organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-C-Cyclo­hexyl-2,3-O-iso­propyl­­idene­erythro­furan­ose

aDiscipline of Chemistry, University of Adelaide, 5005 South Australia, Australia, bDiscipline of Wine and Horticulture, University of Adelaide, Waite Campus, Glen, Osmond 5064, South Australia, Australia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 15 November 2009; accepted 16 November 2009; online 21 November 2009)

In the title compound, C13H22O4, the acetonide ring adopts an envelope conformation with one of the O atoms as the flap atom, whereas a twisted conformation is found for the furan­ose ring. Centrosymmetric eight-membered {⋯OCOH}2 synthons involving the hydr­oxy H and acetonide O atoms are found in the crystal structure. These are linked into a supra­molecular chain in the a-axis direction via C—H⋯O contacts.

Related literature

For the dihydroxy­lation of the olefin portion of 1,2-dioxines, see: Robinson et al. (2006[Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2006). J. Org. Chem. 71, 7236-7244.], 2009[Robinson, T. V., Pedersen, D. S., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 5093-5096.]); Valente et al. (2009[Valente, P., Avery, T. D., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 274-282.]); Pedersen et al. (2009[Pedersen, D. S., Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 4400-4403.]).

[Scheme 1]

Experimental

Crystal data
  • C13H22O4

  • Mr = 242.31

  • Triclinic, [P \overline 1]

  • a = 5.454 (3) Å

  • b = 9.908 (3) Å

  • c = 12.442 (5) Å

  • α = 93.29 (3)°

  • β = 94.95 (4)°

  • γ = 102.94 (3)°

  • V = 650.8 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 153 K

  • 0.24 × 0.15 × 0.13 mm

Data collection
  • Rigaku AFC12K/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.789, Tmax = 1

  • 4992 measured reflections

  • 2224 independent reflections

  • 2064 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.124

  • S = 1.09

  • 2224 reflections

  • 156 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H40⋯O3i 0.84 1.95 2.787 (2) 173
C2—H2⋯O1ii 1.00 2.43 3.350 (3) 152
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) x+1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Recently we examined the dihydroxylation of the olefin portion of 1,2-dioxines, which provided access to a range of polyhydroxylated core structures upon selective manipulation of the peroxide linkage (Robinson et al., 2006; Robinson et al., 2009; Valente et al., 2009). This methodology was extended to include the synthesis of erythrono-γ-lactones (Pedersen et al., 2009), during the course of which the title compound, (I), was prepared.

The molecular structure of (I), Fig. 1, comprises two fused five-membered rings linked by the C2—C3 bond. The acetonide ring adopts an envelope conformation with the O2 atom being the flap atom. A twisted conformation is found for the furanose ring whereby the O3 atom is endo and the C4 atom is exo. The cyclohexyl group is in the chair conformation. The crystal structure comprises centrosymmetric dimers held by {···OCOH}2 synthons arising from the interaction between the O4-hydroxyl group and the ether-O3 atom, Fig. 2 and Table 1. The resultant eight-membered ring has an elongated chair conformation. The dimeric aggregates are linked into supramolecular chains via C—H···O interactions, Fig. 2 and Table 1. The topology of the supramolecular chain is linear, and is aligned along the a direction.

Related literature top

For the dihydroxylation of the olefin portion of 1,2-dioxines, see: Robinson et al. (2006, 2009); Valente et al. (2009); Pedersen et al. (2009).

Experimental top

For full synthetic procedures and characterization data see Pedersen et al. (2009) and Robinson et al. (2009). To a stirred solution of Co(salen)2 (27 mg, 0.08 mmol) in THF (5 ml) at ambient temperature was added (3aR,7aS)-3a-cyclohexyl-tetrahydro-2,2-dimethyl-[1,3]dioxolo[4,5-d][1,2]dioxine (803 mg, 3.31 mmol). The reaction left to stir until complete by TLC (~16 h). All volatiles were removed in vacuo giving a crude mixture of regioisomers in a 43:57 ratio. The isomers were completely separated by flash chromatography giving a combined total yield of 779 mg (97%). Compound (I) was isolated as a colourless solid (337 mg), and the pure material was recrystallized by slowly evaporating a 1:1 mixture of dichloromethane/heptane to give colourless prisms, m. pt. 391–394 K. The compound was found to exist solely in its cyclic hemi-acetal form(s) both as a solid indicated by IR (absence of carbonyl signal), and in CDCl3 solution which revealed a 94:6 anomeric ratio.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.98–1.00 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). A rotating group model was used for the methyl groups. The O–bound H-atom was located in a difference Fourier map and was refined with an O–H restraint of 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular chain formation along the a axis in (I) mediated by O—H···O hydrogen bonds (orange dashed lines) and C—H···O contacts (blue dashed lines).
2-C-Cyclohexyl-2,3-O-isopropylideneerythrofuranose top
Crystal data top
C13H22O4Z = 2
Mr = 242.31F(000) = 264
Triclinic, P1Dx = 1.237 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.454 (3) ÅCell parameters from 657 reflections
b = 9.908 (3) Åθ = 2.1–30.2°
c = 12.442 (5) ŵ = 0.09 mm1
α = 93.29 (3)°T = 153 K
β = 94.95 (4)°Needle, colourless
γ = 102.94 (3)°0.24 × 0.15 × 0.13 mm
V = 650.8 (5) Å3
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
2224 independent reflections
Radiation source: fine-focus sealed tube2064 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 65
Tmin = 0.789, Tmax = 1k = 1111
4992 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.066P)2 + 0.1734P]
where P = (Fo2 + 2Fc2)/3
2224 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C13H22O4γ = 102.94 (3)°
Mr = 242.31V = 650.8 (5) Å3
Triclinic, P1Z = 2
a = 5.454 (3) ÅMo Kα radiation
b = 9.908 (3) ŵ = 0.09 mm1
c = 12.442 (5) ÅT = 153 K
α = 93.29 (3)°0.24 × 0.15 × 0.13 mm
β = 94.95 (4)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
2224 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2064 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 1Rint = 0.020
4992 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.124H-atom parameters constrained
S = 1.09Δρmax = 0.18 e Å3
2224 reflectionsΔρmin = 0.20 e Å3
156 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69690 (18)0.26256 (11)0.70713 (8)0.0281 (3)
O21.0523 (2)0.34466 (12)0.62499 (9)0.0352 (3)
O30.9937 (2)0.48884 (11)0.85907 (9)0.0377 (3)
O41.0310 (3)0.31604 (12)0.97416 (9)0.0439 (4)
H4O1.02810.37031.02820.066*
C10.7854 (3)0.33328 (17)0.61509 (12)0.0312 (4)
C21.1367 (3)0.33878 (16)0.73567 (13)0.0320 (4)
H21.27830.28980.74250.038*
C30.9031 (3)0.25734 (15)0.78511 (12)0.0270 (4)
C40.8885 (3)0.35109 (16)0.88634 (12)0.0327 (4)
H40.70880.34150.90190.039*
C51.2089 (3)0.47939 (18)0.80110 (15)0.0410 (4)
H5A1.36090.48530.85240.049*
H5B1.24500.55560.75260.049*
C60.7237 (3)0.47484 (18)0.61632 (14)0.0366 (4)
H6A0.53970.46370.60850.055*
H6B0.79590.52430.55620.055*
H6C0.79540.52820.68500.055*
C70.6697 (4)0.2440 (2)0.51267 (14)0.0446 (5)
H7A0.48500.22780.50850.067*
H7B0.71930.15490.51340.067*
H7C0.72990.29160.44970.067*
C80.9010 (3)0.10690 (15)0.80714 (12)0.0281 (4)
H81.04540.10860.86290.034*
C90.9368 (3)0.01889 (16)0.70736 (14)0.0353 (4)
H9A0.79680.01590.65040.042*
H9B1.09730.06230.67880.042*
C100.9421 (3)0.12889 (17)0.73441 (16)0.0410 (4)
H10A0.95810.18440.66770.049*
H10B1.09150.12650.78630.049*
C110.7028 (3)0.19803 (17)0.78331 (14)0.0363 (4)
H11A0.55570.21170.72800.044*
H11B0.71790.29050.80530.044*
C120.6588 (3)0.11062 (17)0.88099 (14)0.0376 (4)
H12A0.79360.10830.94020.045*
H12B0.49480.15390.90670.045*
C130.6576 (3)0.03762 (17)0.85399 (13)0.0343 (4)
H13A0.63910.09290.92040.041*
H13B0.51070.03610.80100.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0218 (5)0.0379 (6)0.0252 (6)0.0082 (4)0.0014 (4)0.0048 (4)
O20.0277 (6)0.0454 (7)0.0345 (6)0.0098 (5)0.0089 (5)0.0062 (5)
O30.0485 (7)0.0307 (6)0.0335 (7)0.0112 (5)0.0019 (5)0.0002 (5)
O40.0662 (8)0.0383 (7)0.0279 (6)0.0212 (6)0.0115 (6)0.0033 (5)
C10.0266 (8)0.0414 (9)0.0262 (8)0.0078 (6)0.0047 (6)0.0051 (6)
C20.0240 (8)0.0352 (8)0.0373 (9)0.0082 (6)0.0009 (6)0.0041 (7)
C30.0234 (7)0.0332 (8)0.0250 (8)0.0095 (6)0.0009 (6)0.0001 (6)
C40.0413 (9)0.0312 (8)0.0264 (8)0.0125 (7)0.0015 (7)0.0008 (6)
C50.0334 (9)0.0370 (9)0.0483 (10)0.0027 (7)0.0044 (7)0.0023 (8)
C60.0343 (9)0.0440 (10)0.0337 (9)0.0121 (7)0.0037 (7)0.0100 (7)
C70.0490 (11)0.0548 (11)0.0272 (9)0.0082 (8)0.0003 (8)0.0005 (8)
C80.0260 (8)0.0313 (8)0.0272 (8)0.0084 (6)0.0005 (6)0.0000 (6)
C90.0347 (9)0.0351 (9)0.0373 (9)0.0079 (7)0.0124 (7)0.0006 (7)
C100.0407 (10)0.0329 (9)0.0506 (11)0.0097 (7)0.0137 (8)0.0047 (7)
C110.0380 (9)0.0314 (8)0.0378 (9)0.0050 (7)0.0042 (7)0.0006 (7)
C120.0432 (10)0.0365 (9)0.0340 (9)0.0088 (7)0.0070 (7)0.0061 (7)
C130.0369 (9)0.0369 (9)0.0319 (9)0.0119 (7)0.0107 (7)0.0027 (7)
Geometric parameters (Å, º) top
O1—C31.4328 (18)C7—H7A0.9800
O1—C11.4392 (19)C7—H7B0.9800
O2—C21.423 (2)C7—H7C0.9800
O2—C11.429 (2)C8—C91.528 (2)
O3—C41.429 (2)C8—C131.531 (2)
O3—C51.447 (2)C8—H81.0000
O4—C41.392 (2)C9—C101.527 (2)
O4—H4O0.8399C9—H9A0.9900
C1—C71.512 (2)C9—H9B0.9900
C1—C61.513 (2)C10—C111.526 (2)
C2—C51.526 (2)C10—H10A0.9900
C2—C31.544 (2)C10—H10B0.9900
C2—H21.0000C11—C121.519 (2)
C3—C81.529 (2)C11—H11A0.9900
C3—C41.540 (2)C11—H11B0.9900
C4—H41.0000C12—C131.527 (2)
C5—H5A0.9900C12—H12A0.9900
C5—H5B0.9900C12—H12B0.9900
C6—H6A0.9800C13—H13A0.9900
C6—H6B0.9800C13—H13B0.9900
C6—H6C0.9800
C3—O1—C1111.24 (11)C1—C7—H7B109.5
C2—O2—C1108.79 (12)H7A—C7—H7B109.5
C4—O3—C5105.95 (12)C1—C7—H7C109.5
C4—O4—H4O108.8H7A—C7—H7C109.5
O2—C1—O1105.26 (12)H7B—C7—H7C109.5
O2—C1—C7108.62 (14)C9—C8—C3113.25 (13)
O1—C1—C7109.15 (13)C9—C8—C13109.62 (13)
O2—C1—C6111.35 (13)C3—C8—C13111.20 (12)
O1—C1—C6110.47 (13)C9—C8—H8107.5
C7—C1—C6111.76 (14)C3—C8—H8107.5
O2—C2—C5114.39 (14)C13—C8—H8107.5
O2—C2—C3104.95 (12)C10—C9—C8111.22 (14)
C5—C2—C3104.74 (13)C10—C9—H9A109.4
O2—C2—H2110.8C8—C9—H9A109.4
C5—C2—H2110.8C10—C9—H9B109.4
C3—C2—H2110.8C8—C9—H9B109.4
O1—C3—C8110.40 (12)H9A—C9—H9B108.0
O1—C3—C4108.10 (12)C11—C10—C9111.32 (14)
C8—C3—C4114.24 (13)C11—C10—H10A109.4
O1—C3—C2103.39 (12)C9—C10—H10A109.4
C8—C3—C2116.55 (12)C11—C10—H10B109.4
C4—C3—C2103.27 (12)C9—C10—H10B109.4
O4—C4—O3111.08 (13)H10A—C10—H10B108.0
O4—C4—C3109.45 (12)C12—C11—C10111.32 (14)
O3—C4—C3104.59 (13)C12—C11—H11A109.4
O4—C4—H4110.5C10—C11—H11A109.4
O3—C4—H4110.5C12—C11—H11B109.4
C3—C4—H4110.5C10—C11—H11B109.4
O3—C5—C2106.01 (13)H11A—C11—H11B108.0
O3—C5—H5A110.5C11—C12—C13111.60 (14)
C2—C5—H5A110.5C11—C12—H12A109.3
O3—C5—H5B110.5C13—C12—H12A109.3
C2—C5—H5B110.5C11—C12—H12B109.3
H5A—C5—H5B108.7C13—C12—H12B109.3
C1—C6—H6A109.5H12A—C12—H12B108.0
C1—C6—H6B109.5C12—C13—C8111.60 (13)
H6A—C6—H6B109.5C12—C13—H13A109.3
C1—C6—H6C109.5C8—C13—H13A109.3
H6A—C6—H6C109.5C12—C13—H13B109.3
H6B—C6—H6C109.5C8—C13—H13B109.3
C1—C7—H7A109.5H13A—C13—H13B108.0
C2—O2—C1—O124.16 (15)C2—C3—C4—O489.45 (15)
C2—O2—C1—C7140.95 (13)O1—C3—C4—O379.48 (14)
C2—O2—C1—C695.56 (15)C8—C3—C4—O3157.20 (12)
C3—O1—C1—O212.78 (15)C2—C3—C4—O329.63 (14)
C3—O1—C1—C7129.21 (14)C4—O3—C5—C234.96 (16)
C3—O1—C1—C6107.53 (14)O2—C2—C5—O399.37 (16)
C1—O2—C2—C588.63 (16)C3—C2—C5—O314.97 (16)
C1—O2—C2—C325.58 (15)O1—C3—C8—C962.51 (16)
C1—O1—C3—C8122.93 (13)C4—C3—C8—C9175.42 (12)
C1—O1—C3—C4111.46 (14)C2—C3—C8—C955.00 (17)
C1—O1—C3—C22.43 (14)O1—C3—C8—C1361.44 (16)
O2—C2—C3—O116.78 (14)C4—C3—C8—C1360.62 (17)
C5—C2—C3—O1104.03 (13)C2—C3—C8—C13178.95 (12)
O2—C2—C3—C8104.51 (14)C3—C8—C9—C10178.09 (12)
C5—C2—C3—C8134.68 (14)C13—C8—C9—C1057.09 (17)
O2—C2—C3—C4129.38 (12)C8—C9—C10—C1156.64 (19)
C5—C2—C3—C48.57 (15)C9—C10—C11—C1254.5 (2)
C5—O3—C4—O477.45 (16)C10—C11—C12—C1353.94 (19)
C5—O3—C4—C340.52 (15)C11—C12—C13—C855.52 (18)
O1—C3—C4—O4161.44 (12)C9—C8—C13—C1256.55 (17)
C8—C3—C4—O438.13 (18)C3—C8—C13—C12177.46 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H40···O3i0.841.952.787 (2)173
C2—H2···O1ii1.002.433.350 (3)152
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H22O4
Mr242.31
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)5.454 (3), 9.908 (3), 12.442 (5)
α, β, γ (°)93.29 (3), 94.95 (4), 102.94 (3)
V3)650.8 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.15 × 0.13
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.789, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
4992, 2224, 2064
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.124, 1.09
No. of reflections2224
No. of parameters156
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H40···O3i0.841.952.787 (2)173
C2—H2···O1ii1.002.433.350 (3)152
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: dennis.taylor@adelaide.edu.au.

Acknowledgements

We are grateful to the Australian Research Council for financial support. TVR thanks the Commonwealth Government of Australia for a postgraduate scholarship.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPedersen, D. S., Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 4400–4403.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRobinson, T. V., Pedersen, D. S., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 5093–5096.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRobinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2006). J. Org. Chem. 71, 7236–7244.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValente, P., Avery, T. D., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 274–282.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds