organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Cyclo­hexyl-N-propyl­benzene­sulfonamide

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 2 November 2009; accepted 5 November 2009; online 21 November 2009)

The title compound, C15H23NO2S, synthesized by N-methyl­ation of cyclo­hexyl­amine sulfonamide with propyl iodide, is of inter­est as a precursor to biologically active sulfur-containing heterocyclic compounds. The cyclo­hexyl ring exists in the chair form and the dihedral angle between the ring plane of the benzene ring and that of the cyclo­hexyl ring is 50.13 (9)°.

Related literature

For the synthesis of related mol­ecules, see: Kayser et al. (2004[Kayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1-20. Berlin: Thieme Medical.]); Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.], 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). For the biological activity of sulfonamides, see: La Roche & Co (1967[La Roche, H. & Co, A. G. (1967). Chem. Abstr. 67, 73323r.]); Rough et al. (1998[Rough, W. R., Gwaltney, S. L., Cheng, J., Scheidt, K. A., Mc Kerrow, J. H. & Hansell, E. (1998). J. Am. Chem. Soc. 120, 10994-10995.]); Gennarti et al. (1994[Gennarti, C., Salom, B., Potenza, D. & Williams, A. (1994). Angew. Chem. Int. Ed. Engl. 33, 2067-2069.]). For related structures, see: Arshad et al. (2008[Arshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283-o2284.]); Khan et al. (2009[Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.]); Gowda et al. (2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.],b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.],c[Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H23NO2S

  • Mr = 281.40

  • Monoclinic, P 21 /n

  • a = 8.5532 (3) Å

  • b = 11.6877 (4) Å

  • c = 15.4410 (5) Å

  • β = 90.649 (2)°

  • V = 1543.50 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.42 × 0.31 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.918, Tmax = 0.950

  • 17345 measured reflections

  • 3839 independent reflections

  • 2475 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.141

  • S = 1.03

  • 3839 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Sulfonamides are well known for their enormous potential as biologically active molecules (Rough et al., 1998). They are being used as anti-microbial (Kayser et al., 2004), anti-convulsant (Arshad et al., 2008), anti-cancer (La Roche & Co, 1967) agents and for the treatment of inflammatory rheumatic and non-rheumatic processes including onsets and traumatologic lesions (Gennarti et al., 1994). In the present paper, the structure of N-cyclohexyl-N-propyl benzene sulfonamide has been determined as part of a research program involving the synthesis and biological evaluation of sulfur containing heterocyclic compounds (Zia-ur-Rehman et al., 2006, 2009; Khan et al., 2009). In the molecule of (I) (Scheme 1; Fig. 1), bond lengths and bond angles are almost similar to those in the related molecules (Gowda et al., 2007a,b,c) and are within normal ranges (Allen et al., 1987). The benzene ring is essentially planar while cyclohexane ring is in chair form. No significant hydrogen bond interactions are observed in the title molecule. The dihedral angle between the phenyl and cyclohexane rings is 50.13 (9)%.

Related literature top

For the synthesis of related molecules, see: Kayser et al. (2004); Zia-ur-Rehman et al. (2006, 2009). For the biological activity of sulfonamides, see: La Roche & Co (1967); Rough et al. (1998); Gennarti et al. (1994). For related structures, see: Arshad et al. (2008); Khan et al. (2009); Gowda et al. (2007a,b,c). For bond-length data, see: Allen et al. (1987);

Experimental top

A mixture of N-cyclohexylbenzene sulfonamide (1 g, 0.43 mmol), sodium hydride (0.21 g; 0.88 mmoles) and N, N-dimethylformamide (10.0 ml) was stirred at room temperature for half an hour followed by addition of propyl iodide (0.146 g; 0.86 mmoles). Stirring was continued further for a period of three hours and the contents were poured over crushed ice. Precipitated product was isolated, washed and crystallized from methanol.

Refinement top

All hydrogen atoms were refined geometrically and treated as riding on their parent atoms. The following distances were used: Aromatic C–H=0.93Å, methine C–H=0.98Å, methylene C–H=0.97Å and methyl C–H=0.96Å U(H) was set to 1.2Ueq of the parent atoms or 1.5Ueq for methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 50% probability level.
N-Cyclohexyl-N-propylbenzenesulfonamide top
Crystal data top
C15H23NO2SF(000) = 608
Mr = 281.40Dx = 1.211 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4904 reflections
a = 8.5532 (3) Åθ = 2.2–24.1°
b = 11.6877 (4) ŵ = 0.21 mm1
c = 15.4410 (5) ÅT = 296 K
β = 90.649 (2)°Needles, colourless
V = 1543.50 (9) Å30.42 × 0.31 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3839 independent reflections
Radiation source: fine-focus sealed tube2475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.918, Tmax = 0.950k = 1515
17345 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.2752P]
where P = (Fo2 + 2Fc2)/3
3839 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H23NO2SV = 1543.50 (9) Å3
Mr = 281.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5532 (3) ŵ = 0.21 mm1
b = 11.6877 (4) ÅT = 296 K
c = 15.4410 (5) Å0.42 × 0.31 × 0.25 mm
β = 90.649 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3839 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2475 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.950Rint = 0.041
17345 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
3839 reflectionsΔρmin = 0.21 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25538 (5)0.86234 (4)0.23201 (4)0.05546 (19)
O10.36858 (17)0.78724 (15)0.26990 (10)0.0777 (5)
O20.29533 (18)0.97863 (13)0.21357 (12)0.0803 (5)
N10.10568 (17)0.86333 (13)0.29521 (10)0.0483 (4)
C10.1958 (2)0.80108 (17)0.13244 (12)0.0480 (4)
C20.1431 (3)0.8704 (2)0.06558 (16)0.0702 (6)
H20.14350.94950.07180.084*
C30.0896 (3)0.8205 (3)0.01092 (16)0.0908 (9)
H30.05300.86660.05590.109*
C40.0904 (3)0.7056 (3)0.02042 (18)0.0919 (9)
H40.05460.67310.07190.110*
C50.1431 (3)0.6373 (2)0.04474 (18)0.0800 (7)
H50.14380.55840.03730.096*
C60.1956 (2)0.68386 (18)0.12180 (14)0.0579 (5)
H60.23070.63650.16640.070*
C70.01977 (19)0.94843 (16)0.27965 (11)0.0458 (4)
H70.02521.01010.24490.055*
C80.0737 (2)1.00139 (17)0.36414 (12)0.0535 (5)
H8A0.11830.94250.40060.064*
H8B0.01541.03420.39470.064*
C90.1949 (3)1.09394 (19)0.34699 (16)0.0680 (6)
H9A0.23171.12360.40180.082*
H9B0.14671.15650.31570.082*
C100.3316 (2)1.0492 (2)0.29526 (14)0.0630 (6)
H10A0.40301.11160.28250.076*
H10B0.38710.99290.32930.076*
C110.2801 (3)0.9953 (2)0.21182 (14)0.0703 (6)
H11A0.23481.05330.17490.084*
H11B0.37020.96320.18180.084*
C120.1603 (2)0.9014 (2)0.22887 (14)0.0613 (6)
H12A0.12550.87010.17420.074*
H12B0.20840.84010.26150.074*
C130.0697 (2)0.75885 (17)0.34458 (13)0.0545 (5)
H13A0.11400.69350.31490.065*
H13B0.04280.74870.34560.065*
C140.1314 (3)0.7611 (2)0.43649 (16)0.0804 (7)
H14A0.24450.76690.43570.097*
H14B0.09140.82840.46550.097*
C150.0861 (4)0.6566 (2)0.48662 (18)0.0980 (9)
H15A0.02500.65640.49500.147*
H15B0.13850.65710.54190.147*
H15C0.11570.58940.45510.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0365 (3)0.0626 (3)0.0673 (4)0.0039 (2)0.0035 (2)0.0127 (3)
O10.0456 (8)0.1083 (13)0.0789 (11)0.0169 (8)0.0108 (7)0.0136 (9)
O20.0622 (9)0.0621 (10)0.1173 (13)0.0246 (7)0.0279 (9)0.0219 (9)
N10.0423 (8)0.0550 (9)0.0477 (9)0.0016 (7)0.0022 (7)0.0050 (7)
C10.0392 (9)0.0537 (11)0.0514 (11)0.0011 (8)0.0112 (8)0.0023 (9)
C20.0690 (15)0.0709 (15)0.0711 (16)0.0122 (11)0.0181 (12)0.0127 (12)
C30.0806 (18)0.140 (3)0.0521 (15)0.0295 (18)0.0081 (12)0.0178 (16)
C40.0700 (16)0.142 (3)0.0642 (17)0.0134 (18)0.0044 (13)0.0290 (18)
C50.0737 (17)0.0819 (17)0.0847 (19)0.0037 (13)0.0127 (14)0.0285 (15)
C60.0567 (12)0.0565 (12)0.0607 (13)0.0038 (9)0.0086 (10)0.0045 (10)
C70.0402 (9)0.0529 (11)0.0444 (10)0.0004 (8)0.0011 (7)0.0036 (8)
C80.0516 (11)0.0602 (12)0.0485 (11)0.0030 (9)0.0064 (8)0.0130 (9)
C90.0713 (15)0.0626 (13)0.0702 (14)0.0163 (11)0.0034 (11)0.0114 (11)
C100.0527 (12)0.0780 (14)0.0584 (13)0.0185 (10)0.0022 (10)0.0054 (11)
C110.0524 (12)0.1059 (19)0.0525 (12)0.0112 (12)0.0068 (10)0.0014 (12)
C120.0464 (11)0.0857 (15)0.0518 (12)0.0056 (10)0.0062 (9)0.0209 (11)
C130.0507 (11)0.0565 (12)0.0564 (12)0.0007 (9)0.0040 (9)0.0079 (9)
C140.0900 (18)0.0855 (17)0.0652 (15)0.0007 (14)0.0233 (13)0.0073 (13)
C150.119 (2)0.095 (2)0.0801 (18)0.0125 (17)0.0040 (17)0.0243 (15)
Geometric parameters (Å, º) top
S1—O11.4274 (16)C8—H8B0.9700
S1—O21.4308 (16)C9—C101.502 (3)
S1—N11.6187 (15)C9—H9A0.9700
S1—C11.7658 (19)C9—H9B0.9700
N1—C131.474 (2)C10—C111.504 (3)
N1—C71.481 (2)C10—H10A0.9700
C1—C61.380 (3)C10—H10B0.9700
C1—C21.384 (3)C11—C121.522 (3)
C2—C31.390 (4)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
C3—C41.351 (4)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.357 (4)C13—C141.509 (3)
C4—H40.9300C13—H13A0.9700
C5—C61.379 (3)C13—H13B0.9700
C5—H50.9300C14—C151.499 (3)
C6—H60.9300C14—H14A0.9700
C7—C81.520 (2)C14—H14B0.9700
C7—C121.530 (2)C15—H15A0.9600
C7—H70.9800C15—H15B0.9600
C8—C91.520 (3)C15—H15C0.9600
C8—H8A0.9700
O1—S1—O2120.22 (11)C8—C9—H9A109.3
O1—S1—N1107.15 (9)C10—C9—H9B109.3
O2—S1—N1107.79 (9)C8—C9—H9B109.3
O1—S1—C1107.16 (9)H9A—C9—H9B107.9
O2—S1—C1106.21 (10)C9—C10—C11111.57 (18)
N1—S1—C1107.79 (8)C9—C10—H10A109.3
C13—N1—C7119.02 (15)C11—C10—H10A109.3
C13—N1—S1118.51 (13)C9—C10—H10B109.3
C7—N1—S1118.92 (12)C11—C10—H10B109.3
C6—C1—C2119.5 (2)H10A—C10—H10B108.0
C6—C1—S1120.41 (15)C10—C11—C12110.90 (17)
C2—C1—S1120.04 (17)C10—C11—H11A109.5
C1—C2—C3119.4 (2)C12—C11—H11A109.5
C1—C2—H2120.3C10—C11—H11B109.5
C3—C2—H2120.3C12—C11—H11B109.5
C4—C3—C2120.5 (3)H11A—C11—H11B108.0
C4—C3—H3119.8C11—C12—C7110.64 (17)
C2—C3—H3119.8C11—C12—H12A109.5
C3—C4—C5120.4 (3)C7—C12—H12A109.5
C3—C4—H4119.8C11—C12—H12B109.5
C5—C4—H4119.8C7—C12—H12B109.5
C4—C5—C6120.7 (3)H12A—C12—H12B108.1
C4—C5—H5119.7N1—C13—C14113.53 (17)
C6—C5—H5119.7N1—C13—H13A108.9
C5—C6—C1119.6 (2)C14—C13—H13A108.9
C5—C6—H6120.2N1—C13—H13B108.9
C1—C6—H6120.2C14—C13—H13B108.9
N1—C7—C8111.13 (14)H13A—C13—H13B107.7
N1—C7—C12113.91 (15)C15—C14—C13112.4 (2)
C8—C7—C12110.00 (15)C15—C14—H14A109.1
N1—C7—H7107.2C13—C14—H14A109.1
C8—C7—H7107.2C15—C14—H14B109.1
C12—C7—H7107.2C13—C14—H14B109.1
C9—C8—C7110.68 (16)H14A—C14—H14B107.8
C9—C8—H8A109.5C14—C15—H15A109.5
C7—C8—H8A109.5C14—C15—H15B109.5
C9—C8—H8B109.5H15A—C15—H15B109.5
C7—C8—H8B109.5C14—C15—H15C109.5
H8A—C8—H8B108.1H15A—C15—H15C109.5
C10—C9—C8111.73 (18)H15B—C15—H15C109.5
C10—C9—H9A109.3
O1—S1—N1—C1331.31 (16)C2—C1—C6—C50.1 (3)
O2—S1—N1—C13162.01 (14)S1—C1—C6—C5177.52 (16)
C1—S1—N1—C1383.73 (14)C13—N1—C7—C864.7 (2)
O1—S1—N1—C7170.12 (13)S1—N1—C7—C8136.84 (14)
O2—S1—N1—C739.42 (16)C13—N1—C7—C1260.2 (2)
C1—S1—N1—C774.84 (15)S1—N1—C7—C1298.24 (17)
O1—S1—C1—C630.33 (18)N1—C7—C8—C9176.37 (16)
O2—S1—C1—C6160.00 (15)C12—C7—C8—C956.5 (2)
N1—S1—C1—C684.70 (16)C7—C8—C9—C1055.9 (2)
O1—S1—C1—C2152.24 (16)C8—C9—C10—C1155.4 (3)
O2—S1—C1—C222.57 (18)C9—C10—C11—C1255.7 (3)
N1—S1—C1—C292.73 (17)C10—C11—C12—C756.7 (3)
C6—C1—C2—C30.5 (3)N1—C7—C12—C11177.24 (17)
S1—C1—C2—C3176.93 (17)C8—C7—C12—C1157.2 (2)
C1—C2—C3—C40.6 (4)C7—N1—C13—C14103.9 (2)
C2—C3—C4—C50.1 (4)S1—N1—C13—C1497.55 (19)
C3—C4—C5—C60.5 (4)N1—C13—C14—C15177.0 (2)
C4—C5—C6—C10.6 (3)

Experimental details

Crystal data
Chemical formulaC15H23NO2S
Mr281.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.5532 (3), 11.6877 (4), 15.4410 (5)
β (°) 90.649 (2)
V3)1543.50 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.42 × 0.31 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.918, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
17345, 3839, 2475
Rint0.041
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.141, 1.03
No. of reflections3839
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for the financial support to purchase the diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283–o2284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGennarti, C., Salom, B., Potenza, D. & Williams, A. (1994). Angew. Chem. Int. Ed. Engl. 33, 2067–2069.  Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1–20. Berlin: Thieme Medical.  Google Scholar
First citationKhan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLa Roche, H. & Co, A. G. (1967). Chem. Abstr. 67, 73323r.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRough, W. R., Gwaltney, S. L., Cheng, J., Scheidt, K. A., Mc Kerrow, J. H. & Hansell, E. (1998). J. Am. Chem. Soc. 120, 10994–10995.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds