference Fourier map and each refined with an O–H restraint of 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(carrier atom).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 50% probability level. The O–H···N hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Supramolecular chain in (I) mediated by O–H···S (green dashed lines) hydrogen bonds. The solvent acetonitrile molecules are connected by O–H···N hydrogen bonds (orange dashed lines). Hydrogen atoms not involved in the hydrogen bonding are omitted for reasons of clarity. Colour code: Cd, orange; S, yellow; O, red; N, blue; C, grey; and H, green.
(2,2'-Bipyridyl)bis[N-(2-hydroxyethyl)-N-n- propyldithiocarbamato-κ2S,S']cadmium(II) acetonitrile solvate top
Crystal data top
[Cd(C6H12NOS2)2(C10H8N2)]·C2H3NF(000) = 1368
Mr = 666.21Dx = 1.503 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 18141 reflections
a = 7.3277 (7) Åθ = 2.1–40.6°
b = 23.822 (2) ŵ = 1.06 mm1
c = 17.1159 (18) ÅT = 98 K
β = 99.786 (1)°Block, colourless
V = 2944.2 (5) Å30.36 × 0.22 × 0.11 mm
Z = 4
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
6043 independent reflections
Radiation source: fine-focus sealed tube5711 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.828, Tmax = 1k = 2529
18201 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0396P)2 + 3.165P]
where P = (Fo2 + 2Fc2)/3
6043 reflections(Δ/σ)max = 0.004
331 parametersΔρmax = 0.70 e Å3
2 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Cd(C6H12NOS2)2(C10H8N2)]·C2H3NV = 2944.2 (5) Å3
Mr = 666.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3277 (7) ŵ = 1.06 mm1
b = 23.822 (2) ÅT = 98 K
c = 17.1159 (18) Å0.36 × 0.22 × 0.11 mm
β = 99.786 (1)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
6043 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5711 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 1Rint = 0.027
18201 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0302 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.09Δρmax = 0.70 e Å3
6043 reflectionsΔρmin = 0.69 e Å3
331 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.22264 (2)0.757722 (7)0.046853 (9)0.01758 (7)
S10.17585 (8)0.85953 (3)0.09227 (3)0.01984 (13)
S20.54757 (9)0.82033 (3)0.06550 (4)0.02253 (13)
S30.35255 (9)0.69177 (3)0.16861 (4)0.02338 (14)
S40.04308 (9)0.69484 (3)0.09167 (3)0.02234 (13)
O10.7384 (3)0.95516 (8)0.26074 (11)0.0274 (4)
H1O0.80840.94650.30310.041*
O20.4126 (3)0.60342 (9)0.39861 (11)0.0356 (5)
H2O0.44710.62050.44150.053*
N10.4822 (3)0.92222 (9)0.11936 (11)0.0184 (4)
N20.0887 (3)0.62810 (9)0.21271 (12)0.0215 (4)
N30.3447 (3)0.70592 (9)0.04998 (12)0.0205 (4)
N40.0208 (3)0.76057 (8)0.07961 (12)0.0177 (4)
N50.9711 (4)0.93255 (13)0.41198 (16)0.0471 (8)
C10.4102 (3)0.87219 (10)0.09512 (13)0.0183 (5)
C20.6792 (3)0.93562 (11)0.12198 (14)0.0212 (5)
H2A0.69180.97620.11160.025*
H2B0.72580.91460.07950.025*
C30.7967 (4)0.92111 (12)0.20105 (15)0.0250 (5)
H3A0.78180.88090.21320.030*
H3B0.92900.92820.19910.030*
C40.3645 (3)0.96886 (10)0.13808 (13)0.0195 (5)
H4A0.43970.99480.17580.023*
H4B0.26400.95380.16400.023*
C50.2802 (4)1.00116 (11)0.06364 (14)0.0218 (5)
H5A0.38061.01750.03880.026*
H5B0.20860.97500.02510.026*
C60.1535 (4)1.04789 (12)0.08326 (16)0.0263 (5)
H6A0.10141.06800.03460.039*
H6B0.22481.07410.12070.039*
H6C0.05301.03170.10710.039*
C70.1289 (3)0.66779 (11)0.16308 (14)0.0198 (5)
C80.2339 (4)0.60092 (11)0.27098 (14)0.0227 (5)
H8A0.35150.60030.24980.027*
H8B0.19770.56160.27920.027*
C90.2634 (4)0.63157 (12)0.34969 (14)0.0241 (5)
H9A0.29520.67140.34240.029*
H9B0.15000.63000.37390.029*
C100.1000 (4)0.60685 (11)0.21058 (15)0.0232 (5)
H10A0.18950.63730.19300.028*
H10B0.11550.59560.26480.028*
C110.1435 (4)0.55671 (12)0.15499 (17)0.0293 (6)
H11A0.13190.56800.10040.035*
H11B0.05300.52640.17170.035*
C120.3363 (4)0.53524 (15)0.15584 (18)0.0370 (7)
H12A0.36120.50320.11980.056*
H12B0.42610.56510.13860.056*
H12C0.34720.52350.20970.056*
C130.1430 (3)0.78695 (11)0.09045 (15)0.0223 (5)
H130.17660.80740.04740.027*
C140.2656 (4)0.78577 (12)0.16151 (16)0.0267 (6)
H140.38050.80510.16720.032*
C150.2165 (4)0.75569 (11)0.22421 (16)0.0267 (6)
H150.29780.75400.27370.032*
C160.0475 (4)0.72821 (11)0.21382 (14)0.0230 (5)
H160.01070.70780.25620.028*
C170.0676 (3)0.73098 (10)0.14026 (14)0.0179 (5)
C180.2499 (3)0.70174 (10)0.12429 (14)0.0193 (5)
C190.5105 (4)0.68052 (12)0.03162 (16)0.0274 (6)
H190.57750.68420.02070.033*
C200.5869 (4)0.64932 (13)0.08592 (18)0.0342 (6)
H200.70390.63160.07140.041*
C210.4884 (4)0.64455 (14)0.16209 (18)0.0370 (7)
H210.53710.62310.20060.044*
C220.3192 (4)0.67099 (12)0.18219 (16)0.0286 (6)
H220.25110.66830.23450.034*
C231.0929 (4)0.93296 (12)0.46333 (17)0.0319 (6)
C241.2471 (4)0.93447 (15)0.52810 (18)0.0371 (7)
H24A1.20180.92980.57840.056*
H24B1.31110.97060.52800.056*
H24C1.33330.90400.52190.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.01970 (10)0.01859 (11)0.01415 (10)0.00001 (6)0.00205 (7)0.00045 (6)
S10.0183 (3)0.0203 (3)0.0206 (3)0.0005 (2)0.0026 (2)0.0025 (2)
S20.0221 (3)0.0212 (3)0.0254 (3)0.0018 (2)0.0072 (2)0.0035 (2)
S30.0212 (3)0.0273 (3)0.0199 (3)0.0013 (2)0.0016 (2)0.0036 (2)
S40.0203 (3)0.0270 (3)0.0190 (3)0.0008 (2)0.0012 (2)0.0055 (2)
O10.0331 (11)0.0274 (10)0.0200 (9)0.0029 (8)0.0002 (7)0.0002 (7)
O20.0453 (12)0.0394 (12)0.0185 (9)0.0197 (10)0.0048 (8)0.0023 (8)
N10.0191 (10)0.0201 (11)0.0160 (9)0.0003 (8)0.0036 (7)0.0002 (7)
N20.0249 (11)0.0221 (11)0.0173 (10)0.0020 (8)0.0032 (8)0.0022 (8)
N30.0193 (10)0.0221 (11)0.0201 (10)0.0003 (8)0.0033 (8)0.0016 (8)
N40.0209 (10)0.0146 (10)0.0177 (10)0.0002 (8)0.0035 (8)0.0016 (7)
N50.0482 (17)0.0513 (18)0.0362 (14)0.0215 (14)0.0089 (12)0.0155 (12)
C10.0203 (12)0.0222 (13)0.0122 (10)0.0008 (9)0.0025 (8)0.0015 (8)
C20.0206 (12)0.0237 (13)0.0200 (11)0.0041 (10)0.0058 (9)0.0008 (9)
C30.0217 (13)0.0285 (14)0.0244 (13)0.0020 (10)0.0030 (10)0.0030 (10)
C40.0222 (12)0.0192 (12)0.0174 (11)0.0006 (9)0.0042 (9)0.0033 (9)
C50.0239 (12)0.0223 (13)0.0190 (11)0.0004 (10)0.0034 (9)0.0016 (9)
C60.0260 (13)0.0255 (14)0.0287 (13)0.0059 (10)0.0082 (10)0.0010 (10)
C70.0228 (12)0.0204 (13)0.0161 (11)0.0012 (9)0.0036 (9)0.0015 (9)
C80.0297 (13)0.0191 (13)0.0191 (11)0.0073 (10)0.0041 (10)0.0011 (9)
C90.0288 (13)0.0252 (14)0.0184 (11)0.0071 (10)0.0042 (10)0.0003 (9)
C100.0273 (13)0.0235 (13)0.0202 (11)0.0002 (10)0.0077 (9)0.0021 (9)
C110.0292 (14)0.0274 (15)0.0317 (14)0.0008 (11)0.0064 (11)0.0028 (11)
C120.0318 (16)0.0453 (19)0.0338 (15)0.0093 (13)0.0051 (12)0.0038 (13)
C130.0211 (12)0.0233 (14)0.0234 (12)0.0031 (10)0.0064 (9)0.0023 (9)
C140.0233 (13)0.0287 (15)0.0273 (13)0.0044 (10)0.0013 (10)0.0061 (10)
C150.0285 (14)0.0263 (14)0.0227 (13)0.0028 (10)0.0032 (11)0.0037 (10)
C160.0286 (14)0.0233 (13)0.0166 (11)0.0040 (10)0.0021 (10)0.0001 (9)
C170.0184 (12)0.0192 (12)0.0167 (11)0.0038 (9)0.0047 (9)0.0006 (9)
C180.0214 (12)0.0192 (12)0.0180 (11)0.0002 (9)0.0052 (9)0.0007 (9)
C190.0198 (12)0.0322 (15)0.0293 (13)0.0055 (11)0.0017 (10)0.0006 (11)
C200.0232 (14)0.0375 (17)0.0433 (17)0.0086 (12)0.0099 (12)0.0007 (13)
C210.0359 (16)0.0408 (18)0.0381 (16)0.0100 (13)0.0171 (13)0.0078 (13)
C220.0315 (14)0.0320 (16)0.0238 (13)0.0009 (11)0.0087 (11)0.0069 (11)
C230.0374 (16)0.0254 (15)0.0330 (15)0.0055 (12)0.0062 (12)0.0069 (11)
C240.0341 (16)0.0395 (18)0.0361 (16)0.0007 (13)0.0013 (12)0.0090 (13)
Geometric parameters (Å, º) top
Cd—N32.361 (2)C6—H6B0.9800
Cd—N42.406 (2)C6—H6C0.9800
Cd—S12.5872 (7)C8—C91.515 (3)
Cd—S32.6539 (7)C8—H8A0.9900
Cd—S42.6704 (7)C8—H8B0.9900
Cd—S22.7816 (7)C9—H9A0.9900
S1—C11.736 (2)C9—H9B0.9900
S2—C11.723 (2)C10—C111.527 (4)
S3—C71.723 (3)C10—H10A0.9900
S4—C71.724 (2)C10—H10B0.9900
O1—C31.426 (3)C11—C121.505 (4)
O1—H1O0.8400C11—H11A0.9900
O2—C91.427 (3)C11—H11B0.9900
O2—H2O0.8400C12—H12A0.9800
N1—C11.340 (3)C12—H12B0.9800
N1—C21.472 (3)C12—H12C0.9800
N1—C41.475 (3)C13—C141.384 (4)
N2—C71.337 (3)C13—H130.9500
N2—C101.467 (3)C14—C151.388 (4)
N2—C81.478 (3)C14—H140.9500
N3—C191.345 (3)C15—C161.385 (4)
N3—C181.345 (3)C15—H150.9500
N4—C131.340 (3)C16—C171.393 (3)
N4—C171.346 (3)C16—H160.9500
N5—C231.141 (4)C17—C181.490 (3)
C2—C31.515 (3)C18—C221.395 (3)
C2—H2A0.9900C19—C201.381 (4)
C2—H2B0.9900C19—H190.9500
C3—H3A0.9900C20—C211.383 (4)
C3—H3B0.9900C20—H200.9500
C4—C51.526 (3)C21—C221.381 (4)
C4—H4A0.9900C21—H210.9500
C4—H4B0.9900C22—H220.9500
C5—C61.523 (3)C23—C241.443 (4)
C5—H5A0.9900C24—H24A0.9800
C5—H5B0.9900C24—H24B0.9800
C6—H6A0.9800C24—H24C0.9800
N3—Cd—N468.37 (7)S3—C7—S4119.26 (14)
N3—Cd—S1141.84 (5)N2—C8—C9111.5 (2)
N4—Cd—S198.70 (5)N2—C8—H8A109.3
N3—Cd—S396.53 (5)C9—C8—H8A109.3
N4—Cd—S3143.78 (5)N2—C8—H8B109.3
S1—Cd—S3111.54 (2)C9—C8—H8B109.3
N3—Cd—S4106.87 (5)H8A—C8—H8B108.0
N4—Cd—S484.70 (5)O2—C9—C8105.9 (2)
S1—Cd—S4107.40 (2)O2—C9—H9A110.5
S3—Cd—S467.92 (2)C8—C9—H9A110.6
N3—Cd—S286.66 (5)O2—C9—H9B110.5
N4—Cd—S2118.12 (5)C8—C9—H9B110.5
S1—Cd—S267.51 (2)H9A—C9—H9B108.7
S3—Cd—S292.38 (2)N2—C10—C11112.4 (2)
S4—Cd—S2156.855 (19)N2—C10—H10A109.1
C1—S1—Cd89.45 (8)C11—C10—H10A109.1
C1—S2—Cd83.49 (9)N2—C10—H10B109.1
C7—S3—Cd86.69 (8)C11—C10—H10B109.1
C7—S4—Cd86.13 (9)H10A—C10—H10B107.9
C3—O1—H1O105.4C12—C11—C10110.9 (2)
C9—O2—H2O111.9C12—C11—H11A109.5
C1—N1—C2122.3 (2)C10—C11—H11A109.5
C1—N1—C4121.6 (2)C12—C11—H11B109.5
C2—N1—C4115.9 (2)C10—C11—H11B109.5
C7—N2—C10122.5 (2)H11A—C11—H11B108.0
C7—N2—C8121.8 (2)C11—C12—H12A109.5
C10—N2—C8115.6 (2)C11—C12—H12B109.5
C19—N3—C18119.2 (2)H12A—C12—H12B109.5
C19—N3—Cd120.38 (17)C11—C12—H12C109.5
C18—N3—Cd120.40 (16)H12A—C12—H12C109.5
C13—N4—C17118.6 (2)H12B—C12—H12C109.5
C13—N4—Cd122.48 (16)N4—C13—C14123.0 (2)
C17—N4—Cd118.74 (16)N4—C13—H13118.5
N1—C1—S2120.62 (18)C14—C13—H13118.5
N1—C1—S1119.92 (18)C13—C14—C15118.4 (2)
S2—C1—S1119.46 (14)C13—C14—H14120.8
N1—C2—C3112.5 (2)C15—C14—H14120.8
N1—C2—H2A109.1C16—C15—C14119.2 (2)
C3—C2—H2A109.1C16—C15—H15120.4
N1—C2—H2B109.1C14—C15—H15120.4
C3—C2—H2B109.1C15—C16—C17119.0 (2)
H2A—C2—H2B107.8C15—C16—H16120.5
O1—C3—C2108.4 (2)C17—C16—H16120.5
O1—C3—H3A110.0N4—C17—C16121.8 (2)
C2—C3—H3A110.0N4—C17—C18116.2 (2)
O1—C3—H3B110.0C16—C17—C18122.0 (2)
C2—C3—H3B110.0N3—C18—C22121.2 (2)
H3A—C3—H3B108.4N3—C18—C17116.2 (2)
N1—C4—C5111.54 (19)C22—C18—C17122.6 (2)
N1—C4—H4A109.3N3—C19—C20122.6 (3)
C5—C4—H4A109.3N3—C19—H19118.7
N1—C4—H4B109.3C20—C19—H19118.7
C5—C4—H4B109.3C19—C20—C21118.2 (3)
H4A—C4—H4B108.0C19—C20—H20120.9
C6—C5—C4111.1 (2)C21—C20—H20120.9
C6—C5—H5A109.4C22—C21—C20120.0 (3)
C4—C5—H5A109.4C22—C21—H21120.0
C6—C5—H5B109.4C20—C21—H21120.0
C4—C5—H5B109.4C21—C22—C18118.8 (3)
H5A—C5—H5B108.0C21—C22—H22120.6
C5—C6—H6A109.5C18—C22—H22120.6
C5—C6—H6B109.5N5—C23—C24179.1 (3)
H6A—C6—H6B109.5C23—C24—H24A109.5
C5—C6—H6C109.5C23—C24—H24B109.5
H6A—C6—H6C109.5H24A—C24—H24B109.5
H6B—C6—H6C109.5C23—C24—H24C109.5
N2—C7—S3120.65 (19)H24A—C24—H24C109.5
N2—C7—S4120.09 (19)H24B—C24—H24C109.5
N3—Cd—S1—C152.88 (11)Cd—S1—C1—S23.16 (13)
N4—Cd—S1—C1118.76 (9)C1—N1—C2—C390.2 (3)
S3—Cd—S1—C181.54 (8)C4—N1—C2—C395.2 (3)
S4—Cd—S1—C1154.10 (8)N1—C2—C3—O163.7 (3)
S2—Cd—S1—C11.85 (7)C1—N1—C4—C583.9 (3)
N3—Cd—S2—C1153.10 (9)C2—N1—C4—C590.8 (2)
N4—Cd—S2—C189.84 (9)N1—C4—C5—C6177.9 (2)
S1—Cd—S2—C11.87 (8)C10—N2—C7—S3179.42 (18)
S3—Cd—S2—C1110.49 (8)C8—N2—C7—S33.5 (3)
S4—Cd—S2—C179.80 (9)C10—N2—C7—S41.5 (3)
N3—Cd—S3—C7105.50 (10)C8—N2—C7—S4175.58 (18)
N4—Cd—S3—C743.64 (12)Cd—S3—C7—N2178.9 (2)
S1—Cd—S3—C7100.87 (8)Cd—S3—C7—S40.15 (14)
S4—Cd—S3—C70.09 (8)Cd—S4—C7—N2178.9 (2)
S2—Cd—S3—C7167.59 (8)Cd—S4—C7—S30.15 (13)
N3—Cd—S4—C790.20 (10)C7—N2—C8—C991.3 (3)
N4—Cd—S4—C7155.69 (10)C10—N2—C8—C991.5 (3)
S1—Cd—S4—C7106.83 (8)N2—C8—C9—O2176.7 (2)
S3—Cd—S4—C70.09 (8)C7—N2—C10—C1189.8 (3)
S2—Cd—S4—C733.49 (10)C8—N2—C10—C1187.4 (3)
N4—Cd—N3—C19178.4 (2)N2—C10—C11—C12178.6 (2)
S1—Cd—N3—C19102.4 (2)C17—N4—C13—C140.8 (4)
S3—Cd—N3—C1935.7 (2)Cd—N4—C13—C14175.62 (19)
S4—Cd—N3—C19104.5 (2)N4—C13—C14—C150.2 (4)
S2—Cd—N3—C1956.3 (2)C13—C14—C15—C160.2 (4)
N4—Cd—N3—C181.17 (17)C14—C15—C16—C170.8 (4)
S1—Cd—N3—C1877.2 (2)C13—N4—C17—C161.4 (4)
S3—Cd—N3—C18144.74 (18)Cd—N4—C17—C16176.40 (18)
S4—Cd—N3—C1875.88 (18)C13—N4—C17—C18179.0 (2)
S2—Cd—N3—C18123.25 (18)Cd—N4—C17—C184.0 (3)
N3—Cd—N4—C13177.6 (2)C15—C16—C17—N41.4 (4)
S1—Cd—N4—C1339.79 (19)C15—C16—C17—C18179.0 (2)
S3—Cd—N4—C13107.09 (19)C19—N3—C18—C220.9 (4)
S4—Cd—N4—C1367.05 (19)Cd—N3—C18—C22179.6 (2)
S2—Cd—N4—C13108.88 (19)C19—N3—C18—C17179.9 (2)
N3—Cd—N4—C172.78 (17)Cd—N3—C18—C170.3 (3)
S1—Cd—N4—C17145.43 (16)N4—C17—C18—N32.9 (3)
S3—Cd—N4—C1767.7 (2)C16—C17—C18—N3177.5 (2)
S4—Cd—N4—C17107.73 (17)N4—C17—C18—C22177.9 (2)
S2—Cd—N4—C1776.34 (18)C16—C17—C18—C221.7 (4)
C2—N1—C1—S20.1 (3)C18—N3—C19—C201.0 (4)
C4—N1—C1—S2174.40 (16)Cd—N3—C19—C20179.4 (2)
C2—N1—C1—S1179.15 (17)N3—C19—C20—C210.4 (5)
C4—N1—C1—S14.8 (3)C19—C20—C21—C220.5 (5)
Cd—S2—C1—N1177.82 (19)C20—C21—C22—C180.7 (5)
Cd—S2—C1—S12.96 (12)N3—C18—C22—C210.0 (4)
Cd—S1—C1—N1177.61 (18)C17—C18—C22—C21179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N50.842.062.898 (3)174
O2—H2o···S2i0.842.553.388 (2)175
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C6H12NOS2)2(C10H8N2)]·C2H3N
Mr666.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)98
a, b, c (Å)7.3277 (7), 23.822 (2), 17.1159 (18)
β (°) 99.786 (1)
V3)2944.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.36 × 0.22 × 0.11
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.828, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
18201, 6043, 5711
Rint0.027
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.09
No. of reflections6043
No. of parameters331
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.69

Computer programs: CrystalClear (Rigaku/MSC, 2005), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Cd—N32.361 (2)Cd—S32.6539 (7)
Cd—N42.406 (2)Cd—S42.6704 (7)
Cd—S12.5872 (7)Cd—S22.7816 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N50.842.062.898 (3)174
O2—H2o···S2i0.842.553.388 (2)175
Symmetry code: (i) x, y+3/2, z+1/2.
 

References

First citationBenson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLai, C. S., Lim, Y. X., Yap, T. C. & Tiekink, E. R. T. (2002). CrystEngComm, 4, 596–600.  Web of Science CSD CrossRef CAS Google Scholar
First citationLai, C. S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 593–605.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1669-m1670
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds