organic compounds
3-[(E)-(7-Chloro-4-quinolyl)hydrazonomethyl]benzonitrile monohydrate
aInstituto de Tecnologia em Farmacos, Fundação Oswaldo Cruz (FIOCRUZ), Far-Manguinhos, Rua Sizenando Nabuco, 100 Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Old Aberdeen, AB15 5NY, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com
The title monohydrate, C17H11ClN4·H2O, features an essentially planar organic molecule, as seen in the dihedral angle of 2.42 (8)° formed between the quinoline and benzene planes. The conformation about the imine bond is E, and the N—H group is oriented towards the quinoline residue. The major feature of the crystal packing is the formation of supramolecular chains along [100], whereby the water molecule accepts one N—H⋯O hydrogen bond and makes two O—H⋯N hydrogen bonds. A C—H⋯O link is also present.
Related literature
For background information on the pharmacological activity of quinoline derivatives, see: Elslager et al. (1969); Font et al. (1997); Kaminsky & Meltzer (1968); Musiol et al. (2006); Nakamura et al. (1999); Palmer et al. (1993); Ridley (2002); Sloboda et al. (1991); Tanenbaum & Tuffanelli (1980); Warshakoon et al. (2006). For recent studies into quinoline-based anti-malarials, see: Andrade et al. (2007); Cunico et al. (2006); da Silva et al. (2003); de Souza et al. (2005). For a related crystallographic study on neutral species related to the title compound, see: Kaiser et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809050120/hb5242sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809050120/hb5242Isup2.hkl
A solution of 7-chloro-4-hydrazinoquinoline (0.20 g, 1.0 mmol) and 3-cyanobenzaldehyde (1.2 mmol) in EtOH (5 ml) was maintained at room temperature overnight and rotary evaporated. The solid residue, was washed with cold Et2O (3 x 10 ml) and recrystallized from EtOH m. pt. 485–487 K, yield 77%. The sample for the X-ray study was slowly grown from moist EtOH and was found to be the monohydrate. MS/ESI: 305 [M—H—H2O], based on 35Cl. IR [KBr, cm-1] ν: 3215 (NH), 1577 (CN).
The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O– and N-bound H atoms were located from a difference map and refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O).
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).C17H11ClN4·H2O | Z = 2 |
Mr = 324.76 | F(000) = 336 |
Triclinic, P1 | Dx = 1.432 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.7406 (2) Å | Cell parameters from 11816 reflections |
b = 9.8587 (3) Å | θ = 2.9–27.5° |
c = 10.2301 (2) Å | µ = 0.26 mm−1 |
α = 110.8897 (15)° | T = 120 K |
β = 93.4341 (16)° | Plate, yellow |
γ = 110.6766 (15)° | 0.12 × 0.09 × 0.04 mm |
V = 752.93 (3) Å3 |
Nonius KappaCCD area-detector diffractometer | 3425 independent reflections |
Radiation source: Enraf Nonius FR591 rotating anode | 2902 reflections with I > 2σ(I) |
10 cm confocal mirrors monochromator | Rint = 0.046 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ϕ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −12→12 |
Tmin = 0.901, Tmax = 0.990 | l = −13→13 |
14600 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.023P)2 + 0.7336P] where P = (Fo2 + 2Fc2)/3 |
3425 reflections | (Δ/σ)max < 0.001 |
217 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C17H11ClN4·H2O | γ = 110.6766 (15)° |
Mr = 324.76 | V = 752.93 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.7406 (2) Å | Mo Kα radiation |
b = 9.8587 (3) Å | µ = 0.26 mm−1 |
c = 10.2301 (2) Å | T = 120 K |
α = 110.8897 (15)° | 0.12 × 0.09 × 0.04 mm |
β = 93.4341 (16)° |
Nonius KappaCCD area-detector diffractometer | 3425 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 2902 reflections with I > 2σ(I) |
Tmin = 0.901, Tmax = 0.990 | Rint = 0.046 |
14600 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.109 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.32 e Å−3 |
3425 reflections | Δρmin = −0.25 e Å−3 |
217 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.19140 (6) | 0.44486 (6) | −0.08216 (5) | 0.02503 (14) | |
N1 | 0.0883 (2) | 0.39813 (19) | 0.38535 (17) | 0.0215 (3) | |
N2 | 0.49296 (19) | 0.27107 (18) | 0.43632 (17) | 0.0181 (3) | |
H2N | 0.559 (3) | 0.270 (3) | 0.377 (2) | 0.022* | |
N3 | 0.52218 (19) | 0.23502 (18) | 0.55031 (16) | 0.0181 (3) | |
N4 | 1.1329 (2) | 0.0074 (2) | 0.7938 (2) | 0.0357 (5) | |
C1 | 0.1296 (2) | 0.3704 (2) | 0.4975 (2) | 0.0217 (4) | |
H1 | 0.0635 | 0.3806 | 0.5679 | 0.026* | |
C2 | 0.2613 (2) | 0.3278 (2) | 0.5209 (2) | 0.0204 (4) | |
H2 | 0.2816 | 0.3086 | 0.6036 | 0.024* | |
C3 | 0.3625 (2) | 0.3139 (2) | 0.42154 (19) | 0.0164 (4) | |
C4 | 0.3262 (2) | 0.3449 (2) | 0.29879 (19) | 0.0160 (4) | |
C5 | 0.4207 (2) | 0.3368 (2) | 0.1905 (2) | 0.0191 (4) | |
H5 | 0.5150 | 0.3113 | 0.1983 | 0.023* | |
C6 | 0.3779 (2) | 0.3654 (2) | 0.0746 (2) | 0.0203 (4) | |
H6 | 0.4411 | 0.3583 | 0.0019 | 0.024* | |
C7 | 0.2398 (2) | 0.4052 (2) | 0.0646 (2) | 0.0194 (4) | |
C8 | 0.1449 (2) | 0.4147 (2) | 0.1657 (2) | 0.0193 (4) | |
H8 | 0.0515 | 0.4409 | 0.1557 | 0.023* | |
C9 | 0.1869 (2) | 0.3852 (2) | 0.28647 (19) | 0.0178 (4) | |
C10 | 0.6454 (2) | 0.1947 (2) | 0.5564 (2) | 0.0197 (4) | |
H10 | 0.7095 | 0.1919 | 0.4844 | 0.024* | |
C11 | 0.6892 (2) | 0.1527 (2) | 0.67264 (19) | 0.0192 (4) | |
C12 | 0.8252 (2) | 0.1113 (2) | 0.6757 (2) | 0.0216 (4) | |
H12 | 0.8867 | 0.1086 | 0.6020 | 0.026* | |
C13 | 0.8715 (2) | 0.0735 (2) | 0.7873 (2) | 0.0231 (4) | |
C14 | 0.7821 (3) | 0.0759 (2) | 0.8950 (2) | 0.0286 (5) | |
H14 | 0.8144 | 0.0508 | 0.9708 | 0.034* | |
C15 | 0.6451 (3) | 0.1154 (3) | 0.8908 (2) | 0.0298 (5) | |
H15 | 0.5829 | 0.1166 | 0.9640 | 0.036* | |
C16 | 0.5979 (3) | 0.1531 (2) | 0.7807 (2) | 0.0240 (4) | |
H16 | 0.5034 | 0.1792 | 0.7786 | 0.029* | |
C17 | 1.0162 (3) | 0.0351 (2) | 0.7902 (2) | 0.0275 (5) | |
O1W | 0.74203 (19) | 0.2487 (2) | 0.26148 (16) | 0.0261 (3) | |
H1W | 0.746 (3) | 0.160 (3) | 0.231 (3) | 0.039* | |
H2W | 0.845 (4) | 0.311 (3) | 0.302 (3) | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0233 (2) | 0.0305 (3) | 0.0261 (3) | 0.0115 (2) | 0.00062 (18) | 0.0168 (2) |
N1 | 0.0203 (8) | 0.0239 (8) | 0.0255 (8) | 0.0132 (7) | 0.0078 (7) | 0.0109 (7) |
N2 | 0.0171 (8) | 0.0231 (8) | 0.0199 (8) | 0.0113 (6) | 0.0052 (6) | 0.0115 (7) |
N3 | 0.0198 (8) | 0.0162 (7) | 0.0177 (7) | 0.0070 (6) | 0.0004 (6) | 0.0069 (6) |
N4 | 0.0342 (10) | 0.0308 (10) | 0.0417 (11) | 0.0172 (9) | −0.0047 (9) | 0.0122 (9) |
C1 | 0.0209 (9) | 0.0243 (10) | 0.0229 (9) | 0.0116 (8) | 0.0080 (8) | 0.0097 (8) |
C2 | 0.0210 (9) | 0.0211 (9) | 0.0201 (9) | 0.0087 (8) | 0.0031 (7) | 0.0094 (8) |
C3 | 0.0150 (8) | 0.0130 (8) | 0.0191 (9) | 0.0044 (7) | 0.0018 (7) | 0.0055 (7) |
C4 | 0.0144 (8) | 0.0136 (8) | 0.0195 (9) | 0.0063 (7) | 0.0021 (7) | 0.0056 (7) |
C5 | 0.0162 (9) | 0.0211 (9) | 0.0225 (9) | 0.0100 (7) | 0.0031 (7) | 0.0094 (8) |
C6 | 0.0182 (9) | 0.0218 (9) | 0.0223 (9) | 0.0083 (8) | 0.0049 (7) | 0.0100 (8) |
C7 | 0.0188 (9) | 0.0179 (9) | 0.0217 (9) | 0.0067 (7) | −0.0013 (7) | 0.0097 (7) |
C8 | 0.0147 (8) | 0.0189 (9) | 0.0250 (9) | 0.0084 (7) | 0.0012 (7) | 0.0085 (8) |
C9 | 0.0153 (8) | 0.0155 (8) | 0.0212 (9) | 0.0068 (7) | 0.0020 (7) | 0.0055 (7) |
C10 | 0.0192 (9) | 0.0211 (9) | 0.0206 (9) | 0.0089 (7) | 0.0036 (7) | 0.0095 (8) |
C11 | 0.0207 (9) | 0.0156 (8) | 0.0191 (9) | 0.0061 (7) | −0.0013 (7) | 0.0066 (7) |
C12 | 0.0212 (9) | 0.0182 (9) | 0.0236 (9) | 0.0066 (8) | 0.0017 (8) | 0.0085 (8) |
C13 | 0.0247 (10) | 0.0163 (9) | 0.0250 (10) | 0.0077 (8) | −0.0045 (8) | 0.0069 (8) |
C14 | 0.0397 (12) | 0.0246 (10) | 0.0222 (10) | 0.0140 (9) | −0.0016 (9) | 0.0107 (8) |
C15 | 0.0408 (12) | 0.0311 (11) | 0.0229 (10) | 0.0172 (10) | 0.0082 (9) | 0.0138 (9) |
C16 | 0.0272 (10) | 0.0246 (10) | 0.0230 (10) | 0.0134 (8) | 0.0045 (8) | 0.0101 (8) |
C17 | 0.0321 (11) | 0.0200 (10) | 0.0266 (10) | 0.0093 (9) | −0.0053 (9) | 0.0082 (8) |
O1W | 0.0213 (7) | 0.0359 (8) | 0.0266 (8) | 0.0169 (7) | 0.0065 (6) | 0.0130 (7) |
Cl1—C7 | 1.7454 (18) | C7—C8 | 1.362 (3) |
N1—C1 | 1.328 (2) | C8—C9 | 1.423 (2) |
N1—C9 | 1.368 (2) | C8—H8 | 0.9500 |
N2—C3 | 1.366 (2) | C10—C11 | 1.462 (2) |
N2—N3 | 1.369 (2) | C10—H10 | 0.9500 |
N2—H2N | 0.86 (2) | C11—C12 | 1.388 (3) |
N3—C10 | 1.278 (2) | C11—C16 | 1.401 (3) |
N4—C17 | 1.147 (3) | C12—C13 | 1.401 (3) |
C1—C2 | 1.393 (3) | C12—H12 | 0.9500 |
C1—H1 | 0.9500 | C13—C14 | 1.386 (3) |
C2—C3 | 1.389 (3) | C13—C17 | 1.444 (3) |
C2—H2 | 0.9500 | C14—C15 | 1.387 (3) |
C3—C4 | 1.437 (2) | C14—H14 | 0.9500 |
C4—C5 | 1.417 (3) | C15—C16 | 1.389 (3) |
C4—C9 | 1.419 (2) | C15—H15 | 0.9500 |
C5—C6 | 1.373 (3) | C16—H16 | 0.9500 |
C5—H5 | 0.9500 | O1W—H1W | 0.83 (3) |
C6—C7 | 1.403 (3) | O1W—H2W | 0.86 (3) |
C6—H6 | 0.9500 | ||
C1—N1—C9 | 116.07 (16) | C9—C8—H8 | 120.3 |
C3—N2—N3 | 119.16 (15) | N1—C9—C4 | 123.72 (16) |
C3—N2—H2N | 121.4 (14) | N1—C9—C8 | 116.93 (16) |
N3—N2—H2N | 119.4 (14) | C4—C9—C8 | 119.35 (16) |
C10—N3—N2 | 115.64 (16) | N3—C10—C11 | 120.96 (17) |
N1—C1—C2 | 125.78 (18) | N3—C10—H10 | 119.5 |
N1—C1—H1 | 117.1 | C11—C10—H10 | 119.5 |
C2—C1—H1 | 117.1 | C12—C11—C16 | 119.17 (17) |
C3—C2—C1 | 118.91 (17) | C12—C11—C10 | 118.91 (17) |
C3—C2—H2 | 120.5 | C16—C11—C10 | 121.92 (17) |
C1—C2—H2 | 120.5 | C11—C12—C13 | 120.01 (18) |
N2—C3—C2 | 122.36 (16) | C11—C12—H12 | 120.0 |
N2—C3—C4 | 119.55 (16) | C13—C12—H12 | 120.0 |
C2—C3—C4 | 118.09 (16) | C14—C13—C12 | 120.63 (18) |
C5—C4—C9 | 118.81 (16) | C14—C13—C17 | 120.38 (17) |
C5—C4—C3 | 123.77 (16) | C12—C13—C17 | 118.98 (19) |
C9—C4—C3 | 117.42 (16) | C13—C14—C15 | 119.29 (18) |
C6—C5—C4 | 120.96 (17) | C13—C14—H14 | 120.4 |
C6—C5—H5 | 119.5 | C15—C14—H14 | 120.4 |
C4—C5—H5 | 119.5 | C14—C15—C16 | 120.6 (2) |
C5—C6—C7 | 119.30 (18) | C14—C15—H15 | 119.7 |
C5—C6—H6 | 120.4 | C16—C15—H15 | 119.7 |
C7—C6—H6 | 120.4 | C15—C16—C11 | 120.31 (19) |
C8—C7—C6 | 122.12 (17) | C15—C16—H16 | 119.8 |
C8—C7—Cl1 | 119.72 (14) | C11—C16—H16 | 119.8 |
C6—C7—Cl1 | 118.16 (15) | N4—C17—C13 | 178.8 (2) |
C7—C8—C9 | 119.46 (16) | H1W—O1W—H2W | 102 (2) |
C7—C8—H8 | 120.3 | ||
C3—N2—N3—C10 | 179.41 (16) | C5—C4—C9—N1 | −179.23 (17) |
C9—N1—C1—C2 | −1.0 (3) | C3—C4—C9—N1 | 1.1 (3) |
N1—C1—C2—C3 | 0.9 (3) | C5—C4—C9—C8 | 0.6 (3) |
N3—N2—C3—C2 | 2.4 (3) | C3—C4—C9—C8 | −179.14 (16) |
N3—N2—C3—C4 | −177.19 (15) | C7—C8—C9—N1 | 179.30 (17) |
C1—C2—C3—N2 | −179.34 (17) | C7—C8—C9—C4 | −0.5 (3) |
C1—C2—C3—C4 | 0.2 (3) | N2—N3—C10—C11 | −179.76 (16) |
N2—C3—C4—C5 | −1.2 (3) | N3—C10—C11—C12 | −179.33 (17) |
C2—C3—C4—C5 | 179.21 (17) | N3—C10—C11—C16 | 0.7 (3) |
N2—C3—C4—C9 | 178.48 (16) | C16—C11—C12—C13 | −1.2 (3) |
C2—C3—C4—C9 | −1.1 (2) | C10—C11—C12—C13 | 178.81 (17) |
C9—C4—C5—C6 | −0.7 (3) | C11—C12—C13—C14 | 0.4 (3) |
C3—C4—C5—C6 | 178.94 (17) | C11—C12—C13—C17 | −178.30 (17) |
C4—C5—C6—C7 | 0.8 (3) | C12—C13—C14—C15 | 0.4 (3) |
C5—C6—C7—C8 | −0.8 (3) | C17—C13—C14—C15 | 179.10 (19) |
C5—C6—C7—Cl1 | 178.69 (14) | C13—C14—C15—C16 | −0.4 (3) |
C6—C7—C8—C9 | 0.6 (3) | C14—C15—C16—C11 | −0.4 (3) |
Cl1—C7—C8—C9 | −178.84 (14) | C12—C11—C16—C15 | 1.2 (3) |
C1—N1—C9—C4 | 0.0 (3) | C10—C11—C16—C15 | −178.82 (19) |
C1—N1—C9—C8 | −179.86 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—H1w···N4i | 0.83 (3) | 2.21 (3) | 2.982 (3) | 155 (3) |
O1w—H2w···N1ii | 0.86 (3) | 1.99 (3) | 2.828 (3) | 164 (3) |
N2—H2n···O1w | 0.86 (3) | 2.07 (3) | 2.917 (2) | 167 (3) |
C5—H5···O1w | 0.95 | 2.39 | 3.331 (3) | 169 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C17H11ClN4·H2O |
Mr | 324.76 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 8.7406 (2), 9.8587 (3), 10.2301 (2) |
α, β, γ (°) | 110.8897 (15), 93.4341 (16), 110.6766 (15) |
V (Å3) | 752.93 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.12 × 0.09 × 0.04 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.901, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14600, 3425, 2902 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.109, 1.10 |
No. of reflections | 3425 |
No. of parameters | 217 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.32, −0.25 |
Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—H1w···N4i | 0.83 (3) | 2.21 (3) | 2.982 (3) | 155 (3) |
O1w—H2w···N1ii | 0.86 (3) | 1.99 (3) | 2.828 (3) | 164 (3) |
N2—H2n···O1w | 0.86 (3) | 2.07 (3) | 2.917 (2) | 167 (3) |
C5—H5···O1w | 0.95 | 2.39 | 3.331 (3) | 169 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) x+1, y, z. |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).
References
Andrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm. 558, 194–198. CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, G. M. A. P., Zanetta, N., de Souza, M. V. N., Freitas, I. Q., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649–653. Web of Science CrossRef PubMed CAS Google Scholar
Elslager, E. F., Tendick, F. H. & Werbel, L. M. (1969). J. Med. Chem. 12, 600–607. CrossRef CAS PubMed Web of Science Google Scholar
Font, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug Des. Disc. 14, 259–272. CAS Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140. Web of Science CSD CrossRef CAS Google Scholar
Kaminsky, D. & Meltzer, R. I. (1968). J. Med. Chem. 11, 160–163. CrossRef CAS PubMed Web of Science Google Scholar
Musiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598. Web of Science CrossRef PubMed CAS Google Scholar
Nakamura, T., Oka, M., Aizawa, K., Soda, H., Fukuda, M., Terashi, K., Ikeda, K., Mizuta, Y., Noguchi, Y., Kimura, Y., Tsuruo, T. & Kohno, S. (1999). Biochem. Biophys. Res. Commun. 255, 618–624. Web of Science CrossRef PubMed CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Palmer, K. J., Holliday, S. M. & and Brogden, R. N. (1993). Drugs, 45, 430–475. CrossRef CAS PubMed Web of Science Google Scholar
Ridley, R. G. (2002). Nature (London), 415, 686–693. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Silva, A. D. da, de Almeida, M. V., de Souza, M. V. N. & Couri, M. R. C. (2003). Curr. Med. Chem. 10, 21–39. Web of Science PubMed Google Scholar
Sloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855–860. PubMed CAS Web of Science Google Scholar
Souza, M. V. N. de (2005). Mini-Rev. Med. Chem. 5, 1009–1017. Google Scholar
Tanenbaum, L. & Tuffanelli, D. L. (1980). Arch. Dermatol. 116, 587–591. CrossRef CAS PubMed Web of Science Google Scholar
Warshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett. 16, 5207–5211. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, crystallized as a hydrate, (I), was prepared as part of an on-going investigation aimed at developing anti-malarial compounds based on the quinoline nucleus (Andrade et al.,2007; Cunico et al., 2006; da Silva et al., 2003; de Souza et al., 2005. The motivation for examining quinoline derivatives arises as the majority of anti-malarial drugs, such as chloroquine (Tanenbaum & Tuffanelli, 1980), mefloquine (Palmer et al., 1993), primaquine (Elslager et al., 1969) and amodiaquine (Ridley, 2002), possess a quinoline ring which has been the mainstay of malaria chemotherapy for much of the past 40 years (Font et al., 1997; Kaminsky & Meltzer, 1968; Musiol et al., 2006; Nakamura et al., 1999; Sloboda et al., 1991; Warshakoon et al., 2006).
The molecular structure of (I), Fig. 1, comprises an essentially planar quinoline framework with the maximum deviation from the least-squares plane through the non-hydrogen atoms being -0.012 (2) Å for atom C3. The planarity extends through the azo moiety (the C2–C3–N2–N3 and N2–N3–C10–C11 torsion angles are 2.4 (3) and -179.76 (16) °, respectively) into the terminal benzene; the dihedral angle formed between the quinoline and benzene rings is 2.42 (8) °. The conformation about the C10N3 bond is E. Finally, the amine-N2 group is oriented towards the quinoline nucleus as observed in related structures (Kaiser et al., (2009).
The water molecule of crystallization plays a pivotal role in the crystal packing. The water-H atoms form hydrogen bonds to the the pyridine-N1 and nitrile-N4 atoms, derived from different molecules, and at the same time accepts a hydrogen bond from the amino-N2 atom, Table 1. The tetrahedral environment for the O1w atom is completed by an acceptor interaction from the C5—H atom. The net result of the hydrogen bonding interactions is the formation of a supramolecular chain aligned along the a direction, Fig. 2.