metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Z)-O-Ethyl-N-propyl­thio­carbamato-κS](tri­phenyl­phosphine-κP)gold(I)

aDepartment of Chemistry, National University of Singapore, Singapore 117543, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 8 November 2009; accepted 9 November 2009; online 14 November 2009)

The title compound, [Au(C6H12NOS)(C18H15P)], features a linear S,P-donor set about the central Au atom with a deviation from linearity [S—Au—P = 176.66 (5)°] due to an intra­molecular Au⋯O contact [2.991 (5) Å]. Supra­molecular dimers are formed in the crystal structure mediated by C—H⋯N inter­actions.

Related literature

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]); Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). For the synthesis, see: Hall et al. (1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]). For a description of phenyl embraces, see: Dance & Scudder (2009[Dance, I. & Scudder, M. (2009). CrystEngComm, 11, 2233-2247.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C6H12NOS)(C18H15P)]

  • Mr = 605.46

  • Monoclinic, P 21 /n

  • a = 8.5822 (6) Å

  • b = 18.2036 (13) Å

  • c = 15.6893 (12) Å

  • β = 102.001 (2)°

  • V = 2397.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.30 mm−1

  • T = 223 K

  • 0.16 × 0.05 × 0.04 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS, Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.439, Tmax = 1

  • 16839 measured reflections

  • 5496 independent reflections

  • 4350 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.07

  • 5496 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected bond lengths (Å)

Au—S1 2.2980 (14)
Au—P1 2.2561 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯N1i 0.94 2.54 3.433 (9) 159
Symmetry code: (i) -x, -y, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

As a part of systematic studies of phosphinegold(I) thiocarbamides (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008), the title compound, Ph3Au[SC(OEt)NC3H7], was synthesized.

The gold atom exists in the expected linear geometry defined by a SP donor set, Table 1 and Fig. 1, and the deviation from linearity [S1–Au–P1 is 176.66 (5) Å] is traced to the close approach of the O1 atom to Au [Au···O = 2.991 (5) Å]. The anion, with C1—S1 and C1—N1 bond distances of 1.765 (7) and 1.262 (8)Å, respectively, coordinates as a thiolate; the configuration about the double bond is Z.

In the crystal structure of (I), supramolecular dimers are formed owing to the presence of C–H···N interactions, Table 2 and Fig. 2. Dimers are connected by sixfold phenyl embraces with a P1···P1i separation of 6.836 (2) Å for i: -x, -y, 1 - z (Dance & Scudder, 2009). These cooperate with C–H···π interactions [C4–H4c···Cgii = 2.97 Å, C4···Cgii = 3.827 (11) Å with an angle at H4c = 148° for ii: 1/2 + x, 1/2 - y, -1/2 + z, where Cg is the ring centroid of C13—C18] to consolidate the crystal structure.

Related literature top

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see Hall et al. (1993). For a description of phenyl embraces, see: Dance & Scudder (2009).

Experimental top

Compound (I) was prepared following the standard literature procedure from the reaction of Ph3AuCl and EtOC(S)N(H)C3H7 in the presence of base (Hall et al., 1993).

Refinement top

The H atoms were geometrically placed (C—H = 0.94–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.19 and 0.63 e Å-3, respectively, were located 0.92 Å and 1.31 Å from the Au and P1 atoms, respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular dimer in (I) mediated by C—H···N contacts (orange dashed lines). Colour code: Au, orange; S, yellow; P, pink; O, red; N, blue; C, grey; and H, green.
[(Z)-O-Ethyl-N-propylthiocarbamato- κS](triphenylphosphine-κP)gold(I) top
Crystal data top
[Au(C6H12NOS)(C18H15P)]F(000) = 1184
Mr = 605.46Dx = 1.677 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 3440 reflections
a = 8.5822 (6) Åθ = 2.3–24.6°
b = 18.2036 (13) ŵ = 6.30 mm1
c = 15.6893 (12) ÅT = 223 K
β = 102.001 (2)°Block, colourless
V = 2397.5 (3) Å30.16 × 0.05 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
5496 independent reflections
Radiation source: fine-focus sealed tube4350 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS, Bruker, 2000)
h = 911
Tmin = 0.439, Tmax = 1k = 2320
16839 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.1712P]
where P = (Fo2 + 2Fc2)/3
5496 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Au(C6H12NOS)(C18H15P)]V = 2397.5 (3) Å3
Mr = 605.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5822 (6) ŵ = 6.30 mm1
b = 18.2036 (13) ÅT = 223 K
c = 15.6893 (12) Å0.16 × 0.05 × 0.04 mm
β = 102.001 (2)°
Data collection top
Bruker SMART CCD
diffractometer
5496 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 2000)
4350 reflections with I > 2σ(I)
Tmin = 0.439, Tmax = 1Rint = 0.042
16839 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.07Δρmax = 1.19 e Å3
5496 reflectionsΔρmin = 0.63 e Å3
262 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.14256 (2)0.109862 (11)0.186783 (14)0.03589 (9)
S10.22776 (17)0.15331 (8)0.06673 (10)0.0419 (3)
P10.07358 (15)0.06794 (7)0.30913 (9)0.0332 (3)
O10.0549 (5)0.10164 (18)0.0059 (3)0.0400 (9)
N10.0878 (7)0.1174 (3)0.0998 (4)0.0607 (15)
C10.0790 (7)0.1216 (3)0.0206 (4)0.0423 (13)
C20.2390 (10)0.1360 (6)0.1259 (5)0.085 (3)
H2A0.31950.14730.07340.102*
H2B0.27590.09290.15350.102*
C30.2276 (11)0.1954 (5)0.1832 (8)0.115 (4)
H3A0.20240.24000.15380.138*
H3B0.14060.18660.23350.138*
C40.3849 (12)0.2072 (6)0.2153 (7)0.108 (3)
H4A0.37520.25050.25210.161*
H4B0.40580.16470.24840.161*
H4C0.47200.21390.16550.161*
C50.1837 (8)0.0730 (4)0.0615 (4)0.0529 (16)
H5A0.14790.02960.08890.063*
H5B0.21870.11020.10650.063*
C60.3173 (8)0.0532 (4)0.0180 (5)0.0609 (17)
H6A0.40580.03400.06100.091*
H6B0.35140.09650.00910.091*
H6C0.28130.01610.02620.091*
C70.1748 (6)0.0157 (3)0.3517 (4)0.0343 (11)
C80.1567 (7)0.0772 (3)0.2967 (4)0.0441 (13)
H80.09160.07480.24060.053*
C90.2357 (8)0.1410 (3)0.3259 (5)0.0554 (17)
H90.22490.18230.28910.066*
C100.3301 (8)0.1454 (3)0.4080 (5)0.0573 (17)
H100.38220.18970.42690.069*
C110.3491 (7)0.0861 (3)0.4627 (4)0.0487 (15)
H110.41380.08930.51880.058*
C120.2714 (6)0.0208 (3)0.4340 (4)0.0393 (12)
H120.28460.02030.47100.047*
C130.1185 (6)0.1331 (3)0.3973 (4)0.0373 (12)
C140.2545 (7)0.1761 (3)0.4030 (5)0.0524 (16)
H140.31860.17110.36150.063*
C150.2949 (9)0.2265 (3)0.4705 (5)0.064 (2)
H150.38680.25560.47490.077*
C160.2008 (11)0.2338 (4)0.5306 (5)0.076 (2)
H160.22990.26740.57660.091*
C170.0651 (11)0.1929 (4)0.5246 (5)0.072 (2)
H170.00020.19970.56520.086*
C180.0245 (8)0.1420 (4)0.4592 (4)0.0519 (15)
H180.06710.11300.45610.062*
C190.1353 (6)0.0460 (3)0.2935 (4)0.0373 (12)
C200.1923 (7)0.0064 (3)0.3443 (4)0.0475 (14)
H200.12170.03160.38840.057*
C210.3544 (8)0.0206 (4)0.3289 (5)0.0600 (18)
H210.39400.05540.36340.072*
C220.4584 (7)0.0158 (4)0.2634 (5)0.0630 (19)
H220.56790.00500.25290.076*
C230.4032 (8)0.0672 (5)0.2141 (5)0.070 (2)
H230.47460.09270.17060.084*
C240.2415 (7)0.0817 (4)0.2280 (5)0.0528 (16)
H240.20340.11620.19270.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.03006 (12)0.03743 (13)0.03915 (13)0.00125 (9)0.00480 (8)0.00592 (9)
S10.0394 (7)0.0456 (8)0.0407 (8)0.0062 (6)0.0085 (6)0.0044 (6)
P10.0251 (6)0.0369 (7)0.0361 (7)0.0021 (5)0.0030 (5)0.0027 (6)
O10.038 (2)0.038 (2)0.043 (2)0.0036 (16)0.0052 (18)0.0004 (16)
N10.050 (3)0.091 (4)0.041 (3)0.007 (3)0.008 (3)0.008 (3)
C10.037 (3)0.040 (3)0.050 (4)0.002 (2)0.009 (3)0.005 (2)
C20.068 (5)0.139 (8)0.052 (5)0.002 (5)0.019 (4)0.006 (5)
C30.076 (6)0.097 (7)0.168 (11)0.030 (5)0.016 (7)0.058 (7)
C40.134 (9)0.095 (7)0.095 (8)0.037 (6)0.026 (7)0.003 (6)
C50.055 (4)0.049 (4)0.053 (4)0.007 (3)0.006 (3)0.011 (3)
C60.049 (4)0.064 (4)0.067 (5)0.011 (3)0.005 (3)0.010 (4)
C70.026 (3)0.038 (3)0.039 (3)0.004 (2)0.007 (2)0.003 (2)
C80.040 (3)0.045 (3)0.045 (4)0.004 (3)0.005 (3)0.002 (3)
C90.054 (4)0.036 (3)0.076 (5)0.003 (3)0.012 (4)0.005 (3)
C100.049 (4)0.040 (3)0.082 (5)0.005 (3)0.012 (4)0.012 (3)
C110.037 (3)0.050 (3)0.053 (4)0.000 (3)0.004 (3)0.018 (3)
C120.037 (3)0.040 (3)0.038 (3)0.001 (2)0.002 (2)0.006 (2)
C130.037 (3)0.033 (3)0.037 (3)0.001 (2)0.004 (2)0.003 (2)
C140.041 (3)0.036 (3)0.074 (5)0.004 (3)0.003 (3)0.003 (3)
C150.057 (4)0.041 (3)0.084 (6)0.012 (3)0.012 (4)0.001 (3)
C160.108 (7)0.040 (4)0.062 (5)0.000 (4)0.021 (5)0.011 (3)
C170.100 (6)0.066 (5)0.052 (5)0.004 (4)0.023 (4)0.011 (4)
C180.059 (4)0.048 (3)0.048 (4)0.002 (3)0.012 (3)0.002 (3)
C190.028 (3)0.039 (3)0.047 (3)0.003 (2)0.014 (2)0.004 (2)
C200.032 (3)0.064 (4)0.046 (4)0.006 (3)0.007 (3)0.000 (3)
C210.044 (4)0.084 (5)0.056 (4)0.026 (3)0.020 (3)0.011 (4)
C220.027 (3)0.092 (5)0.069 (5)0.014 (3)0.008 (3)0.016 (4)
C230.032 (3)0.098 (6)0.075 (5)0.005 (4)0.003 (3)0.005 (4)
C240.033 (3)0.058 (4)0.063 (5)0.002 (3)0.001 (3)0.006 (3)
Geometric parameters (Å, º) top
Au—S12.2980 (14)C9—C101.374 (10)
Au—P12.2561 (14)C9—H90.9400
S1—C11.765 (7)C10—C111.368 (9)
P1—C131.802 (6)C10—H100.9400
P1—C191.803 (5)C11—C121.390 (8)
P1—C71.811 (5)C11—H110.9400
O1—C11.351 (7)C12—H120.9400
O1—C51.458 (7)C13—C141.392 (8)
N1—C11.262 (8)C13—C181.395 (8)
N1—C21.479 (9)C14—C151.390 (9)
C2—C31.397 (12)C14—H140.9400
C2—H2A0.9800C15—C161.369 (11)
C2—H2B0.9800C15—H150.9400
C3—C41.550 (12)C16—C171.369 (11)
C3—H3A0.9800C16—H160.9400
C3—H3B0.9800C17—C181.372 (9)
C4—H4A0.9700C17—H170.9400
C4—H4B0.9700C18—H180.9400
C4—H4C0.9700C19—C241.385 (8)
C5—C61.495 (9)C19—C201.395 (8)
C5—H5A0.9800C20—C211.386 (8)
C5—H5B0.9800C20—H200.9400
C6—H6A0.9700C21—C221.383 (10)
C6—H6B0.9700C21—H210.9400
C6—H6C0.9700C22—C231.360 (10)
C7—C121.385 (7)C22—H220.9400
C7—C81.402 (8)C23—C241.385 (9)
C8—C91.375 (9)C23—H230.9400
C8—H80.9400C24—H240.9400
P1—Au—S1176.66 (5)C10—C9—C8121.0 (6)
C1—S1—Au102.8 (2)C10—C9—H9119.5
C13—P1—C19107.4 (3)C8—C9—H9119.5
C13—P1—C7105.1 (2)C11—C10—C9120.8 (6)
C19—P1—C7104.6 (2)C11—C10—H10119.6
C13—P1—Au112.22 (18)C9—C10—H10119.6
C19—P1—Au112.84 (19)C10—C11—C12119.0 (6)
C7—P1—Au114.06 (17)C10—C11—H11120.5
C1—O1—C5116.0 (5)C12—C11—H11120.5
C1—N1—C2119.6 (6)C7—C12—C11120.9 (5)
N1—C1—O1121.1 (6)C7—C12—H12119.6
N1—C1—S1127.1 (5)C11—C12—H12119.6
O1—C1—S1111.9 (4)C14—C13—C18119.2 (6)
C3—C2—N1114.0 (8)C14—C13—P1117.5 (5)
C3—C2—H2A108.7C18—C13—P1123.3 (5)
N1—C2—H2A108.7C15—C14—C13119.6 (7)
C3—C2—H2B108.7C15—C14—H14120.2
N1—C2—H2B108.7C13—C14—H14120.2
H2A—C2—H2B107.6C16—C15—C14119.9 (7)
C2—C3—C4111.5 (8)C16—C15—H15120.0
C2—C3—H3A109.3C14—C15—H15120.0
C4—C3—H3A109.3C15—C16—C17121.0 (7)
C2—C3—H3B109.3C15—C16—H16119.5
C4—C3—H3B109.3C17—C16—H16119.5
H3A—C3—H3B108.0C16—C17—C18119.9 (7)
C3—C4—H4A109.5C16—C17—H17120.1
C3—C4—H4B109.5C18—C17—H17120.1
H4A—C4—H4B109.5C17—C18—C13120.4 (6)
C3—C4—H4C109.5C17—C18—H18119.8
H4A—C4—H4C109.5C13—C18—H18119.8
H4B—C4—H4C109.5C24—C19—C20119.3 (5)
O1—C5—C6107.1 (5)C24—C19—P1118.7 (4)
O1—C5—H5A110.3C20—C19—P1122.0 (5)
C6—C5—H5A110.3C21—C20—C19119.2 (6)
O1—C5—H5B110.3C21—C20—H20120.4
C6—C5—H5B110.3C19—C20—H20120.4
H5A—C5—H5B108.6C22—C21—C20120.6 (6)
C5—C6—H6A109.5C22—C21—H21119.7
C5—C6—H6B109.5C20—C21—H21119.7
H6A—C6—H6B109.5C23—C22—C21120.3 (6)
C5—C6—H6C109.5C23—C22—H22119.8
H6A—C6—H6C109.5C21—C22—H22119.8
H6B—C6—H6C109.5C22—C23—C24119.9 (7)
C12—C7—C8119.2 (5)C22—C23—H23120.1
C12—C7—P1123.3 (4)C24—C23—H23120.1
C8—C7—P1117.4 (4)C23—C24—C19120.7 (6)
C9—C8—C7119.0 (6)C23—C24—H24119.6
C9—C8—H8120.5C19—C24—H24119.6
C7—C8—H8120.5
P1—Au—S1—C1159.5 (8)C7—P1—C13—C1489.8 (5)
S1—Au—P1—C1357.7 (9)Au—P1—C13—C1434.7 (5)
S1—Au—P1—C19179 (100)C19—P1—C13—C1820.9 (6)
S1—Au—P1—C761.8 (9)C7—P1—C13—C1890.0 (5)
C2—N1—C1—O1176.8 (6)Au—P1—C13—C18145.5 (5)
C2—N1—C1—S14.1 (9)C18—C13—C14—C150.6 (9)
C5—O1—C1—N12.2 (8)P1—C13—C14—C15179.3 (5)
C5—O1—C1—S1178.6 (4)C13—C14—C15—C160.2 (10)
Au—S1—C1—N1163.6 (5)C14—C15—C16—C171.1 (11)
Au—S1—C1—O117.3 (4)C15—C16—C17—C182.1 (12)
C1—N1—C2—C3118.2 (9)C16—C17—C18—C131.8 (11)
N1—C2—C3—C4174.3 (8)C14—C13—C18—C170.4 (9)
C1—O1—C5—C6178.9 (5)P1—C13—C18—C17179.8 (5)
C13—P1—C7—C123.5 (5)C13—P1—C19—C2498.2 (5)
C19—P1—C7—C12116.4 (5)C7—P1—C19—C24150.5 (5)
Au—P1—C7—C12119.9 (4)Au—P1—C19—C2426.0 (5)
C13—P1—C7—C8178.4 (4)C13—P1—C19—C2082.7 (5)
C19—P1—C7—C865.5 (4)C7—P1—C19—C2028.6 (5)
Au—P1—C7—C858.2 (4)Au—P1—C19—C20153.1 (4)
C12—C7—C8—C90.0 (8)C24—C19—C20—C211.0 (9)
P1—C7—C8—C9178.1 (4)P1—C19—C20—C21180.0 (5)
C7—C8—C9—C100.6 (9)C19—C20—C21—C220.8 (10)
C8—C9—C10—C110.6 (10)C20—C21—C22—C231.2 (11)
C9—C10—C11—C120.0 (9)C21—C22—C23—C241.7 (12)
C8—C7—C12—C110.5 (8)C22—C23—C24—C191.8 (11)
P1—C7—C12—C11178.6 (4)C20—C19—C24—C231.5 (10)
C10—C11—C12—C70.5 (8)P1—C19—C24—C23179.4 (5)
C19—P1—C13—C14159.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N1i0.942.543.433 (9)159
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Au(C6H12NOS)(C18H15P)]
Mr605.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)223
a, b, c (Å)8.5822 (6), 18.2036 (13), 15.6893 (12)
β (°) 102.001 (2)
V3)2397.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)6.30
Crystal size (mm)0.16 × 0.05 × 0.04
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS, Bruker, 2000)
Tmin, Tmax0.439, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
16839, 5496, 4350
Rint0.042
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.07
No. of reflections5496
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 0.63

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Au—S12.2980 (14)Au—P12.2561 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N1i0.942.543.433 (9)159
Symmetry code: (i) x, y, z.
 

Acknowledgements

The National University of Singapore (grant No. R-143–000–213–112) is thanked for support.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDance, I. & Scudder, M. (2009). CrystEngComm, 11, 2233–2247.  Web of Science CrossRef CAS Google Scholar
First citationHall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.  CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds