organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-N2,N4-di-p-tolyl-1,3,5-triazine-2,4-di­amine di­methyl­formamide monosolvate

aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China, and bNew Materials & Function, Coordination Chemistry Laboratory, Qingdao University of Science & Technology, Qingdao, 266042, People's Republic of China
*Correspondence e-mail: xiaohailian@163.com

(Received 12 November 2009; accepted 20 November 2009; online 25 November 2009)

The title compound, C17H16ClN5·C3H7NO, was prepared by reaction of p-toluidine with 2,4,6-trichloro-1,3,5-triazine at room temperature. The dihedral angles between the triazine ring and the pendant rings are 3.61 (12) and 53.11 (12)°. An intra­molecular C—H⋯N inter­action occurs. The packing is stabilized by N—H⋯N and N—H⋯O hydrogen bonds and C—H⋯π and ππ [centroid–centroid distance = 3.763 (1) Å] inter­actions.

Related literature

For the use of 1,3,5-triazine derivatives as starting materials for drugs and as light stabilisers, see: Azev et al. (2003[Azev, Y. A., Dulcks, T. & Gabel, D. (2003). Tetrahedron Lett. 44, 8689-8691.]); Steffensen and Simanek (2003[Steffensen, M. B. & Simanek, E. E. (2003). Org. Lett. 5, 2359-2361.]). For related structures, see: Zeng et al. (2005a[Zeng, T., Dong, C.-M. & Shu, X.-G. (2005a). Acta Cryst. E61, o2334-o2335.],b[Zeng, T., Dong, C.-M., Shu, X.-G., Li, J.-S. & Huang, P.-M. (2005b). Acta Cryst. E61, o2211-o2212.]); Jian et al. (2007[Jian, F.-F., Wei, Y.-X., Huang, L.-H. & Ren, X.-Y. (2007). Acta Cryst. E63, o4937.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16ClN5·C3H7NO

  • Mr = 398.89

  • Triclinic, [P \overline 1]

  • a = 6.821 (2) Å

  • b = 10.980 (2) Å

  • c = 14.060 (3) Å

  • α = 91.13 (3)°

  • β = 94.29 (2)°

  • γ = 98.32 (4)°

  • V = 1038.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 5740 measured reflections

  • 3832 independent reflections

  • 2786 reflections with I > 2σ(I)

  • Rint = 0.016

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.146

  • S = 1.02

  • 3832 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 2.06 2.923 (3) 177
N2—H2A⋯N5i 0.86 2.24 3.081 (3) 168
C4—H4A⋯N3 0.93 2.30 2.905 (3) 122
C1—H1DCg1ii 0.96 2.86 3.653 (4) 145
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x, -y+1, -z. Cg1 is the centroid of the C2–C7 ring.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1,3,5-Triazine derivatives are of great interest due to their importance as starting materials for drugs and light stabilizers (Azev et al., 2003; Steffensen & Simanek, 2003; Zeng et al., 2005a). Our group has reported the structure of 1,3,5-triazine derivative (Jian et al., 2007). Herein, we report the synthesis and structure of the title compound.

The crystal structure consists of the host 1,3,5-triazine derivative and a guest DMF solvate molecule. The bond lengths and angles are agreement with those found in similar compounds (Zeng et al., 2005b; Jian et al., 2007). The dihedral angles formed by triazine ring and two phenyl ring are 3.61, 53.11° for C2—C7 and C9—C14, respectively. They are compared to those found in the compound that reported by our group before (Jian et al., 2007). The dihedral angle between two phenyl ring is 51.61 (2)° which is larger than that of 35.8 (1)° found in aforementioned compound.

It is interesting that there exists C—H···π and ππ interactions in the lattice [C1···Cg1=3.653 (4) Å, C1—H1D···Cg1=145.1 (1)°, Cg1···Cg2=3.763 (1) Å,Cg1 and Cg2 refer to phenyl ring C2—C7 and triazine ring, respectively]. In addition there exists N—H···O, N—H···N, C—H···N and C—H···O intra and intermolecular hydrogen bond interactions (see Table 1). All the above interactions stabilize the whole structure.

Related literature top

For the use of 1,3,5-triazine derivatives as starting materials for drugs and as light stabilizers, see: Azev et al. (2003); Steffensen and Simanek (2003). For related structures, see: Zeng et al. (2005a,b); Jian et al. (2007). Cg1 is the centroid of the C2–C7 ring.

Experimental top

The title compound was synthesized by the reaction of 2,4,6-trichloro-1,3,5-triazine (0.02 mol) and p-toluidine (0.04 mol) in acetone solvate (50 ml) under stirring for 5 h at room temperature. Single crystals suitable for x-ray measurements were obtained by recrystallization from DMF at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.96 Å, N—H distance = 0.86Å and with Uiso = 1.2–1.5Ueq.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
6-Chloro-N2,N4-di-p-tolyl-1,3,5-triazine-2,4-diamine dimethylformamide monosolvate top
Crystal data top
C17H16ClN5·C3H7NOZ = 2
Mr = 398.89F(000) = 420
Triclinic, P1Dx = 1.276 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.821 (2) ÅCell parameters from 25 reflections
b = 10.980 (2) Åθ = 4–14°
c = 14.060 (3) ŵ = 0.21 mm1
α = 91.13 (3)°T = 295 K
β = 94.29 (2)°Block, colorless
γ = 98.32 (4)°0.25 × 0.20 × 0.18 mm
V = 1038.4 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.016
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.9°
Graphite monochromatorh = 88
ω scansk = 913
5740 measured reflectionsl = 1716
3832 independent reflections3 standard reflections every 100 reflections
2786 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.4334P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3832 reflectionsΔρmax = 0.44 e Å3
254 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
C17H16ClN5·C3H7NOγ = 98.32 (4)°
Mr = 398.89V = 1038.4 (4) Å3
Triclinic, P1Z = 2
a = 6.821 (2) ÅMo Kα radiation
b = 10.980 (2) ŵ = 0.21 mm1
c = 14.060 (3) ÅT = 295 K
α = 91.13 (3)°0.25 × 0.20 × 0.18 mm
β = 94.29 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.016
5740 measured reflections3 standard reflections every 100 reflections
3832 independent reflections intensity decay: none
2786 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.02Δρmax = 0.44 e Å3
3832 reflectionsΔρmin = 0.24 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.01901 (10)0.18643 (6)0.38436 (5)0.0657 (3)
N10.4183 (3)0.28803 (18)0.21951 (15)0.0525 (5)
H1A0.41890.21550.19540.063*
N20.7855 (3)0.58018 (17)0.42644 (15)0.0493 (5)
H2A0.88730.59600.46710.059*
N30.5954 (3)0.44126 (17)0.32082 (13)0.0455 (5)
N40.7002 (3)0.24467 (17)0.29872 (14)0.0499 (5)
N50.8869 (3)0.39225 (17)0.40810 (14)0.0448 (5)
C10.2699 (4)0.4869 (3)0.0743 (2)0.0787 (9)
H1B0.26990.56830.10060.118*
H1C0.38620.43410.09100.118*
H1D0.27030.49000.00610.118*
C20.0867 (4)0.4374 (3)0.11384 (19)0.0598 (7)
C30.0514 (4)0.5047 (3)0.1770 (2)0.0669 (8)
H3A0.03130.58320.19620.080*
C40.2206 (4)0.4597 (2)0.2135 (2)0.0634 (7)
H4A0.31140.50810.25630.076*
C50.2546 (3)0.3441 (2)0.18675 (17)0.0481 (6)
C60.1171 (4)0.2758 (3)0.1229 (2)0.0639 (7)
H6A0.13730.19750.10340.077*
C70.0501 (4)0.3218 (3)0.0875 (2)0.0706 (8)
H7A0.14090.27350.04460.085*
C80.3217 (5)0.9718 (3)0.3723 (2)0.0756 (9)
H8A0.40721.04520.35730.113*
H8B0.26180.98570.43040.113*
H8C0.21970.95120.32140.113*
C90.4419 (4)0.8673 (2)0.38440 (18)0.0528 (6)
C100.6424 (4)0.8851 (2)0.3756 (2)0.0600 (7)
H10A0.70520.96280.36120.072*
C110.7532 (4)0.7902 (2)0.3877 (2)0.0561 (7)
H11A0.88890.80430.38040.067*
C120.6654 (3)0.6753 (2)0.41038 (16)0.0437 (5)
C130.4652 (3)0.6554 (2)0.41948 (19)0.0516 (6)
H13A0.40280.57780.43420.062*
C140.3564 (4)0.7512 (2)0.4066 (2)0.0575 (7)
H14A0.22040.73670.41320.069*
C150.7526 (3)0.4684 (2)0.38338 (16)0.0417 (5)
C160.5731 (3)0.3278 (2)0.28167 (16)0.0454 (5)
C170.8473 (3)0.2861 (2)0.36048 (17)0.0458 (5)
O10.4123 (5)0.0448 (2)0.1300 (2)0.1152 (10)
N60.6354 (6)0.0890 (3)0.1270 (2)0.0983 (10)
C180.5910 (8)0.0213 (4)0.1365 (3)0.1098 (14)
H18A0.69400.08640.14840.132*
C190.8451 (8)0.1067 (5)0.1350 (4)0.1468 (19)
H19A0.92760.02830.14520.220*
H19B0.87610.14520.07720.220*
H19C0.86890.15820.18780.220*
C200.4959 (8)0.1957 (4)0.1119 (4)0.168 (3)
H20A0.36430.17390.10770.252*
H20B0.51030.24970.16400.252*
H20C0.51760.23670.05350.252*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0605 (4)0.0572 (4)0.0833 (5)0.0336 (3)0.0152 (3)0.0046 (3)
N10.0481 (11)0.0474 (11)0.0608 (13)0.0129 (9)0.0134 (10)0.0071 (9)
N20.0414 (10)0.0435 (11)0.0627 (13)0.0158 (8)0.0145 (9)0.0046 (9)
N30.0401 (10)0.0470 (11)0.0500 (11)0.0144 (8)0.0077 (8)0.0011 (9)
N40.0499 (11)0.0467 (11)0.0547 (12)0.0185 (9)0.0073 (9)0.0018 (9)
N50.0382 (10)0.0454 (11)0.0525 (11)0.0159 (8)0.0046 (8)0.0008 (9)
C10.0460 (15)0.104 (2)0.088 (2)0.0215 (15)0.0084 (14)0.0248 (18)
C20.0411 (14)0.0794 (19)0.0597 (16)0.0121 (13)0.0018 (12)0.0200 (14)
C30.0584 (16)0.0703 (18)0.0745 (19)0.0263 (14)0.0100 (14)0.0014 (14)
C40.0524 (15)0.0630 (16)0.0737 (18)0.0198 (12)0.0215 (13)0.0087 (13)
C50.0402 (12)0.0550 (14)0.0486 (13)0.0098 (10)0.0051 (10)0.0043 (11)
C60.0561 (16)0.0622 (16)0.0702 (18)0.0093 (13)0.0158 (13)0.0013 (13)
C70.0514 (16)0.078 (2)0.076 (2)0.0039 (14)0.0219 (14)0.0047 (15)
C80.0744 (19)0.0564 (16)0.102 (2)0.0328 (14)0.0008 (17)0.0082 (15)
C90.0532 (14)0.0456 (13)0.0621 (16)0.0195 (11)0.0026 (12)0.0029 (11)
C100.0544 (15)0.0403 (13)0.0832 (19)0.0050 (11)0.0071 (13)0.0090 (12)
C110.0362 (12)0.0514 (14)0.0801 (18)0.0088 (10)0.0053 (12)0.0038 (12)
C120.0410 (12)0.0413 (12)0.0499 (13)0.0146 (9)0.0064 (10)0.0004 (10)
C130.0437 (13)0.0444 (13)0.0686 (16)0.0110 (10)0.0067 (11)0.0083 (11)
C140.0425 (13)0.0582 (15)0.0762 (18)0.0186 (11)0.0098 (12)0.0092 (13)
C150.0361 (11)0.0441 (12)0.0465 (13)0.0128 (9)0.0003 (9)0.0032 (10)
C160.0423 (12)0.0470 (13)0.0480 (13)0.0139 (10)0.0027 (10)0.0024 (10)
C170.0425 (12)0.0469 (13)0.0505 (14)0.0174 (10)0.0013 (10)0.0033 (10)
O10.145 (3)0.0866 (18)0.118 (2)0.0498 (18)0.0214 (19)0.0214 (15)
N60.139 (3)0.082 (2)0.0782 (19)0.0462 (19)0.0147 (18)0.0233 (15)
C180.160 (4)0.078 (3)0.089 (3)0.018 (3)0.007 (3)0.014 (2)
C190.138 (4)0.179 (5)0.135 (4)0.067 (4)0.008 (3)0.026 (4)
C200.182 (5)0.097 (3)0.208 (6)0.013 (4)0.058 (5)0.063 (4)
Geometric parameters (Å, º) top
C17—Cl11.734 (2)C11—C121.370 (3)
N1—H1A0.8600C11—H11A0.9300
N2—H2A0.8600C12—C131.367 (3)
C1—H1B0.9600C12—N21.430 (3)
C1—H1C0.9600C13—C141.380 (3)
C1—H1D0.9600C13—H13A0.9300
C2—C31.368 (4)C14—H14A0.9300
C2—C71.377 (4)C15—N31.329 (3)
C2—C11.507 (3)C15—N21.339 (3)
C3—C41.387 (3)C15—N51.358 (3)
C3—H3A0.9300C16—N11.335 (3)
C4—C51.373 (3)C16—N31.336 (3)
C4—H4A0.9300C16—N41.359 (3)
C5—C61.375 (3)C17—N41.300 (3)
C5—N11.403 (3)C17—N51.315 (3)
C6—C71.376 (4)O1—C181.279 (5)
C6—H6A0.9300N6—C181.297 (5)
C7—H7A0.9300N6—C201.400 (5)
C8—C91.509 (3)N6—C191.468 (5)
C8—H8A0.9600C18—H18A0.9300
C8—H8B0.9600C19—H19A0.9600
C8—H8C0.9600C19—H19B0.9600
C9—C101.369 (4)C19—H19C0.9600
C9—C141.375 (4)C20—H20A0.9600
C10—C111.379 (3)C20—H20B0.9600
C10—H10A0.9300C20—H20C0.9600
N4—C17—Cl1115.32 (17)C13—C12—N2121.5 (2)
N5—C17—Cl1114.56 (17)C11—C12—N2119.4 (2)
C2—C1—H1B109.5C12—C13—C14119.5 (2)
C2—C1—H1C109.5C12—C13—H13A120.2
H1B—C1—H1C109.5C14—C13—H13A120.2
C2—C1—H1D109.5C9—C14—C13122.3 (2)
H1B—C1—H1D109.5C9—C14—H14A118.8
H1C—C1—H1D109.5C13—C14—H14A118.8
C3—C2—C7116.7 (2)N3—C15—N2118.55 (19)
C3—C2—C1121.9 (3)N3—C15—N5125.7 (2)
C7—C2—C1121.4 (3)N2—C15—N5115.77 (19)
C2—C3—C4122.2 (3)N1—C16—N3120.5 (2)
C2—C3—H3A118.9N1—C16—N4114.4 (2)
C4—C3—H3A118.9N3—C16—N4125.1 (2)
C5—C4—C3120.4 (3)N4—C17—N5130.1 (2)
C5—C4—H4A119.8C16—N1—C5131.2 (2)
C3—C4—H4A119.8C16—N1—H1A114.4
C4—C5—C6117.9 (2)C5—N1—H1A114.4
C4—C5—N1125.7 (2)C15—N2—C12125.31 (18)
C6—C5—N1116.4 (2)C15—N2—H2A117.3
C5—C6—C7120.9 (3)C12—N2—H2A117.3
C5—C6—H6A119.5C15—N3—C16114.60 (19)
C7—C6—H6A119.5C17—N4—C16112.54 (19)
C6—C7—C2121.9 (3)C17—N5—C15111.89 (19)
C6—C7—H7A119.1C18—N6—C20124.6 (4)
C2—C7—H7A119.1C18—N6—C19119.1 (4)
C9—C8—H8A109.5C20—N6—C19116.2 (4)
C9—C8—H8B109.5O1—C18—N6123.1 (4)
H8A—C8—H8B109.5O1—C18—H18A118.5
C9—C8—H8C109.5N6—C18—H18A118.5
H8A—C8—H8C109.5N6—C19—H19A109.5
H8B—C8—H8C109.5N6—C19—H19B109.5
C10—C9—C14117.1 (2)H19A—C19—H19B109.5
C10—C9—C8121.1 (2)N6—C19—H19C109.5
C14—C9—C8121.8 (2)H19A—C19—H19C109.5
C9—C10—C11121.3 (2)H19B—C19—H19C109.5
C9—C10—H10A119.4N6—C20—H20A109.5
C11—C10—H10A119.4N6—C20—H20B109.5
C12—C11—C10120.7 (2)H20A—C20—H20B109.5
C12—C11—H11A119.7N6—C20—H20C109.5
C10—C11—H11A119.7H20A—C20—H20C109.5
C13—C12—C11119.1 (2)H20B—C20—H20C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.862.062.923 (3)177
N2—H2A···N5i0.862.243.081 (3)168
C4—H4A···N30.932.302.905 (3)122
C20—H20A···O10.962.392.792 (5)105
C1—H1D···Cg1ii0.962.863.653 (4)145
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H16ClN5·C3H7NO
Mr398.89
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.821 (2), 10.980 (2), 14.060 (3)
α, β, γ (°)91.13 (3), 94.29 (2), 98.32 (4)
V3)1038.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5740, 3832, 2786
Rint0.016
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.146, 1.02
No. of reflections3832
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.24

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.862.062.923 (3)177
N2—H2A···N5i0.862.243.081 (3)168
C4—H4A···N30.932.302.905 (3)122
C20—H20A···O10.962.392.792 (5)105
C1—H1D···Cg1ii0.962.863.653 (4)145
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z.
 

Acknowledgements

The authors would like to thank the Natural Science Foundation of Shandong Province (Nos. Y2006B08 and Z2007B01).

References

First citationAzev, Y. A., Dulcks, T. & Gabel, D. (2003). Tetrahedron Lett. 44, 8689–8691.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJian, F.-F., Wei, Y.-X., Huang, L.-H. & Ren, X.-Y. (2007). Acta Cryst. E63, o4937.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteffensen, M. B. & Simanek, E. E. (2003). Org. Lett. 5, 2359–2361.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZeng, T., Dong, C.-M. & Shu, X.-G. (2005a). Acta Cryst. E61, o2334–o2335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, T., Dong, C.-M., Shu, X.-G., Li, J.-S. & Huang, P.-M. (2005b). Acta Cryst. E61, o2211–o2212.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds