metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Z)-O-Methyl-N-propyl­thio­carbamato-κS](tri­phenyl­phosphine-κP)gold(I)

aDepartment of Chemistry, National University of Singapore, Singapore 117543, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 5 November 2009; accepted 6 November 2009; online 11 November 2009)

In the title compound, [Au(C5H10NOS)(C18H15P)], the AuI atom is linearly coordinated within an S,P-donor set with distortion from an ideal linear geometry [S—Au—P = 176.71 (6)°] due to an intra­molecular Au⋯O contact [2.943 (4) Å]. In the crystal structure, centrosymmetrically related mol­ecules associate via C—H⋯O inter­actions.

Related literature

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]); Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). For the synthesis, see Hall et al. (1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C5H10NOS)(C18H15P)]

  • Mr = 591.44

  • Monoclinic, P 21 /n

  • a = 13.9852 (16) Å

  • b = 11.1592 (13) Å

  • c = 15.0975 (17) Å

  • β = 107.605 (2)°

  • V = 2245.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.73 mm−1

  • T = 223 K

  • 0.26 × 0.13 × 0.01 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.376, Tmax = 1

  • 15397 measured reflections

  • 5165 independent reflections

  • 4702 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.106

  • S = 1.20

  • 5165 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 1.41 e Å−3

  • Δρmin = −2.23 e Å−3

Table 1
Selected bond lengths (Å)

Au—S1 2.3089 (16)
Au—P1 2.2557 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1i 0.94 2.51 3.314 (10) 143
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure of the title compound, (I), was determined as a part of an on-going study of the structural systematics, including luminescence properties, of molecules related to the general formula R3PAu[SC(OR') NR''] for R, R' and R'' = alkyl and aryl (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008).

The Au atom exists within the expected linear geometry defined by the S and P donor atoms. The C1–S1 and C1N1 bond distances of 1.775 (7) and 1.265 (8) Å, respectively, confirm that the carbonimidothioate ligand is functioning as a thiolate. The small deviation from linearity about the Au atom is ascribed to the close approach of the O1 atom, Au···O1 is 2.943 (4) Å. The most prominent intermolecular interaction occurring in the crystal structure is a C–H···O contact, Table 1, which occurs between centrosymmetrically related molecules leading to a dimeric aggregate, Fig. 2.

Related literature top

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see Hall et al. (1993).

Experimental top

Compound (I) was prepared following the standard literature procedure from the reaction of Ph3PAuCl and MeOC(S)N(H)Pr in the presence of base (Hall et al., 1993).

Refinement top

The H atoms were geometrically placed (C—H = 0.94–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.41 and 2.23 e Å-3, respectively, were located 0.82 Å and 1.59 Å from the Au and H20 atoms, respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular dimer formation in (I) mediated by C—H···O contacts (orange dashed lines). Colour code: Au, orange; S, yellow; P, pink; O, red; N, blue; C, grey; and H, green.
[(Z)-O-Methyl-N-propylthiocarbamato- κS](triphenylphosphine-κP)gold(I) top
Crystal data top
[Au(C5H10NOS)(C18H15P)]F(000) = 1152
Mr = 591.44Dx = 1.749 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 953 reflections
a = 13.9852 (16) Åθ = 2.3–29.6°
b = 11.1592 (13) ŵ = 6.73 mm1
c = 15.0975 (17) ÅT = 223 K
β = 107.605 (2)°Plate, colourless
V = 2245.8 (4) Å30.26 × 0.13 × 0.01 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
5165 independent reflections
Radiation source: fine-focus sealed tube4702 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1818
Tmin = 0.376, Tmax = 1k = 148
15397 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0416P)2 + 1.6273P]
where P = (Fo2 + 2Fc2)/3
5165 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 1.41 e Å3
0 restraintsΔρmin = 2.23 e Å3
Crystal data top
[Au(C5H10NOS)(C18H15P)]V = 2245.8 (4) Å3
Mr = 591.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.9852 (16) ŵ = 6.73 mm1
b = 11.1592 (13) ÅT = 223 K
c = 15.0975 (17) Å0.26 × 0.13 × 0.01 mm
β = 107.605 (2)°
Data collection top
Bruker SMART CCD
diffractometer
5165 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4702 reflections with I > 2σ(I)
Tmin = 0.376, Tmax = 1Rint = 0.047
15397 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.20Δρmax = 1.41 e Å3
5165 reflectionsΔρmin = 2.23 e Å3
254 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.260547 (17)0.07193 (2)0.417669 (15)0.03002 (9)
S10.15590 (13)0.09274 (15)0.39447 (11)0.0358 (4)
P10.35886 (12)0.23644 (14)0.44661 (10)0.0289 (3)
O10.1670 (3)0.0064 (4)0.5583 (3)0.0388 (10)
N10.0665 (4)0.1720 (5)0.5213 (4)0.0413 (13)
C10.1230 (5)0.0969 (6)0.4992 (5)0.0361 (14)
C20.0194 (6)0.2655 (7)0.4551 (6)0.0488 (18)
H2A0.06780.33010.45840.059*
H2B0.00020.23250.39200.059*
C30.0724 (6)0.3162 (7)0.4743 (6)0.0512 (19)
H3A0.11910.25080.47440.061*
H3B0.05260.35300.53610.061*
C40.1253 (7)0.4091 (8)0.4026 (7)0.065 (2)
H4A0.18450.43790.41670.097*
H4B0.08030.47560.40400.097*
H4C0.14490.37300.34120.097*
C50.1410 (6)0.0002 (8)0.6435 (5)0.0499 (19)
H5A0.06870.00550.62970.075*
H5B0.16440.07520.67450.075*
H5C0.17240.06610.68370.075*
C60.4147 (4)0.2585 (5)0.5707 (4)0.0285 (12)
C70.5023 (5)0.3241 (6)0.6067 (4)0.0360 (14)
H70.53530.35610.56620.043*
C80.5413 (5)0.3427 (6)0.7009 (5)0.0427 (16)
H80.60090.38670.72460.051*
C90.4926 (6)0.2962 (7)0.7608 (5)0.0470 (17)
H90.51870.30960.82510.056*
C100.4067 (6)0.2309 (7)0.7263 (5)0.0507 (19)
H100.37440.19910.76740.061*
C110.3664 (5)0.2108 (7)0.6318 (4)0.0412 (15)
H110.30730.16570.60880.049*
C120.4645 (4)0.2387 (5)0.4006 (4)0.0284 (12)
C130.5248 (5)0.1371 (7)0.4103 (5)0.0429 (16)
H130.50710.06650.43550.052*
C140.6109 (6)0.1398 (8)0.3828 (6)0.053 (2)
H140.65280.07220.39140.064*
C150.6347 (6)0.2424 (8)0.3428 (5)0.0516 (19)
H150.69250.24420.32340.062*
C160.5748 (6)0.3410 (8)0.3311 (5)0.053 (2)
H160.59180.41020.30380.064*
C170.4894 (5)0.3408 (6)0.3590 (4)0.0371 (14)
H170.44830.40910.35000.045*
C180.2886 (5)0.3729 (6)0.4041 (4)0.0331 (13)
C190.3025 (5)0.4783 (7)0.4533 (4)0.0372 (15)
H190.34930.48190.51290.045*
C200.2475 (6)0.5802 (7)0.4153 (5)0.050 (2)
H200.25490.65120.45030.060*
C210.1823 (6)0.5762 (7)0.3265 (5)0.0487 (19)
H210.14660.64530.30010.058*
C220.1691 (6)0.4714 (7)0.2761 (5)0.0472 (18)
H220.12350.46880.21590.057*
C230.2227 (5)0.3702 (7)0.3139 (5)0.0432 (16)
H230.21480.29930.27890.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.03095 (14)0.02962 (14)0.02940 (14)0.00472 (10)0.00897 (9)0.00101 (9)
S10.0416 (9)0.0345 (8)0.0341 (8)0.0110 (7)0.0155 (7)0.0047 (7)
P10.0293 (8)0.0287 (8)0.0274 (7)0.0022 (6)0.0067 (6)0.0020 (6)
O10.039 (3)0.046 (3)0.036 (2)0.004 (2)0.019 (2)0.003 (2)
N10.041 (3)0.044 (3)0.043 (3)0.010 (3)0.018 (3)0.000 (3)
C10.036 (3)0.036 (3)0.036 (3)0.001 (3)0.011 (3)0.002 (3)
C20.052 (5)0.043 (4)0.060 (5)0.017 (3)0.030 (4)0.005 (4)
C30.040 (4)0.052 (5)0.066 (5)0.009 (3)0.022 (4)0.003 (4)
C40.062 (6)0.065 (6)0.068 (6)0.022 (5)0.021 (4)0.002 (5)
C50.054 (5)0.061 (5)0.042 (4)0.011 (4)0.027 (3)0.013 (4)
C60.029 (3)0.031 (3)0.025 (3)0.002 (2)0.007 (2)0.002 (2)
C70.036 (3)0.035 (3)0.037 (3)0.006 (3)0.012 (3)0.006 (3)
C80.044 (4)0.040 (4)0.035 (3)0.001 (3)0.001 (3)0.002 (3)
C90.050 (4)0.054 (5)0.034 (3)0.009 (4)0.008 (3)0.006 (3)
C100.055 (5)0.059 (5)0.042 (4)0.005 (4)0.021 (3)0.004 (4)
C110.039 (4)0.051 (4)0.036 (3)0.002 (3)0.015 (3)0.002 (3)
C120.026 (3)0.035 (3)0.025 (3)0.005 (2)0.008 (2)0.001 (2)
C130.044 (4)0.038 (4)0.050 (4)0.007 (3)0.019 (3)0.014 (3)
C140.043 (4)0.058 (5)0.060 (5)0.017 (4)0.017 (4)0.011 (4)
C150.049 (4)0.071 (6)0.041 (4)0.001 (4)0.023 (3)0.003 (4)
C160.064 (5)0.051 (5)0.058 (5)0.004 (4)0.038 (4)0.008 (4)
C170.047 (4)0.031 (3)0.039 (3)0.002 (3)0.021 (3)0.005 (3)
C180.037 (3)0.026 (3)0.033 (3)0.004 (3)0.005 (3)0.001 (3)
C190.025 (3)0.050 (4)0.034 (3)0.000 (3)0.004 (2)0.002 (3)
C200.065 (5)0.036 (4)0.049 (4)0.007 (3)0.016 (4)0.002 (3)
C210.050 (4)0.053 (5)0.046 (4)0.013 (4)0.019 (3)0.018 (4)
C220.042 (4)0.057 (5)0.039 (4)0.008 (4)0.007 (3)0.012 (3)
C230.044 (4)0.043 (4)0.039 (4)0.007 (3)0.007 (3)0.000 (3)
Geometric parameters (Å, º) top
Au—S12.3089 (16)C9—C101.367 (11)
Au—P12.2557 (16)C9—H90.9400
S1—C11.775 (7)C10—C111.385 (10)
P1—C121.813 (6)C10—H100.9400
P1—C61.816 (6)C11—H110.9400
P1—C181.821 (6)C12—C131.394 (9)
O1—C11.364 (8)C12—C171.396 (8)
O1—C51.440 (7)C13—C141.387 (10)
N1—C11.265 (8)C13—H130.9400
N1—C21.457 (9)C14—C151.382 (11)
C2—C31.508 (9)C14—H140.9400
C2—H2A0.9800C15—C161.361 (11)
C2—H2B0.9800C15—H150.9400
C3—C41.520 (11)C16—C171.380 (10)
C3—H3A0.9800C16—H160.9400
C3—H3B0.9800C17—H170.9400
C4—H4A0.9700C18—C191.373 (9)
C4—H4B0.9700C18—C231.395 (9)
C4—H4C0.9700C19—C201.395 (10)
C5—H5A0.9700C19—H190.9400
C5—H5B0.9700C20—C211.375 (10)
C5—H5C0.9700C20—H200.9400
C6—C71.389 (8)C21—C221.377 (11)
C6—C111.402 (9)C21—H210.9400
C7—C81.377 (9)C22—C231.380 (10)
C7—H70.9400C22—H220.9400
C8—C91.388 (10)C23—H230.9400
C8—H80.9400
P1—Au—S1176.71 (6)C10—C9—C8120.0 (6)
C1—S1—Au102.0 (2)C10—C9—H9120.0
C12—P1—C6104.3 (3)C8—C9—H9120.0
C12—P1—C18105.6 (3)C9—C10—C11121.1 (7)
C6—P1—C18105.5 (3)C9—C10—H10119.5
C12—P1—Au117.2 (2)C11—C10—H10119.5
C6—P1—Au110.9 (2)C10—C11—C6119.3 (7)
C18—P1—Au112.3 (2)C10—C11—H11120.4
C1—O1—C5115.8 (5)C6—C11—H11120.4
C1—N1—C2118.9 (6)C13—C12—C17119.1 (6)
N1—C1—O1120.8 (6)C13—C12—P1119.1 (5)
N1—C1—S1127.1 (5)C17—C12—P1121.8 (5)
O1—C1—S1112.1 (5)C14—C13—C12120.2 (7)
N1—C2—C3111.8 (6)C14—C13—H13119.9
N1—C2—H2A109.3C12—C13—H13119.9
C3—C2—H2A109.3C15—C14—C13119.6 (7)
N1—C2—H2B109.3C15—C14—H14120.2
C3—C2—H2B109.3C13—C14—H14120.2
H2A—C2—H2B107.9C16—C15—C14120.4 (7)
C2—C3—C4112.2 (7)C16—C15—H15119.8
C2—C3—H3A109.2C14—C15—H15119.8
C4—C3—H3A109.2C15—C16—C17121.0 (7)
C2—C3—H3B109.2C15—C16—H16119.5
C4—C3—H3B109.2C17—C16—H16119.5
H3A—C3—H3B107.9C16—C17—C12119.6 (7)
C3—C4—H4A109.5C16—C17—H17120.2
C3—C4—H4B109.5C12—C17—H17120.2
H4A—C4—H4B109.5C19—C18—C23119.4 (6)
C3—C4—H4C109.5C19—C18—P1123.6 (5)
H4A—C4—H4C109.5C23—C18—P1116.9 (5)
H4B—C4—H4C109.5C18—C19—C20120.4 (6)
O1—C5—H5A109.5C18—C19—H19119.8
O1—C5—H5B109.5C20—C19—H19119.8
H5A—C5—H5B109.5C21—C20—C19119.7 (7)
O1—C5—H5C109.5C21—C20—H20120.2
H5A—C5—H5C109.5C19—C20—H20120.2
H5B—C5—H5C109.5C20—C21—C22120.3 (7)
C7—C6—C11119.1 (6)C20—C21—H21119.8
C7—C6—P1121.8 (5)C22—C21—H21119.8
C11—C6—P1119.0 (5)C23—C22—C21120.0 (7)
C8—C7—C6120.6 (6)C23—C22—H22120.0
C8—C7—H7119.7C21—C22—H22120.0
C6—C7—H7119.7C22—C23—C18120.1 (7)
C7—C8—C9119.9 (7)C22—C23—H23119.9
C7—C8—H8120.0C18—C23—H23119.9
C9—C8—H8120.0
C2—N1—C1—O1178.7 (6)C6—P1—C12—C1799.5 (5)
C2—N1—C1—S11.6 (10)C18—P1—C12—C1711.5 (6)
C5—O1—C1—N12.7 (9)Au—P1—C12—C17137.5 (5)
C5—O1—C1—S1177.6 (5)C17—C12—C13—C143.0 (10)
Au—S1—C1—N1179.7 (6)P1—C12—C13—C14174.6 (6)
Au—S1—C1—O10.1 (5)C12—C13—C14—C152.3 (12)
C1—N1—C2—C3158.4 (7)C13—C14—C15—C160.7 (13)
N1—C2—C3—C4176.9 (7)C14—C15—C16—C170.1 (13)
C12—P1—C6—C729.9 (6)C15—C16—C17—C120.7 (12)
C18—P1—C6—C781.2 (6)C13—C12—C17—C162.2 (10)
Au—P1—C6—C7156.9 (5)P1—C12—C17—C16175.3 (6)
C12—P1—C6—C11151.9 (5)C12—P1—C18—C1993.4 (6)
C18—P1—C6—C1197.1 (6)C6—P1—C18—C1916.7 (7)
Au—P1—C6—C1124.8 (6)Au—P1—C18—C19137.7 (5)
C11—C6—C7—C80.3 (10)C12—P1—C18—C2381.9 (6)
P1—C6—C7—C8177.9 (5)C6—P1—C18—C23167.9 (5)
C6—C7—C8—C90.4 (11)Au—P1—C18—C2346.9 (6)
C7—C8—C9—C100.8 (11)C23—C18—C19—C203.2 (10)
C8—C9—C10—C110.5 (12)P1—C18—C19—C20178.5 (6)
C9—C10—C11—C60.1 (12)C18—C19—C20—C212.9 (11)
C7—C6—C11—C100.5 (10)C19—C20—C21—C221.9 (12)
P1—C6—C11—C10177.8 (6)C20—C21—C22—C231.2 (12)
C6—P1—C12—C1378.1 (6)C21—C22—C23—C181.5 (11)
C18—P1—C12—C13170.9 (5)C19—C18—C23—C222.6 (11)
Au—P1—C12—C1345.0 (6)P1—C18—C23—C22178.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.942.513.314 (10)143
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Au(C5H10NOS)(C18H15P)]
Mr591.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)223
a, b, c (Å)13.9852 (16), 11.1592 (13), 15.0975 (17)
β (°) 107.605 (2)
V3)2245.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)6.73
Crystal size (mm)0.26 × 0.13 × 0.01
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.376, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
15397, 5165, 4702
Rint0.047
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.106, 1.20
No. of reflections5165
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.41, 2.23

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Selected bond lengths (Å) top
Au—S12.3089 (16)Au—P12.2557 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.942.513.314 (10)143
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The National University of Singapore (grant No. R-143–000–213–112) is thanked for support.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.  CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds