organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3120-o3121

4-[(2-Chloro­ethyl)amino]quinolinium chloride monohydrate

aInstituto de Tecnologia em Farmacos, Fundação Oswaldo Cruz (FIOCRUZ), FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and dCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 13 November 2009; accepted 14 November 2009; online 21 November 2009)

In the title salt hydrate, C11H12ClN2+·Cl·H2O, the quinolin­ium core is essentially planar (r.m.s. deviation = 0.027 Å) with the chloro­ethyl side chain being almost orthogonal to the core [C—N—C—C torsion angle = −80.0 (3)°]. In the crystal packing, the water mol­ecule bridges three species, forming donor inter­actions to two chloride anions and accepting a hydrogen bond from the quinolinium H atom. The chloride anion accepts a hydrogen bond from the amine N atom with the result that a two-dimensional supra­molecular array is formed in the ac plane. A C—H⋯Cl interaction also occurs.

Related literature

For background to malaria, see: Snow et al. (1999[Snow, R. W., Craig, M., Deichmann, U. & Marsch, K. (1999). Bull. World Health Organ. 77, 624-640.]); Breman (2001[Breman, J. G. (2001). Am. J. Trop. Med. Hyg. 64, 1-11.]); World Health Organization (1999[World Health Organization (1999). The World Health Report WHO, Geneva.]). For background information on the pharmacological activity of quinoline derivatives, see: Elslager et al. (1969[Elslager, E. F., Tendick, F. H. & Werbel, L. M. (1969). J. Med. Chem. 12, 600-607.]); Font et al. (1997[Font, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug. Des. Disc. 14, 259-272.]); Kaminsky & Meltzer (1968[Kaminsky, D. & Meltzer, R. I. (1968). J. Med. Chem. 11, 160-163.]); Musiol et al. (2006[Musiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592-3598.]); Nakamura et al. (1999[Nakamura, T., Oka, M., Aizawa, K., Soda, H., Fukuda, M., Terashi, K., Ikeda, K., Mizuta, Y., Noguchi, Y., Kimura, Y., Tsuruo, T. & Kohno, S. (1999). Biochem. Biophys. Res. Commun. 255, 618-624.]); Palmer et al. (1993[Palmer, K. J., Holliday, S. M. & and Brogden, R. N. (1993). Drugs, 45, 430-475.]); Ridley (2002[Ridley, R. G. (2002). Nature, 2002, 415, 686-693.]); Sloboda et al. (1991[Sloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855-860.]); Tanenbaum & Tuffanelli (1980[Tanenbaum, L. & Tuffanelli, D. L. (1980). Arch. Dermatol. 116, 587-591.]); Warshakoon et al. (2006[Warshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett. 16, 5207-5211.]). For recent studies on quinoline-based anti-malarials, see: Andrade et al. (2007[Andrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm. 558, 194-198.]); Cunico et al. (2006[Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, G. M. A. P., Zanetta, N., de Souza, M. V. N., Freitas, I. Q., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649-653.]); da Silva et al. (2003[Silva, A. D. da, de Almeida, M. V., de Souza, M. V. N. & Couri, M. R. C. (2003). Curr. Med. Chem. 10, 21-39.]); de Souza et al. (2005[Souza, M. V. N. de (2005). Mini Rev. Med. Chem. 5, 1009-1017.]). For a related crystallographic study on a neutral species related to the title compound, see: Kaiser et al. (2009[Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133-1140.]). For the synthesis, see: Elderfield et al. (1946[Elderfield, R. C., Gensler, W. J., Birstein, O., Kreysa, F. J., Maynard, J. T. & Galbreath, J. (1946). J. Am. Chem. Soc. 68, 1250-1251.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12ClN2+·Cl·H2O

  • Mr = 261.14

  • Orthorhombic, P n a 21

  • a = 18.7513 (7) Å

  • b = 14.1030 (5) Å

  • c = 4.606 (1) Å

  • V = 1218.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 120 K

  • 0.46 × 0.03 × 0.03 mm

Data collection
  • Bruker–Nonius 95mm CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.816, Tmax = 1

  • 11264 measured reflections

  • 2681 independent reflections

  • 2390 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.065

  • S = 1.06

  • 2681 reflections

  • 151 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1123 Friedel pairs

  • Flack parameter: 0.03 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 1.84 2.710 (2) 172
N2—H2⋯Cl2 0.88 2.41 3.2298 (18) 155
O1—H1w⋯Cl2ii 0.84 2.32 3.1288 (19) 161
O1—H2w⋯Cl2 0.84 2.29 3.1204 (19) 173
C5—H5⋯Cl2 0.95 2.82 3.730 (2) 161
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) x, y, z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The majority of drugs used against malaria, such as chloroquine (Tanenbaum & Tuffanelli, 1980), mefloquine (Palmer et al., 1993), primaquine (Elslager et al., 1969) and amodiaquine (Ridley, 2002) possess a quinoline ring which has been the mainstay of malaria chemotherapy for much of the past 40 years (Font et al., 1997; Kaminsky & Meltzer, 1968; Musiol et al., 2006; Nakamura et al., 1999; Sloboda et al., 1991; Warshakoon et al., 2006). However, their effectiveness has been seriously eroded in recent years, mainly as a result of the development of parasite resistance (Ridley, 2002). Malaria remains one of the most important diseases of humans with over half of the world population at risk of infection. It affects mainly those living in tropical and subtropical areas with an incidence of 500 million cases per year globally (Snow et al., 1999; Breman, 2001; World Health Organization, 1999). As part of our studies (de Souza et al., 2005; Andrade et al., 2007; da Silva et al., 2003; Cunico et al., 2006) of drugs for neglected diseases, various quinoline derivatives with potential antimalarial activities have been investigated. It was during this study that the the title salt hydrate, (I), was characterized.

The quinolinium core in (I), Fig. 1, is essentially planar with a RMS deviation of the 10 atoms comprising the framework being 0.027 Å, with a maximum deviation exhibited by the C3 atom [0.031 (2) Å]. The amine side-chain deviates significantly from this plane starting with the N2 atom which lies 0.082 (2) Å above the plane. Further along the side-chain, the C11 and Cl1 atoms are almost orthogonal to the quinolinium core as seen in the magnitude of the C3/N2/C10/C11 torsion angle of -80.0 (3) °. The N—H group is orientated towards the aromatic ring. These conformational features are as found in the neutral parent compound (Kaiser et al. (2009). The most significant difference between the geometric parameters in the neutral and protonated forms is found in the angles subtended at the N1 atom, i.e. this has widened considerably in (I), 121.00 (19) Å, compared with 115.3 (2) ° in the neutral form, consistent with protonation in the former.

As expected from the composition of (I), there are significant hydrogen bonding interactions operating in the crystal structure, Table 1. The quinolinium nitrogen atom forms a donor interaction to the water molecule which in turn forms two donor interactions to the Cl2 anion. The Cl2 anion accepts a hydrogen bond from the amine-H with the result that a 2-D supramolecular array is formed in the ac plane, Fig. 2. Additional stability to the array is provided by C–H···Cl interactions involving the Cl1 atom, Table 1. Layers stack along the b axis to consolidate the crystal structure.

Related literature top

For background to malaria, see: Snow et al. (1999); Breman (2001); World Health Organization (1999). For background information on the pharmacological activity of quinoline derivatives, see: Elslager et al. (1969); Font et al. (1997); Kaminsky & Meltzer (1968); Musiol et al. (2006); Nakamura et al. (1999); Palmer et al. (1993); Ridley (2002); Sloboda et al. (1991); Tanenbaum & Tuffanelli (1980); Warshakoon et al. (2006). For recent studies on quinoline-based anti-malarials, see: Andrade et al. (2007); Cunico et al. (2006); da Silva et al. (2003); de Souza et al. (2005). For a related crystallographic study on a neutral species related to the title compound, see: Kaiser et al. (2009). For the synthesis, see: Elderfield et al. (1946).

Experimental top

A mixture of 7-chloro-N-(2-hydroxyethyl)quinolin-4-amine) (Kaiser et al., 2009) (0.5 g, 2.2 mmol), thionyl chloride (33 ml, 45 mmol) and DMF (0.3 ml, 0.22 mol) was stirred under nitrogen at room temperature for 24 h. The resulting mixture was treated with a saturated aqueous solution of sodium bicarbonate and extracted with ethyl acetate. The combined organic phases were dried over anhydrous sodium sulfate and concentrated under reduced pressure to yield solid (I); yield: 94%.The compound was recrystallized from ethanol, m. pt.: 402–403 K. The melting point of the free base was reported to be 427 K (Elderfield et al., 1946).

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located from a difference map and included in their idealized positions with N–H = 0.88 Å, and with Uiso(H) = 1.2Ueq(N). The water-H atoms were located from a difference map and refined with O–H = 0.840±0.001 Å and H···H = 1.39±0.01 Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Hydrogen bonding between the water molecule and Cl2 anion (orange dashed line), and between the amine-N1—H and Cl2 anion (blue dashed line) are highlighted.
[Figure 2] Fig. 2. Supramolecular 2-D array in (I) in the ac plane. The N–H···O (blue), N–H···Cl and O–H···Cl (orange), and C–H···O (green) interactions are shown as dashed lines. Colour code: Cl, cyan; O, red; N, blue; C, grey; and H, green.
4-[(2-Chloroethyl)amino]quinolinium chloride monohydrate top
Crystal data top
C11H12ClN2+·Cl·H2OF(000) = 544
Mr = 261.14Dx = 1.424 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2c -2nCell parameters from 1650 reflections
a = 18.7513 (7) Åθ = 2.9–27.5°
b = 14.1030 (5) ŵ = 0.51 mm1
c = 4.606 (1) ÅT = 120 K
V = 1218.1 (3) Å3Needle, colourless
Z = 40.46 × 0.03 × 0.03 mm
Data collection top
Bruker–Nonius 95mm CCD camera on κ-goniostat
diffractometer
2681 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2390 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ & ω scansh = 1924
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1818
Tmin = 0.816, Tmax = 1l = 55
11264 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0173P)2 + 0.5206P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2681 reflectionsΔρmax = 0.22 e Å3
151 parametersΔρmin = 0.21 e Å3
4 restraintsAbsolute structure: Flack (1983), 1123 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (6)
Crystal data top
C11H12ClN2+·Cl·H2OV = 1218.1 (3) Å3
Mr = 261.14Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 18.7513 (7) ŵ = 0.51 mm1
b = 14.1030 (5) ÅT = 120 K
c = 4.606 (1) Å0.46 × 0.03 × 0.03 mm
Data collection top
Bruker–Nonius 95mm CCD camera on κ-goniostat
diffractometer
2681 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2390 reflections with I > 2σ(I)
Tmin = 0.816, Tmax = 1Rint = 0.049
11264 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.22 e Å3
S = 1.06Δρmin = 0.21 e Å3
2681 reflectionsAbsolute structure: Flack (1983), 1123 Friedel pairs
151 parametersAbsolute structure parameter: 0.03 (6)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13741 (3)0.81412 (4)0.18205 (16)0.02165 (12)
Cl20.21007 (3)0.53250 (3)0.01935 (15)0.02136 (12)
O10.10851 (8)0.59720 (11)0.5181 (4)0.0271 (4)
H1W0.12830.58580.67800.041*
H2W0.13650.58520.38050.041*
N10.48246 (10)0.82732 (12)0.3467 (4)0.0188 (4)
H10.52410.84700.41040.023*
N20.29024 (9)0.73519 (11)0.0155 (4)0.0163 (3)
H20.27420.67960.07280.020*
C10.44596 (12)0.88075 (15)0.1575 (5)0.0203 (5)
H1A0.46570.93970.09820.024*
C20.38179 (12)0.85382 (14)0.0472 (5)0.0184 (4)
H2A0.35720.89430.08390.022*
C30.35148 (11)0.76568 (14)0.1268 (4)0.0158 (5)
C40.39002 (11)0.70904 (15)0.3390 (5)0.0152 (4)
C50.36387 (12)0.62250 (15)0.4527 (4)0.0179 (5)
H50.31940.59850.38730.021*
C60.40215 (12)0.57290 (15)0.6566 (5)0.0208 (5)
H60.38370.51530.73280.025*
C70.46856 (13)0.60686 (16)0.7533 (5)0.0230 (5)
H70.49510.57150.89170.028*
C80.49518 (11)0.69039 (15)0.6493 (5)0.0192 (5)
H80.53990.71330.71590.023*
C90.45584 (11)0.74244 (15)0.4426 (4)0.0158 (5)
C100.24785 (13)0.78772 (16)0.1954 (5)0.0181 (5)
H10A0.21620.74290.29930.022*
H10B0.28020.81670.34020.022*
C110.20268 (11)0.86510 (15)0.0584 (4)0.0177 (5)
H11A0.17830.90170.21250.021*
H11B0.23370.90910.05150.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0166 (3)0.0257 (3)0.0227 (3)0.0021 (2)0.0006 (2)0.0039 (3)
Cl20.0218 (3)0.0193 (2)0.0230 (3)0.0009 (2)0.0043 (2)0.0008 (3)
O10.0220 (9)0.0335 (9)0.0258 (8)0.0085 (7)0.0002 (8)0.0060 (9)
N10.0138 (10)0.0193 (10)0.0234 (10)0.0035 (8)0.0001 (8)0.0019 (8)
N20.0164 (9)0.0140 (8)0.0186 (8)0.0010 (7)0.0025 (8)0.0033 (9)
C10.0211 (11)0.0162 (10)0.0235 (11)0.0012 (9)0.0026 (10)0.0002 (10)
C20.0187 (11)0.0169 (10)0.0196 (11)0.0036 (9)0.0018 (10)0.0010 (10)
C30.0136 (11)0.0169 (10)0.0168 (12)0.0041 (8)0.0021 (8)0.0028 (8)
C40.0135 (11)0.0158 (10)0.0163 (11)0.0040 (8)0.0009 (8)0.0036 (8)
C50.0172 (12)0.0158 (10)0.0206 (12)0.0003 (9)0.0029 (8)0.0015 (9)
C60.0235 (12)0.0156 (10)0.0235 (11)0.0031 (9)0.0009 (11)0.0002 (10)
C70.0237 (13)0.0235 (12)0.0217 (13)0.0108 (10)0.0031 (9)0.0017 (9)
C80.0139 (11)0.0241 (11)0.0196 (12)0.0031 (9)0.0012 (10)0.0062 (9)
C90.0160 (11)0.0162 (10)0.0151 (11)0.0020 (9)0.0022 (8)0.0032 (8)
C100.0175 (12)0.0193 (11)0.0175 (11)0.0016 (9)0.0032 (9)0.0011 (8)
C110.0155 (12)0.0186 (11)0.0192 (12)0.0011 (9)0.0009 (8)0.0029 (8)
Geometric parameters (Å, º) top
Cl1—C111.800 (2)C4—C51.416 (3)
O1—H1W0.8400C5—C61.374 (3)
O1—H2W0.8401C5—H50.9500
N1—C11.340 (3)C6—C71.407 (3)
N1—C91.370 (3)C6—H60.9500
N1—H10.8800C7—C81.366 (3)
N2—C31.329 (3)C7—H70.9500
N2—C101.457 (3)C8—C91.411 (3)
N2—H20.8800C8—H80.9500
C1—C21.360 (3)C10—C111.519 (3)
C1—H1A0.9500C10—H10A0.9900
C2—C31.415 (3)C10—H10B0.9900
C2—H2A0.9500C11—H11A0.9900
C3—C41.454 (3)C11—H11B0.9900
C4—C91.405 (3)
H1W—O1—H2W110.3C5—C6—H6119.8
C1—N1—C9121.00 (19)C7—C6—H6119.8
C1—N1—H1119.5C8—C7—C6120.4 (2)
C9—N1—H1119.5C8—C7—H7119.8
C3—N2—C10124.33 (17)C6—C7—H7119.8
C3—N2—H2117.8C7—C8—C9119.6 (2)
C10—N2—H2117.8C7—C8—H8120.2
N1—C1—C2122.5 (2)C9—C8—H8120.2
N1—C1—H1A118.7N1—C9—C4120.24 (19)
C2—C1—H1A118.7N1—C9—C8118.81 (19)
C1—C2—C3120.2 (2)C4—C9—C8120.95 (19)
C1—C2—H2A119.9N2—C10—C11113.12 (18)
C3—C2—H2A119.9N2—C10—H10A109.0
N2—C3—C2122.08 (19)C11—C10—H10A109.0
N2—C3—C4120.73 (18)N2—C10—H10B109.0
C2—C3—C4117.2 (2)C11—C10—H10B109.0
C9—C4—C5117.89 (19)H10A—C10—H10B107.8
C9—C4—C3118.74 (19)C10—C11—Cl1110.35 (15)
C5—C4—C3123.36 (19)C10—C11—H11A109.6
C6—C5—C4120.7 (2)Cl1—C11—H11A109.6
C6—C5—H5119.6C10—C11—H11B109.6
C4—C5—H5119.6Cl1—C11—H11B109.6
C5—C6—C7120.4 (2)H11A—C11—H11B108.1
C9—N1—C1—C21.0 (3)C5—C6—C7—C81.2 (3)
N1—C1—C2—C31.1 (4)C6—C7—C8—C90.4 (3)
C10—N2—C3—C20.3 (3)C1—N1—C9—C41.2 (3)
C10—N2—C3—C4179.32 (19)C1—N1—C9—C8177.8 (2)
C1—C2—C3—N2177.4 (2)C5—C4—C9—N1177.87 (18)
C1—C2—C3—C42.9 (3)C3—C4—C9—N10.7 (3)
N2—C3—C4—C9177.64 (19)C5—C4—C9—C81.2 (3)
C2—C3—C4—C92.7 (3)C3—C4—C9—C8179.73 (18)
N2—C3—C4—C53.9 (3)C7—C8—C9—N1178.23 (19)
C2—C3—C4—C5175.8 (2)C7—C8—C9—C40.8 (3)
C9—C4—C5—C60.4 (3)C3—N2—C10—C1180.0 (3)
C3—C4—C5—C6178.9 (2)N2—C10—C11—Cl163.9 (2)
C4—C5—C6—C70.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.842.710 (2)172
N2—H2···Cl20.882.413.2298 (18)155
O1—H1w···Cl2ii0.842.323.1288 (19)161
O1—H2w···Cl20.842.293.1204 (19)173
C5—H5···Cl20.952.823.730 (2)161
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC11H12ClN2+·Cl·H2O
Mr261.14
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)120
a, b, c (Å)18.7513 (7), 14.1030 (5), 4.606 (1)
V3)1218.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.46 × 0.03 × 0.03
Data collection
DiffractometerBruker–Nonius 95mm CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.816, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
11264, 2681, 2390
Rint0.049
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.065, 1.06
No. of reflections2681
No. of parameters151
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21
Absolute structureFlack (1983), 1123 Friedel pairs
Absolute structure parameter0.03 (6)

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.842.710 (2)172
N2—H2···Cl20.882.413.2298 (18)155
O1—H1w···Cl2ii0.842.323.1288 (19)161
O1—H2w···Cl20.842.293.1204 (19)173
C5—H5···Cl20.952.823.730 (2)161
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y, z+1.
 

Footnotes

Additional correspondence author,e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationAndrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm. 558, 194–198.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBreman, J. G. (2001). Am. J. Trop. Med. Hyg. 64, 1–11.  Web of Science PubMed CAS Google Scholar
First citationCunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, G. M. A. P., Zanetta, N., de Souza, M. V. N., Freitas, I. Q., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649–653.  Web of Science CrossRef PubMed CAS Google Scholar
First citationElderfield, R. C., Gensler, W. J., Birstein, O., Kreysa, F. J., Maynard, J. T. & Galbreath, J. (1946). J. Am. Chem. Soc. 68, 1250–1251.  CrossRef CAS PubMed Web of Science Google Scholar
First citationElslager, E. F., Tendick, F. H. & Werbel, L. M. (1969). J. Med. Chem. 12, 600–607.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFont, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug. Des. Disc. 14, 259–272.  CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaminsky, D. & Meltzer, R. I. (1968). J. Med. Chem. 11, 160–163.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMusiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNakamura, T., Oka, M., Aizawa, K., Soda, H., Fukuda, M., Terashi, K., Ikeda, K., Mizuta, Y., Noguchi, Y., Kimura, Y., Tsuruo, T. & Kohno, S. (1999). Biochem. Biophys. Res. Commun. 255, 618–624.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPalmer, K. J., Holliday, S. M. & and Brogden, R. N. (1993). Drugs, 45, 430–475.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRidley, R. G. (2002). Nature, 2002, 415, 686–693.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, A. D. da, de Almeida, M. V., de Souza, M. V. N. & Couri, M. R. C. (2003). Curr. Med. Chem. 10, 21–39.  Web of Science PubMed Google Scholar
First citationSloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855–860.  PubMed CAS Web of Science Google Scholar
First citationSnow, R. W., Craig, M., Deichmann, U. & Marsch, K. (1999). Bull. World Health Organ. 77, 624–640.  Web of Science PubMed CAS Google Scholar
First citationSouza, M. V. N. de (2005). Mini Rev. Med. Chem. 5, 1009–1017.  Web of Science PubMed Google Scholar
First citationTanenbaum, L. & Tuffanelli, D. L. (1980). Arch. Dermatol. 116, 587–591.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWarshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett. 16, 5207–5211.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationWorld Health Organization (1999). The World Health Report WHO, Geneva.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3120-o3121
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds