organic compounds
N′-[(2E)-3-Phenylprop-2-enoyl]benzohydrazide
aInstituto de Química, Universidade Federal do Rio de Janeiro, 21949-900, Rio de Janeiro, RJ, Brazil, bDepartamento de Síntese Orgánica, Instituto de Tecnologia em Fármacos FIOCRUZ, Manguinhos, Rua Sizenando Nabuco 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900, Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: Edward.Tiekink@gmail.com
In the title compound, C16H14N2O2, the conformation about the C=C bond is E, and the two amide groups are effectively orthogonal [the C—N—N—C torsion angle is 104.5 (2)°]. In the the amide groups groups associate via N–H⋯O hydrogen bonding, forming supramolecular tapes with undulating topology along the c-axis direction.
Related literature
For the biological activity of trans-cinnamic acid derivatives, see: Bezerra et al. (2006); Chung & Shin (2007); Naz et al. (2006); Rastogi et al. (1998); Reddy et al. (1995). For recent studies directed towards developing drugs for the treatment of tuberculosis, see: Carvalho et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809048156/hg2591sup1.cif
contains datablocks general, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809048156/hg2591Isup2.hkl
4-Nitrophenyl (2E)-3-phenyl-2-propenoate (2.0 g), prepared by successive treatments of trans-cinnamic acid with thionyl chloride and 4-nitrophenol, was added to a solution of PhCONHNH2 (1.1 equiv.) in pyridine (40 ml). After refluxing the reaction mixture for 6 h, the excess of pyridine was removed under vacuum and water (20 ml) was added. The precipitate was filtered under vacuum, and washed with water to furnish (I) in 78% yield. The crystals used in the δ: 6.78 (1H, d, J = 16.0 Hz, Ph—CH), 7.42 (3H, m, aryl-H), 7.52 (2H, m, aryl-H), 7.60 (1H, d, J = 16.0 Hz, CHCO), 7.63 (3H, m, aryl-H), 7.93 (2H, d, J = 7.5 Hz, aryl-H, 10.25 (1H, s, NH), 10.56 (1H, s, NH) p.p.m. 13C NMR (125 MHz, DMSO-d6) δ: 165.48, 164.45, 140.34, 134.59, 132.45, 131.92, 129.91, 129.07, 127.78, 121.52, 119.45 p.p.m.
were grown from ethanol solution, m. pt. 482–483 K. 1H NMR (500.00 MHz, DMSO-d6)The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The positions of the amide-N H atoms were refined with Uiso(H) = 1.2Ueq(N), see Table 1 for distances.
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).C16H14N2O2 | F(000) = 560 |
Mr = 266.29 | Dx = 1.303 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 6527 reflections |
a = 15.9696 (7) Å | θ = 2.9–27.5° |
b = 10.4563 (5) Å | µ = 0.09 mm−1 |
c = 8.3162 (2) Å | T = 120 K |
β = 102.072 (3)° | Block, light-red |
V = 1357.95 (9) Å3 | 0.48 × 0.20 × 0.08 mm |
Z = 4 |
Nonius KappaCCD area-detector diffractometer | 3110 independent reflections |
Radiation source: Enraf–Nonius FR591 rotating anode | 2010 reflections with I > 2σ(I) |
10 cm confocal mirrors monochromator | Rint = 0.086 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
ϕ and ω scans | h = −20→20 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −13→13 |
Tmin = 0.636, Tmax = 0.746 | l = −9→10 |
17862 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.172 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0894P)2] where P = (Fo2 + 2Fc2)/3 |
3110 reflections | (Δ/σ)max < 0.001 |
187 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
C16H14N2O2 | V = 1357.95 (9) Å3 |
Mr = 266.29 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.9696 (7) Å | µ = 0.09 mm−1 |
b = 10.4563 (5) Å | T = 120 K |
c = 8.3162 (2) Å | 0.48 × 0.20 × 0.08 mm |
β = 102.072 (3)° |
Nonius KappaCCD area-detector diffractometer | 3110 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2010 reflections with I > 2σ(I) |
Tmin = 0.636, Tmax = 0.746 | Rint = 0.086 |
17862 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.172 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.45 e Å−3 |
3110 reflections | Δρmin = −0.42 e Å−3 |
187 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.20786 (9) | 0.62832 (14) | 0.42536 (16) | 0.0272 (4) | |
O2 | 0.36866 (9) | 0.61547 (14) | 0.11169 (15) | 0.0249 (4) | |
N1 | 0.25365 (10) | 0.74825 (18) | 0.2337 (2) | 0.0239 (4) | |
HN1 | 0.2442 (14) | 0.779 (2) | 0.132 (3) | 0.029* | |
N2 | 0.33940 (11) | 0.73943 (18) | 0.3148 (2) | 0.0248 (4) | |
HN2 | 0.3532 (14) | 0.774 (2) | 0.410 (3) | 0.030* | |
C1 | −0.04530 (13) | 0.6129 (2) | 0.1175 (2) | 0.0233 (5) | |
C2 | −0.07212 (14) | 0.6812 (2) | −0.0287 (3) | 0.0305 (5) | |
H2 | −0.0322 | 0.7330 | −0.0692 | 0.037* | |
C3 | −0.15601 (14) | 0.6745 (2) | −0.1150 (3) | 0.0328 (6) | |
H3 | −0.1733 | 0.7219 | −0.2138 | 0.039* | |
C4 | −0.21495 (13) | 0.5991 (2) | −0.0583 (3) | 0.0291 (5) | |
H4 | −0.2725 | 0.5948 | −0.1177 | 0.035* | |
C5 | −0.18951 (14) | 0.5302 (2) | 0.0851 (3) | 0.0301 (5) | |
H5 | −0.2297 | 0.4782 | 0.1244 | 0.036* | |
C6 | −0.10529 (13) | 0.5366 (2) | 0.1725 (2) | 0.0264 (5) | |
H6 | −0.0884 | 0.4885 | 0.2709 | 0.032* | |
C7 | 0.04268 (13) | 0.6196 (2) | 0.2143 (2) | 0.0236 (5) | |
H7 | 0.0550 | 0.5693 | 0.3115 | 0.028* | |
C8 | 0.10735 (12) | 0.6886 (2) | 0.1809 (2) | 0.0236 (5) | |
H8 | 0.0983 | 0.7412 | 0.0857 | 0.028* | |
C9 | 0.19296 (12) | 0.6835 (2) | 0.2911 (2) | 0.0211 (4) | |
C10 | 0.39296 (12) | 0.66689 (19) | 0.2472 (2) | 0.0203 (5) | |
C11 | 0.48306 (12) | 0.65355 (19) | 0.3422 (2) | 0.0208 (5) | |
C12 | 0.52237 (13) | 0.7406 (2) | 0.4602 (2) | 0.0226 (5) | |
H12 | 0.4913 | 0.8126 | 0.4859 | 0.027* | |
C13 | 0.60701 (13) | 0.7227 (2) | 0.5409 (2) | 0.0272 (5) | |
H13 | 0.6338 | 0.7826 | 0.6213 | 0.033* | |
C14 | 0.65253 (14) | 0.6170 (2) | 0.5038 (2) | 0.0280 (5) | |
H14 | 0.7105 | 0.6050 | 0.5582 | 0.034* | |
C15 | 0.61300 (13) | 0.5296 (2) | 0.3873 (2) | 0.0278 (5) | |
H15 | 0.6438 | 0.4569 | 0.3631 | 0.033* | |
C16 | 0.52891 (13) | 0.5473 (2) | 0.3060 (2) | 0.0255 (5) | |
H16 | 0.5024 | 0.4873 | 0.2255 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0249 (8) | 0.0309 (9) | 0.0232 (7) | 0.0004 (6) | −0.0008 (6) | 0.0013 (6) |
O2 | 0.0223 (8) | 0.0286 (9) | 0.0214 (7) | −0.0042 (6) | −0.0009 (5) | −0.0019 (6) |
N1 | 0.0140 (9) | 0.0337 (11) | 0.0212 (8) | −0.0004 (8) | −0.0030 (6) | 0.0011 (8) |
N2 | 0.0164 (9) | 0.0348 (11) | 0.0202 (8) | −0.0005 (8) | −0.0033 (6) | −0.0027 (8) |
C1 | 0.0197 (11) | 0.0247 (12) | 0.0245 (10) | 0.0021 (9) | 0.0024 (8) | −0.0015 (8) |
C2 | 0.0213 (11) | 0.0354 (13) | 0.0335 (11) | −0.0057 (10) | 0.0026 (9) | 0.0068 (10) |
C3 | 0.0247 (12) | 0.0371 (14) | 0.0323 (12) | −0.0049 (10) | −0.0038 (9) | 0.0084 (10) |
C4 | 0.0174 (11) | 0.0292 (13) | 0.0369 (12) | 0.0000 (9) | −0.0029 (9) | −0.0022 (9) |
C5 | 0.0244 (12) | 0.0288 (12) | 0.0368 (12) | −0.0087 (10) | 0.0056 (9) | −0.0024 (10) |
C6 | 0.0249 (11) | 0.0270 (12) | 0.0264 (10) | −0.0020 (9) | 0.0031 (8) | 0.0006 (9) |
C7 | 0.0216 (11) | 0.0270 (12) | 0.0212 (10) | 0.0030 (9) | 0.0025 (8) | −0.0012 (8) |
C8 | 0.0218 (11) | 0.0262 (11) | 0.0209 (10) | 0.0041 (9) | 0.0004 (8) | −0.0011 (8) |
C9 | 0.0183 (10) | 0.0222 (11) | 0.0213 (10) | 0.0015 (9) | 0.0005 (7) | −0.0048 (8) |
C10 | 0.0193 (11) | 0.0218 (11) | 0.0188 (10) | −0.0031 (8) | 0.0014 (7) | 0.0041 (8) |
C11 | 0.0181 (10) | 0.0231 (11) | 0.0204 (10) | −0.0020 (8) | 0.0019 (7) | 0.0043 (8) |
C12 | 0.0189 (10) | 0.0268 (12) | 0.0218 (9) | −0.0014 (9) | 0.0037 (7) | −0.0001 (8) |
C13 | 0.0202 (11) | 0.0328 (13) | 0.0264 (10) | −0.0028 (9) | −0.0002 (8) | −0.0034 (9) |
C14 | 0.0181 (10) | 0.0357 (13) | 0.0274 (11) | 0.0019 (9) | −0.0017 (8) | 0.0010 (9) |
C15 | 0.0249 (12) | 0.0277 (12) | 0.0298 (11) | 0.0069 (9) | 0.0034 (8) | 0.0038 (9) |
C16 | 0.0253 (12) | 0.0252 (12) | 0.0242 (10) | −0.0008 (9) | 0.0015 (8) | 0.0003 (8) |
O1—C9 | 1.235 (2) | C6—H6 | 0.9500 |
O2—C10 | 1.235 (2) | C7—C8 | 1.336 (3) |
N1—C9 | 1.348 (3) | C7—H7 | 0.9500 |
N1—N2 | 1.397 (2) | C8—C9 | 1.479 (3) |
N1—HN1 | 0.89 (2) | C8—H8 | 0.9500 |
N2—C10 | 1.351 (3) | C10—C11 | 1.496 (3) |
N2—HN2 | 0.86 (2) | C11—C12 | 1.388 (3) |
C1—C6 | 1.395 (3) | C11—C16 | 1.398 (3) |
C1—C2 | 1.398 (3) | C12—C13 | 1.390 (3) |
C1—C7 | 1.467 (3) | C12—H12 | 0.9500 |
C2—C3 | 1.383 (3) | C13—C14 | 1.392 (3) |
C2—H2 | 0.9500 | C13—H13 | 0.9500 |
C3—C4 | 1.384 (3) | C14—C15 | 1.384 (3) |
C3—H3 | 0.9500 | C14—H14 | 0.9500 |
C4—C5 | 1.379 (3) | C15—C16 | 1.384 (3) |
C4—H4 | 0.9500 | C15—H15 | 0.9500 |
C5—C6 | 1.390 (3) | C16—H16 | 0.9500 |
C5—H5 | 0.9500 | ||
C9—N1—N2 | 120.03 (17) | C7—C8—C9 | 120.44 (18) |
C9—N1—HN1 | 121.9 (14) | C7—C8—H8 | 119.8 |
N2—N1—HN1 | 116.0 (14) | C9—C8—H8 | 119.8 |
C10—N2—N1 | 118.56 (16) | O1—C9—N1 | 122.52 (17) |
C10—N2—HN2 | 124.2 (16) | O1—C9—C8 | 123.72 (18) |
N1—N2—HN2 | 117.0 (15) | N1—C9—C8 | 113.74 (17) |
C6—C1—C2 | 118.08 (18) | O2—C10—N2 | 121.24 (17) |
C6—C1—C7 | 119.48 (18) | O2—C10—C11 | 121.69 (17) |
C2—C1—C7 | 122.44 (19) | N2—C10—C11 | 117.06 (16) |
C3—C2—C1 | 120.8 (2) | C12—C11—C16 | 119.57 (18) |
C3—C2—H2 | 119.6 | C12—C11—C10 | 123.71 (18) |
C1—C2—H2 | 119.6 | C16—C11—C10 | 116.71 (18) |
C2—C3—C4 | 120.41 (19) | C11—C12—C13 | 120.21 (19) |
C2—C3—H3 | 119.8 | C11—C12—H12 | 119.9 |
C4—C3—H3 | 119.8 | C13—C12—H12 | 119.9 |
C5—C4—C3 | 119.58 (19) | C12—C13—C14 | 119.99 (19) |
C5—C4—H4 | 120.2 | C12—C13—H13 | 120.0 |
C3—C4—H4 | 120.2 | C14—C13—H13 | 120.0 |
C4—C5—C6 | 120.3 (2) | C15—C14—C13 | 119.76 (19) |
C4—C5—H5 | 119.9 | C15—C14—H14 | 120.1 |
C6—C5—H5 | 119.9 | C13—C14—H14 | 120.1 |
C5—C6—C1 | 120.80 (19) | C14—C15—C16 | 120.5 (2) |
C5—C6—H6 | 119.6 | C14—C15—H15 | 119.8 |
C1—C6—H6 | 119.6 | C16—C15—H15 | 119.8 |
C8—C7—C1 | 127.24 (19) | C15—C16—C11 | 119.97 (19) |
C8—C7—H7 | 116.4 | C15—C16—H16 | 120.0 |
C1—C7—H7 | 116.4 | C11—C16—H16 | 120.0 |
C9—N1—N2—C10 | 104.5 (2) | C7—C8—C9—N1 | 173.98 (19) |
C6—C1—C2—C3 | 0.7 (3) | N1—N2—C10—O2 | 4.4 (3) |
C7—C1—C2—C3 | −178.7 (2) | N1—N2—C10—C11 | −176.55 (16) |
C1—C2—C3—C4 | −0.3 (4) | O2—C10—C11—C12 | 156.22 (19) |
C2—C3—C4—C5 | −0.1 (3) | N2—C10—C11—C12 | −22.8 (3) |
C3—C4—C5—C6 | 0.1 (3) | O2—C10—C11—C16 | −23.0 (3) |
C4—C5—C6—C1 | 0.3 (3) | N2—C10—C11—C16 | 158.00 (18) |
C2—C1—C6—C5 | −0.7 (3) | C16—C11—C12—C13 | 0.5 (3) |
C7—C1—C6—C5 | 178.8 (2) | C10—C11—C12—C13 | −178.68 (17) |
C6—C1—C7—C8 | −179.0 (2) | C11—C12—C13—C14 | −0.2 (3) |
C2—C1—C7—C8 | 0.4 (3) | C12—C13—C14—C15 | −0.5 (3) |
C1—C7—C8—C9 | −179.37 (19) | C13—C14—C15—C16 | 0.8 (3) |
N2—N1—C9—O1 | 9.3 (3) | C14—C15—C16—C11 | −0.5 (3) |
N2—N1—C9—C8 | −172.41 (17) | C12—C11—C16—C15 | −0.1 (3) |
C7—C8—C9—O1 | −7.8 (3) | C10—C11—C16—C15 | 179.11 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—HN1···O1i | 0.89 (2) | 1.95 (2) | 2.827 (2) | 168 (2) |
N2—HN2···O2ii | 0.86 (2) | 2.01 (2) | 2.852 (2) | 168 (2) |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H14N2O2 |
Mr | 266.29 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 15.9696 (7), 10.4563 (5), 8.3162 (2) |
β (°) | 102.072 (3) |
V (Å3) | 1357.95 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.48 × 0.20 × 0.08 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.636, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17862, 3110, 2010 |
Rint | 0.086 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.172, 1.10 |
No. of reflections | 3110 |
No. of parameters | 187 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.45, −0.42 |
Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—HN1···O1i | 0.89 (2) | 1.95 (2) | 2.827 (2) | 168 (2) |
N2—HN2···O2ii | 0.86 (2) | 2.01 (2) | 2.852 (2) | 168 (2) |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2. |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).
References
Bezerra, D. P., Castro, F. O., Alves, A. P. N. N., Pessoa, C., Moraes, M. O., Silveira, E. R., Lima, M. A. S., Elmiro, F. J. M. & Costa-Lotufo, L. V. (2006). Braz. J. Med. Biol. Res. 39, 801–807. Web of Science CrossRef PubMed CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Carvalho, S. R., de Silva, E. F., de Souza, M. V. N., Lourenço, M. C. S. & Vicente, F. R. (2008). Bioorg. Med. Chem. Lett. 18, 538–541. Web of Science CrossRef PubMed CAS Google Scholar
Chung, H. S. & Shin, J. C. (2007). Food Chem. 104, 1670–1677. Web of Science CrossRef CAS Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Naz, S., Ahmad, S., Rasool, S. A., Sayeed, S. A. & Siddiqi, R. (2006). Microb. Res. 161, 43–48. Web of Science CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rastogi, N., Goh, K. S., Horgen, L. & Barrow, W. W. (1998). FEMS Immunol. Med. Microbiol. 21, 149–157. Web of Science CrossRef CAS PubMed Google Scholar
Reddy, V. M., Nadadhur, G., Daneluzzi, D., Dimova, V. & Gangadharam, P. R. J. (1995). Antimicrob. Agents Chemother. 39, 2320–2324. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tuberculosis (TB) remains among the world's great public health challenges. Worldwide resurgence of TB is due to two major problems: the AIDS epidemic, which started in the mid-1980's, and the outbreak of multi-drug resistant (MDR) TB. The deadly combination of TB and HIV has led to a quadrupling of TB cases in several African and Asian countries [http://www.who.int/tdr/diseases/tb/default.htm]. MDR-TB, defined as resistance to at least isoniazid and rifamycin, two current first-line drugs, has increased morbidity and mortality with an overall increase in health care costs. The first-line treatment has some disadvantages such as important side-effects and weak sterility problems, and must be administered for 6–9 months. When standard treatments fail, second-line TB drugs are used, but these drugs have a far lower efficacy and require even longer administration periods (18–24 months) with higher cost (US $2500–3000 per treatment), higher rates of adverse effects, and low cure rates (around 60%). It is estimated that 4% of all worldwide TB patients are resistant to at least one of the current first-line drugs. TB is responsible for 20% of all deaths in adults, and each year there are about nine million new cases, of which 15% are children, and two million of deaths, of which 450.000 are children. Due to the increase of MDR-TB and AIDS cases worldwide and the lack of new drugs, there is an urgent need for new drugs to fight this disease. In our continuing research for new potent and anti-malarial agents, we reported on a new class of isonicotinic and benzoic acid N'-(3-phenyl-acryloyl)-hydrazide derivatives as attractive anti-tubercular agents (Carvalho et al., 2008) and now report the structure of N'-[(2E)-3-phenylprop-2-enoyl]benzohydrazide, (I). The choice of trans-cinnamic acid derivatives in this study follows on from earlier reports of their significant biological activities (Bezerra et al., 2006; Chung & Shin, 2007; Naz et al., 2006; Rastogi et al., 1998; Reddy et al., 1995).
In (I), the conformation about the C7═C8 bond is E, Fig. 1. There is significant twisting in the molecule, in particular about about the central N1–N2 bond as seen in the value of the C9/N1/N2/C10 torsion angle of 104.5 (2) °. This has the consequence that the amide groups are effectively orthogonal to each other, a feature that facilitates the formation of N–H···O hydrogen bond leading to the formation of undulating supramolecular tapes in the c direction, Fig. 2 and Table 1.