organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl­imidazolium nitrate monohydrate

aYuncheng University, College of Chemistry, Yuncheng 044000, People's Republic of China, and bState Key Laboratory of Integrated Optoelectronics, Jilin University, Changchun 130021, People's Republic of China
*Correspondence e-mail: xiadaocheng1976@yahoo.com.cn

(Received 21 November 2009; accepted 25 November 2009; online 28 November 2009)

In the title hydrated mol­ecular salt, C9H9N2+·NO3·H2O, the dihedral angle between the aromatic rings in the cation is 11.09 (8)°. In the crystal, the components are linked into chains propagating in [101] by N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For related structures containing 2-phenyl­imidazole, see: Liu et al. (2008[Liu, Y.-Y., Ma, J.-F., Yang, J., Ma, J.-C. & Ping, G.-J. (2008). CrystEngComm, 10, 565-572.]); Yang et al. (2008[Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233-2235.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N2+·NO3·H2O

  • Mr = 225.21

  • Monoclinic, P 21 /n

  • a = 8.026 (4) Å

  • b = 14.951 (7) Å

  • c = 8.895 (5) Å

  • β = 101.096 (5)°

  • V = 1047.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.33 × 0.28 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.56, Tmax = 0.81

  • 4388 measured reflections

  • 2407 independent reflections

  • 1430 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 0.88

  • 2407 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1W 0.86 1.92 2.753 (2) 163
N3—H3⋯O1i 0.86 1.94 2.7809 (17) 166
O1W—HW11⋯O2ii 0.83 (2) 2.21 (2) 2.989 (2) 155.3 (19)
O1W—HW12⋯O2 0.87 (2) 2.07 (2) 2.905 (2) 162.3 (19)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-Phenylimidazole, as an important N-containing ligand with excellent coordinating abilities and fruitful aromatic systems, have been extensively used to build supramolecular architectures (Liu et al., 2008; Yang et al., 2008). We report here the synthesis and structure of the title compound, namely, C9H11N3O4 (I)

There are one 2-phenylimidazole cation, one nitrate anion and one water molecule in the asymmetric unit of the title compound, C9H11N3O4 (Fig. 1). In the crystal, molecules are linked into layer structures by N—H···O and O—H···O H-bonding interactions (Table 1).

Related literature top

For related structures containing 2-phenylimidazole, see: Liu et al. (2008); Yang et al. (2008).

Experimental top

A mixture of Cu(NO3)2.2.5H2O (0.5 mmol), 2-phenylimidazole (0.5 mmol), and H2O (30 mmol) was heated in a sealed vessel at 413 K for 2 days. After the mixture was slowly cooled to room temperature, colorless blocks of (I) were obtained (23% yield).

Refinement top

All H atoms on C and N atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier). The water H-atoms were located in a difference map, and was refined freely.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing displacement ellipsoids drawn at the 30% probability level.
2-Phenylimidazolium nitrate monohydrate top
Crystal data top
C9H9N2+·NO3·H2OF(000) = 472
Mr = 225.21Dx = 1.428 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2407 reflections
a = 8.026 (4) Åθ = 3.0–29.2°
b = 14.951 (7) ŵ = 0.11 mm1
c = 8.895 (5) ÅT = 293 K
β = 101.096 (5)°Block, colourless
V = 1047.4 (9) Å30.33 × 0.28 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2407 independent reflections
Radiation source: fine-focus sealed tube1430 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 29.2°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.56, Tmax = 0.81k = 1920
4388 measured reflectionsl = 712
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2) + (0.0625P)2]
where P = (Fo2 + 2Fc2)/3
2407 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C9H9N2+·NO3·H2OV = 1047.4 (9) Å3
Mr = 225.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.026 (4) ŵ = 0.11 mm1
b = 14.951 (7) ÅT = 293 K
c = 8.895 (5) Å0.33 × 0.28 × 0.22 mm
β = 101.096 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2407 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1430 reflections with I > 2σ(I)
Tmin = 0.56, Tmax = 0.81Rint = 0.018
4388 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 0.88Δρmax = 0.15 e Å3
2407 reflectionsΔρmin = 0.21 e Å3
153 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.41911 (19)0.16151 (10)1.11954 (17)0.0528 (4)
H10.49440.19751.18580.063*
C20.31545 (19)0.18758 (10)0.99079 (18)0.0532 (4)
H2A0.30440.24520.95080.064*
C30.27630 (15)0.04284 (9)1.01806 (14)0.0382 (3)
C40.21609 (15)0.04875 (9)0.99206 (14)0.0375 (3)
C50.11719 (17)0.07305 (9)0.85184 (15)0.0475 (4)
H50.08690.03020.77560.057*
C60.0641 (2)0.15982 (10)0.82541 (19)0.0591 (4)
H60.00190.17530.73130.071*
C70.1073 (2)0.22399 (10)0.9361 (2)0.0626 (5)
H70.07260.28290.91690.075*
C80.2026 (2)0.20012 (10)1.0760 (2)0.0609 (4)
H80.23060.24321.15210.073*
C90.25738 (17)0.11317 (9)1.10495 (17)0.0502 (4)
H90.32180.09791.19990.060*
N10.31081 (15)0.01630 (11)0.54668 (14)0.0575 (4)
N20.22881 (14)0.11327 (7)0.92928 (13)0.0452 (3)
H20.15460.11230.84550.054*
N30.39323 (14)0.07206 (7)1.13512 (12)0.0455 (3)
H30.44460.03941.20930.055*
O10.39439 (12)0.03171 (7)0.64925 (11)0.0619 (3)
O20.20267 (15)0.01926 (11)0.44597 (13)0.0921 (5)
O1W0.03846 (18)0.13296 (8)0.63882 (14)0.0607 (3)
O30.33396 (17)0.09768 (10)0.54776 (15)0.0860 (4)
HW110.049 (3)0.1037 (14)0.606 (2)0.090 (7)*
HW120.104 (2)0.1081 (14)0.584 (2)0.097 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0531 (9)0.0454 (9)0.0587 (10)0.0079 (7)0.0078 (7)0.0124 (7)
C20.0587 (9)0.0372 (8)0.0638 (10)0.0043 (7)0.0121 (7)0.0023 (7)
C30.0371 (7)0.0404 (7)0.0367 (7)0.0022 (6)0.0065 (5)0.0017 (6)
C40.0352 (6)0.0388 (7)0.0394 (7)0.0026 (6)0.0094 (5)0.0004 (6)
C50.0537 (8)0.0446 (8)0.0435 (8)0.0045 (7)0.0076 (6)0.0002 (6)
C60.0647 (9)0.0536 (10)0.0584 (9)0.0137 (8)0.0103 (7)0.0122 (8)
C70.0614 (10)0.0393 (8)0.0896 (13)0.0091 (7)0.0210 (9)0.0066 (8)
C80.0573 (9)0.0459 (9)0.0798 (12)0.0053 (8)0.0140 (8)0.0217 (8)
C90.0478 (8)0.0504 (8)0.0502 (9)0.0019 (7)0.0037 (6)0.0079 (7)
N10.0460 (7)0.0799 (11)0.0466 (8)0.0057 (7)0.0090 (6)0.0068 (7)
N20.0488 (7)0.0375 (6)0.0461 (7)0.0002 (5)0.0013 (5)0.0004 (5)
N30.0459 (6)0.0464 (7)0.0418 (7)0.0006 (5)0.0020 (5)0.0022 (5)
O10.0602 (7)0.0620 (7)0.0550 (7)0.0060 (5)0.0102 (5)0.0027 (5)
O20.0663 (7)0.1416 (14)0.0571 (8)0.0208 (8)0.0163 (6)0.0107 (8)
O1W0.0608 (7)0.0538 (7)0.0612 (8)0.0042 (6)0.0041 (6)0.0026 (5)
O30.1057 (11)0.0655 (9)0.0903 (10)0.0136 (7)0.0277 (8)0.0200 (7)
Geometric parameters (Å, º) top
C1—C21.337 (2)C6—H60.9300
C1—N31.3646 (19)C7—C81.376 (2)
C1—H10.9300C7—H70.9300
C2—N21.3678 (18)C8—C91.380 (2)
C2—H2A0.9300C8—H80.9300
C3—N21.3274 (17)C9—H90.9300
C3—N31.3340 (17)N1—O31.2305 (19)
C3—C41.4556 (19)N1—O21.2406 (17)
C4—C91.3849 (19)N1—O11.2498 (16)
C4—C51.3917 (19)N2—H20.8600
C5—C61.372 (2)N3—H30.8600
C5—H50.9300O1W—HW110.83 (2)
C6—C71.371 (2)O1W—HW120.87 (2)
C2—C1—N3106.90 (12)C6—C7—H7120.4
C2—C1—H1126.5C8—C7—H7120.4
N3—C1—H1126.5C7—C8—C9120.96 (14)
C1—C2—N2106.88 (13)C7—C8—H8119.5
C1—C2—H2A126.6C9—C8—H8119.5
N2—C2—H2A126.6C8—C9—C4119.77 (14)
N2—C3—N3106.43 (12)C8—C9—H9120.1
N2—C3—C4127.10 (12)C4—C9—H9120.1
N3—C3—C4126.46 (12)O3—N1—O2120.86 (15)
C9—C4—C5118.94 (13)O3—N1—O1120.21 (14)
C9—C4—C3120.88 (12)O2—N1—O1118.92 (17)
C5—C4—C3120.18 (12)C3—N2—C2109.92 (11)
C6—C5—C4120.35 (13)C3—N2—H2125.0
C6—C5—H5119.8C2—N2—H2125.0
C4—C5—H5119.8C3—N3—C1109.86 (12)
C7—C6—C5120.78 (15)C3—N3—H3125.1
C7—C6—H6119.6C1—N3—H3125.1
C5—C6—H6119.6HW11—O1W—HW1298.1 (18)
C6—C7—C8119.18 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1W0.861.922.753 (2)163
N3—H3···O1i0.861.942.7809 (17)166
O1W—HW11···O2ii0.83 (2)2.21 (2)2.989 (2)155.3 (19)
O1W—HW12···O20.87 (2)2.07 (2)2.905 (2)162.3 (19)
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H9N2+·NO3·H2O
Mr225.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.026 (4), 14.951 (7), 8.895 (5)
β (°) 101.096 (5)
V3)1047.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.33 × 0.28 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.56, 0.81
No. of measured, independent and
observed [I > 2σ(I)] reflections
4388, 2407, 1430
Rint0.018
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 0.88
No. of reflections2407
No. of parameters153
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.21

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1W0.861.922.753 (2)163
N3—H3···O1i0.861.942.7809 (17)166
O1W—HW11···O2ii0.83 (2)2.21 (2)2.989 (2)155.3 (19)
O1W—HW12···O20.87 (2)2.07 (2)2.905 (2)162.3 (19)
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1.
 

Acknowledgements

We thank Yuncheng University and Jilin University for support.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, Y.-Y., Ma, J.-F., Yang, J., Ma, J.-C. & Ping, G.-J. (2008). CrystEngComm, 10, 565–572.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds