organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(3,4-Di­meth­oxy­benzyl­­idene)-2-(8-quinol­yl­oxy)acetohydrazide–methanol–water (1/1/1)

aCollege of Chemistry and Chemical Engineering of Bohai University, Jinzhou, Liaoning 121000, People's Republic of China
*Correspondence e-mail: mazhanling69@163.com

(Received 24 November 2009; accepted 26 November 2009; online 28 November 2009)

In the title compound, C20H19N3O4·CH4O·H2O, the Schiff base mol­ecule is almost planar, with a dihedral angle of 1.2 (1)° between the benzene ring and the quinoline ring system. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, the methanol and water solvent mol­ecules are linked to the Schiff base mol­ecule via N—H⋯O, O—H⋯O, O—H⋯N and O—H⋯(O,N) hydrogen bonds.

Related literature

For background to the applications of 8-hydroxy­quinoline and its derivatives, see: Bratzel et al. (1972[ Bratzel, M. P., Aaron, J. J., Winefordner, J. D., Schulman, S. G. & Gershon, H. (1972). Anal. Chem. 44, 1240-1245.]); Karmakar et al. (2007[ Karmakar, A., Sarma, R. J. & Baruah, J. B. (2007). CrystEngComm, 9, 379-389.]); Pierre et al. (2003[ Pierre, J.-L., Baret, P. & Serratrice, G. (2003). Curr. Med. Chem. 10, 1077-1084.]). For a Schiff base compound containing 2,5-dimethoxy­benzaldehyde, see: Wang et al. (2009[ Wang, S.-Y., Yuan, L., Xu, L., Zhang, Z., Diao, Y.-P. & Lv, D.-C. (2009). Acta Cryst. E65, o1154.]). For bond-length data, see: Allen et al. (1987[ Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19N3O4·CH4O·H2O

  • Mr = 415.44

  • Triclinic, [P \overline 1]

  • a = 8.807 (2) Å

  • b = 10.071 (3) Å

  • c = 13.121 (3) Å

  • α = 68.702 (4)°

  • β = 74.552 (3)°

  • γ = 82.458 (5)°

  • V = 1044.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.21 × 0.18 × 0.16 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[ Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.985

  • 5612 measured reflections

  • 3676 independent reflections

  • 1571 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.126

  • S = 1.01

  • 3676 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H8⋯O1 0.86 2.35 2.698 (3) 105
N2—H8⋯O5i 0.86 2.06 2.899 (3) 165
O6—H6⋯O2 0.82 1.98 2.756 (4) 156
O6—H6⋯N3 0.82 2.58 3.194 (4) 133
O5—H21⋯N1ii 0.85 2.00 2.834 (4) 168
O5—H22⋯O6iii 0.85 2.02 2.847 (4) 164
Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Siemens, 1996[ Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[ Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

8-Hydroxyquinoline and its derivatives have been used widely in analytical chemistry (Bratzel et al., 1972), coordination chemistry (Karmakar et al., 2007), pharmaceutical chemistry (Pierre et al., 2003) and many other topics. As part of our on going search for good extractants of metal ions or a biologically active material, the title compound was obtained in the reaction of quinolin-8-yloxyacetic acid hydrazide and 3,4-dimethoxybenzaldehyde.

The Schiff base molecule of the compound displays a trans configuration with respect to the C=N and C—N bonds(Fig. 1). All the bond lengths are within normal(Allen et al., 1987), and are comparable to those in the related compound (E)-N'-(2,5-Dimethoxybenzylidene)-2-(8- quinolyloxy)acetohydrazide methanol solvate (Wang et al., 2009). The molecule is nearly planar, with a dihedral angle of the benzene ring and the quinoline ring is 1.2 (1)°. The methanol and water solvate molecules are linked to the host via N—H···O, O—H···O and O—H···N hydrogen bonds(Table 1).

Related literature top

For background to the applications of 8-hydroxyquinoline and its derivatives, see: Bratzel et al. (1972); Karmakar et al. (2007); Pierre et al. (2003). For a Schiff base compound containing 2,5-dimethoxybenzaldehyde, see: Wang et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

3,4-Dimethoxybenzaldehyde (0.1 mmol, 16.6 mg) and 2-(quinolin-8-yloxy) acetohydrazide (2.18 g, 10 mmol), were dissolved in a 95% ethanol solution (10 ml). The mixture was stirred at room temperature to give a clear colorless solution. Colourless blocks of (I) were formed by gradual evaporation of the solvent over a period of six days at room temperature.

Refinement top

All H atoms were initially located in a difference Fourier map. C-bound H atoms were constrained to an ideal geometry, with C—H = 0.93–0.97 Å, O—H = 0.82–0.85 Å and N—H = 0.86 Å. Uiso(H) = 1.2Ueq(C,N), and 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. The dashed lines indicate hydrogen bonds.
(E)-N'-(3,4-Dimethoxybenzylidene)-2-(8- quinolyloxy)acetohydrazide–methanol–water (1/1/1) top
Crystal data top
C20H19N3O4·CH4O·H2OZ = 2
Mr = 415.44F(000) = 440
Triclinic, P1Dx = 1.321 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.807 (2) ÅCell parameters from 583 reflections
b = 10.071 (3) Åθ = 2.6–22.5°
c = 13.121 (3) ŵ = 0.10 mm1
α = 68.702 (4)°T = 295 K
β = 74.552 (3)°Block, colourless
γ = 82.458 (5)°0.21 × 0.18 × 0.16 mm
V = 1044.4 (4) Å3
Data collection top
Siemens SMART CCD
diffractometer
3676 independent reflections
Radiation source: fine-focus sealed tube1571 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.980, Tmax = 0.985k = 1011
5612 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.0145P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3676 reflectionsΔρmax = 0.19 e Å3
273 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (11)
Crystal data top
C20H19N3O4·CH4O·H2Oγ = 82.458 (5)°
Mr = 415.44V = 1044.4 (4) Å3
Triclinic, P1Z = 2
a = 8.807 (2) ÅMo Kα radiation
b = 10.071 (3) ŵ = 0.10 mm1
c = 13.121 (3) ÅT = 295 K
α = 68.702 (4)°0.21 × 0.18 × 0.16 mm
β = 74.552 (3)°
Data collection top
Siemens SMART CCD
diffractometer
3676 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1571 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.985Rint = 0.035
5612 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
3676 reflectionsΔρmin = 0.17 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9264 (2)0.2984 (2)1.08007 (16)0.0553 (6)
O20.7983 (3)0.3641 (2)0.83136 (18)0.0739 (7)
O30.3497 (2)0.9140 (2)0.60039 (16)0.0594 (6)
O40.2433 (3)1.1261 (2)0.66550 (17)0.0672 (7)
O50.7438 (3)0.5521 (2)0.15037 (15)0.0700 (7)
H210.79700.48030.18340.105*
H220.64790.53510.18410.105*
O60.5689 (3)0.4737 (3)0.7121 (2)0.0931 (9)
H60.63060.46280.75190.140*
N10.9468 (3)0.3418 (3)1.2638 (2)0.0573 (8)
N20.7469 (3)0.4881 (3)0.95154 (19)0.0507 (7)
H80.76000.49501.01210.061*
N30.6533 (3)0.5866 (3)0.88784 (19)0.0517 (7)
C10.9595 (4)0.3630 (4)1.3543 (3)0.0787 (12)
H10.91080.44491.36750.094*
C21.0419 (5)0.2701 (4)1.4323 (3)0.0831 (12)
H21.04700.29081.49480.100*
C31.1133 (4)0.1508 (4)1.4153 (3)0.0739 (11)
H31.16860.08831.46600.089*
C41.1039 (4)0.1214 (4)1.3206 (3)0.0542 (9)
C51.1758 (4)0.0007 (4)1.2967 (3)0.0676 (10)
H51.23040.06751.34590.081*
C61.1660 (4)0.0212 (4)1.2027 (3)0.0737 (11)
H6A1.21380.10231.18780.088*
C71.0845 (4)0.0785 (4)1.1268 (3)0.0627 (10)
H71.08040.06361.06170.075*
C81.0114 (4)0.1970 (3)1.1484 (3)0.0506 (8)
C91.0192 (3)0.2217 (3)1.2462 (2)0.0487 (8)
C100.9210 (4)0.2751 (3)0.9812 (2)0.0556 (9)
H10A0.88370.18021.00170.067*
H10B1.02690.27880.93380.067*
C110.8163 (4)0.3817 (4)0.9153 (3)0.0541 (9)
C120.5916 (4)0.6888 (3)0.9221 (2)0.0531 (9)
H120.60810.69190.98830.064*
C130.4960 (4)0.8004 (3)0.8595 (2)0.0481 (8)
C140.4684 (3)0.7989 (3)0.7596 (2)0.0469 (8)
H140.50830.72290.73480.056*
C150.3838 (4)0.9073 (3)0.6981 (2)0.0486 (8)
C160.3235 (4)1.0225 (3)0.7344 (3)0.0520 (9)
C170.3500 (4)1.0262 (3)0.8314 (3)0.0613 (10)
H170.31111.10310.85530.074*
C180.4354 (4)0.9145 (4)0.8945 (3)0.0590 (9)
H180.45170.91700.96100.071*
C190.4215 (4)0.8044 (3)0.5551 (2)0.0688 (11)
H19A0.53390.80390.54330.103*
H19B0.39500.82260.48470.103*
H19C0.38360.71340.60710.103*
C200.1775 (5)1.2441 (4)0.6990 (3)0.0983 (14)
H20A0.09731.21230.76750.147*
H20B0.13191.31240.64110.147*
H20C0.25861.28770.71110.147*
C210.6316 (5)0.4092 (5)0.6337 (3)0.1262 (19)
H21A0.73830.43720.59790.189*
H21B0.57030.43780.57810.189*
H21C0.63010.30760.67000.189*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0614 (15)0.0611 (15)0.0474 (12)0.0089 (12)0.0221 (12)0.0206 (11)
O20.092 (2)0.0846 (18)0.0659 (15)0.0131 (14)0.0410 (14)0.0398 (14)
O30.0733 (17)0.0556 (14)0.0531 (14)0.0098 (12)0.0224 (12)0.0219 (11)
O40.0853 (18)0.0579 (15)0.0612 (14)0.0245 (13)0.0244 (13)0.0280 (12)
O50.0792 (17)0.0696 (16)0.0639 (14)0.0069 (13)0.0289 (13)0.0207 (12)
O60.089 (2)0.124 (2)0.095 (2)0.0277 (17)0.0455 (16)0.0652 (18)
N10.065 (2)0.0573 (19)0.0494 (17)0.0004 (15)0.0156 (15)0.0175 (14)
N20.0532 (18)0.0560 (18)0.0441 (15)0.0010 (15)0.0155 (14)0.0167 (14)
N30.0538 (18)0.0518 (17)0.0472 (16)0.0010 (15)0.0170 (14)0.0110 (14)
C10.100 (3)0.078 (3)0.067 (2)0.013 (2)0.032 (2)0.032 (2)
C20.109 (3)0.093 (3)0.056 (2)0.006 (3)0.041 (2)0.024 (2)
C30.072 (3)0.075 (3)0.069 (3)0.006 (2)0.032 (2)0.008 (2)
C40.048 (2)0.061 (2)0.048 (2)0.0069 (19)0.0186 (18)0.0063 (18)
C50.057 (2)0.062 (3)0.078 (3)0.007 (2)0.028 (2)0.011 (2)
C60.076 (3)0.064 (3)0.087 (3)0.018 (2)0.032 (2)0.032 (2)
C70.062 (2)0.062 (2)0.066 (2)0.007 (2)0.022 (2)0.023 (2)
C80.043 (2)0.058 (2)0.049 (2)0.0002 (18)0.0127 (17)0.0151 (18)
C90.039 (2)0.052 (2)0.049 (2)0.0065 (17)0.0088 (17)0.0100 (17)
C100.057 (2)0.059 (2)0.057 (2)0.0000 (18)0.0172 (18)0.0246 (17)
C110.055 (2)0.058 (2)0.050 (2)0.0028 (19)0.0158 (18)0.0168 (18)
C120.056 (2)0.056 (2)0.047 (2)0.0072 (19)0.0125 (18)0.0154 (18)
C130.050 (2)0.048 (2)0.0437 (19)0.0044 (17)0.0084 (17)0.0136 (16)
C140.051 (2)0.045 (2)0.0432 (19)0.0037 (17)0.0080 (17)0.0161 (16)
C150.050 (2)0.053 (2)0.0426 (19)0.0046 (17)0.0089 (17)0.0161 (17)
C160.053 (2)0.052 (2)0.046 (2)0.0033 (18)0.0085 (17)0.0154 (17)
C170.068 (3)0.058 (2)0.059 (2)0.006 (2)0.013 (2)0.0263 (19)
C180.069 (3)0.065 (2)0.049 (2)0.002 (2)0.0169 (19)0.0246 (19)
C190.091 (3)0.067 (2)0.061 (2)0.014 (2)0.028 (2)0.036 (2)
C200.145 (4)0.072 (3)0.105 (3)0.045 (3)0.066 (3)0.053 (2)
C210.136 (4)0.169 (5)0.117 (4)0.050 (4)0.056 (3)0.100 (4)
Geometric parameters (Å, º) top
O1—C81.378 (3)C6—H6A0.9300
O1—C101.413 (3)C7—C81.366 (4)
O2—C111.230 (3)C7—H70.9300
O3—C151.369 (3)C8—C91.413 (4)
O3—C191.437 (3)C10—C111.497 (4)
O4—C161.366 (3)C10—H10A0.9700
O4—C201.416 (3)C10—H10B0.9700
O5—H210.8500C12—C131.448 (4)
O5—H220.8499C12—H120.9300
O6—C211.369 (4)C13—C181.382 (4)
O6—H60.8200C13—C141.401 (4)
N1—C11.315 (4)C14—C151.366 (4)
N1—C91.359 (3)C14—H140.9300
N2—C111.339 (3)C15—C161.400 (4)
N2—N31.383 (3)C16—C171.368 (4)
N2—H80.8600C17—C181.397 (4)
N3—C121.271 (3)C17—H170.9300
C1—C21.403 (5)C18—H180.9300
C1—H10.9300C19—H19A0.9600
C2—C31.346 (4)C19—H19B0.9600
C2—H20.9300C19—H19C0.9600
C3—C41.403 (4)C20—H20A0.9600
C3—H30.9300C20—H20B0.9600
C4—C51.408 (4)C20—H20C0.9600
C4—C91.415 (4)C21—H21A0.9600
C5—C61.347 (4)C21—H21B0.9600
C5—H50.9300C21—H21C0.9600
C6—C71.407 (4)
C8—O1—C10115.6 (2)O2—C11—N2124.2 (3)
C15—O3—C19116.5 (2)O2—C11—C10117.2 (3)
C16—O4—C20117.6 (2)N2—C11—C10118.7 (3)
H21—O5—H22105.8N3—C12—C13120.9 (3)
C21—O6—H6109.5N3—C12—H12119.5
C1—N1—C9116.9 (3)C13—C12—H12119.5
C11—N2—N3117.4 (3)C18—C13—C14118.3 (3)
C11—N2—H8121.3C18—C13—C12120.5 (3)
N3—N2—H8121.3C14—C13—C12121.1 (3)
C12—N3—N2116.4 (3)C15—C14—C13121.0 (3)
N1—C1—C2124.2 (3)C15—C14—H14119.5
N1—C1—H1117.9C13—C14—H14119.5
C2—C1—H1117.9C14—C15—O3125.0 (3)
C3—C2—C1119.1 (3)C14—C15—C16120.1 (3)
C3—C2—H2120.4O3—C15—C16114.9 (3)
C1—C2—H2120.4O4—C16—C17125.0 (3)
C2—C3—C4119.6 (3)O4—C16—C15115.2 (3)
C2—C3—H3120.2C17—C16—C15119.8 (3)
C4—C3—H3120.2C16—C17—C18120.0 (3)
C3—C4—C5123.1 (3)C16—C17—H17120.0
C3—C4—C9117.3 (3)C18—C17—H17120.0
C5—C4—C9119.6 (3)C13—C18—C17120.8 (3)
C6—C5—C4120.3 (3)C13—C18—H18119.6
C6—C5—H5119.9C17—C18—H18119.6
C4—C5—H5119.9O3—C19—H19A109.5
C5—C6—C7120.9 (3)O3—C19—H19B109.5
C5—C6—H6A119.5H19A—C19—H19B109.5
C7—C6—H6A119.5O3—C19—H19C109.5
C8—C7—C6120.3 (3)H19A—C19—H19C109.5
C8—C7—H7119.9H19B—C19—H19C109.5
C6—C7—H7119.9O4—C20—H20A109.5
C7—C8—O1124.2 (3)O4—C20—H20B109.5
C7—C8—C9120.2 (3)H20A—C20—H20B109.5
O1—C8—C9115.6 (3)O4—C20—H20C109.5
N1—C9—C8118.5 (3)H20A—C20—H20C109.5
N1—C9—C4122.9 (3)H20B—C20—H20C109.5
C8—C9—C4118.6 (3)O6—C21—H21A109.5
O1—C10—C11113.2 (3)O6—C21—H21B109.5
O1—C10—H10A108.9H21A—C21—H21B109.5
C11—C10—H10A108.9O6—C21—H21C109.5
O1—C10—H10B108.9H21A—C21—H21C109.5
C11—C10—H10B108.9H21B—C21—H21C109.5
H10A—C10—H10B107.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H8···O10.862.352.698 (3)105
N2—H8···O5i0.862.062.899 (3)165
O6—H6···O20.821.982.756 (4)156
O6—H6···N30.822.583.194 (4)133
O5—H21···N1ii0.852.002.834 (4)168
O5—H22···O6iii0.852.022.847 (4)164
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H19N3O4·CH4O·H2O
Mr415.44
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.807 (2), 10.071 (3), 13.121 (3)
α, β, γ (°)68.702 (4), 74.552 (3), 82.458 (5)
V3)1044.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.21 × 0.18 × 0.16
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
5612, 3676, 1571
Rint0.035
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.126, 1.01
No. of reflections3676
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H8···O10.862.352.698 (3)105
N2—H8···O5i0.862.062.899 (3)165
O6—H6···O20.821.982.756 (4)156
O6—H6···N30.822.583.194 (4)133
O5—H21···N1ii0.852.002.834 (4)168
O5—H22···O6iii0.852.022.847 (4)164
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1.
 

References

First citation Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citation Bratzel, M. P., Aaron, J. J., Winefordner, J. D., Schulman, S. G. & Gershon, H. (1972). Anal. Chem. 44, 1240–1245.  CrossRef CAS Web of Science Google Scholar
First citation Karmakar, A., Sarma, R. J. & Baruah, J. B. (2007). CrystEngComm, 9, 379–389.  Web of Science CSD CrossRef CAS Google Scholar
First citation Pierre, J.-L., Baret, P. & Serratrice, G. (2003). Curr. Med. Chem. 10, 1077–1084.  Web of Science CrossRef PubMed CAS Google Scholar
First citation Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citation Wang, S.-Y., Yuan, L., Xu, L., Zhang, Z., Diao, Y.-P. & Lv, D.-C. (2009). Acta Cryst. E65, o1154.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds