organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3221-o3222

Bis[1-(iso­propyl­­idene­amino)guanidinium] bis­­(3-nitro­benzoate) monohydrate

aDepartment of Chemistry, University of Aberdeen, Old Aberdeen AB15 5NY, Scotland, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and dCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 16 November 2009; accepted 16 November 2009; online 25 November 2009)

The asymmetric unit of the title salt hydrate, 2C4H11N4+·2C7H4NO4·H2O, comprises two independent 1-(isopropyl­ideneamino)guanidinium cations, two independent 3-nitro­benzoate anions and a water mol­ecule of crystallization. There are minimal geometric differences between the two planar [maximum deviations 0.061 (2) and 0.088 (2) Å] cations, and between the two almost planar anions [C–C–C–O and C–C–N–O torsion angles of 0.3 (3) and 11.1 (4) °, respectively in the first anion and −173.7 (2) and −0.1 (4), respectively in the second anion]. Extensive O—H⋯O and N—H⋯O hydrogen bonding between all components of the structure leads to the formation of a two-dimensional array with an undulating topology in the bc plane.

Related literature

For the structure of 1-(isopropyl­ideneamino)guanidinium 2-nitro­benzoate, see: Skakle et al. (2006[Skakle, J. M. S., Wardell, J. L. & Wardell, S. M. S. V. (2006). Acta Cryst. C62, o476-o477.]).

[Scheme 1]

Experimental

Crystal data
  • 2C4H11N4+·2C7H4NO4·H2O

  • Mr = 580.58

  • Monoclinic, P 21 /c

  • a = 16.5833 (6) Å

  • b = 22.2457 (10) Å

  • c = 7.5424 (3) Å

  • β = 92.232 (2)°

  • V = 2780.33 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 120 K

  • 0.20 × 0.08 × 0.06 mm

Data collection
  • Enraf–Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.041, Tmax = 0.099

  • 29694 measured reflections

  • 6339 independent reflections

  • 3607 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.177

  • S = 1.06

  • 6339 reflections

  • 380 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w⋯O1 0.84 2.06 2.878 (2) 164
O1w—H2w⋯O5 0.84 1.93 2.755 (2) 168
N3—H3A⋯O2 0.88 1.88 2.755 (3) 170
N3—H3B⋯O6i 0.88 2.01 2.812 (3) 150
N4—H4A⋯O1 0.88 2.06 2.943 (3) 177
N4—H4B⋯O5 0.88 2.32 3.049 (3) 139
N5—H5A⋯O6i 0.88 2.13 2.880 (3) 142
N7—H7A⋯O2i 0.88 2.04 2.779 (3) 141
N7—H7B⋯O1 0.88 2.07 2.831 (3) 144
N8—H8A⋯O1wii 0.88 2.03 2.881 (3) 161
N8—H8B⋯O1wiii 0.88 2.13 2.975 (3) 162
N9—H9⋯O5iii 0.88 2.19 2.904 (3) 138
C5—H5⋯O7iv 0.95 2.58 3.322 (3) 135
C13—H13⋯O3iii 0.95 2.57 3.233 (4) 127
C21—H21B⋯O8v 0.98 2.34 3.290 (3) 164
C22—H22B⋯O6vi 0.98 2.57 3.538 (3) 168
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x, y, z+1; (iii) -x+1, -y+2, -z+1; (iv) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) x+1, y, z; (vi) -x+1, -y+2, -z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Following on the recent publication of the structure of 1-(isopropyplideneamino)guanidinium 2-nitrobenzoate (Skakle et al., 2006), we now report the structure of the related salt, 1-(isopropyplideneamino)guanidinium 3-nitrobenzoate, obtained as a hydrate, (I). The crystallographic asymmetric unit of (I) comprises two independent 1-(isopropylideneamino)guanidinium cations, two independent 3-nitrobenzoate anions, and a water molecule of crystallization. Confirmation of proton transfer from the benzoic acid derivative to the guanine molecule during crystallization is found in the equivalence of the C—O bond distances (C1—O1, O2 = 1.259 (3) and 1.258 (3) Å; C8—O5, O6 = 1.261 (3) and 1.255 (3) Å) and the pattern of hydrogen bonding, see below. The guanidinium cations are virtually identical as seen in the r.m.s. values for bond distances and angles of 0.012 Å and 1.38 °, respectively. In the same way, the two independent anions have very similar geometries as indicated by the r.m.s. values for bond distances and angles of 0.005 Å and 1.06 °, respectively. The maximum deviation from planarity of the eight non-hydrogen atoms in the C15-containing cation is 0.061 (2) Å for atom N3. For the C19 cation, the maximum deviation of 0.088 (2) Å is also found for an amino group, i.e. atom N7. The benzene rings of the anions are also planar with the carboxylate and nitro groups co-planar and slightly twisted, respectively, out of the plane of the C2—C7 benzene ring as seen in the C3–C2–C1–O1 and C3–C4–N1–O3 torsion angles of 0.3 (3) ° and 11.1 (4) °, respectively. The second independent anion is even more planar: the C10–C9–C8–O5 and C10–C11—N2–O7 torsion angles are -173.7 (2) and -0.1 (4), respectively.

Not surprisingly from the constitution of (I), there is extensive hydrogen bonding at play in the crystal structure. The most prominent intermolecular interactions are of the type O—H···O and N—H···O, Table 1. The water molecule provides two donor interactions to two benzoate-O atoms and accepts two hydrogen bond from two N8-amino groups derived from two different cations. The later interactions occur around a centre of inversion and results in the formation of eight-membered {···HNH···O}2 synthons. The C15-guanidinium cation utilizes all five acidic-H atoms to hydrogen bond to four oxygen atoms, derived from three symmetry related benzoate anions. One H atom from each of the N3- and N4-amino groups each connects an O atom of an O1-benzoate thereby forming an eight-membered {···HNCNH···OCO} synthon. The other N3—H atom hydrogen bonds to a benzoate-O6 atom which at the same time accepts a hydrogen bond from the N5—H atom to close a S(6) ring. The other N4—H atom hydrogen bonds to a benzoate-O5 atom so that the amino-N4—H2 bridges the same two benzoate-O atoms as does the water molecule to form an eight-membered {···HNH···O···HOH···O} synthon.

The C19-guanidinium cation also connects to five O atoms, three derived from three symmetry related benzoate groups and two water molecules; the N8—H2 amino group bridges two water molecules, as described above. Each of amino-N7 H atoms is connected to a symmetry related O1-benzoate anion so that rows of benzoate anions along the c axis are bridged by amino-N7—H2 groups. Finally, the N9—H links a benzoate-O5 atom. Each of the imine-N6 and –N10 atoms participates in intramolecular interactions with the N4- and N7—H atoms, respectively. The O1-benzoate forms five acceptor interactions, one from the water molecule and four from N—H. The O5-benzoate forms the same number and type of acceptor interactions. The net result of the O—H···O and N—H···O hydrogen bonding is the formation of a 2-D array in the bc plane, Fig. 2. These have an undulating topology, Fig. 3. The layers stack along the a direction being held in place by C—H···O contacts where the O atoms are derived from benzoate (O6) and nitro (O3, O7, O8) O atoms, Table 1 and Fig. 4.

An undulating 2-D array was found in the crystal structure of anhydrous 1-(isopropylideneamino)guanidinium 2-nitrobenzoate, see: Skakle et al. (2006).

Related literature top

For the structure of 1-(isopropylideneamino)guanidinium 2-nitrobenzoate, see: Skakle et al. (2006).

Experimental top

A solution of aminoguanidinium carbonate (0.290 g, 2.1 mmol) in MeOH (15 ml) was added to a solution of 3-nitrobenzoic acid (0.350 g, 2.1 mmol) in MeOH (15 ml) and mixed. After the effervescence had subsided, the reaction mixture was refluxed for 15 min, left at room temperature overnight, and then rotary evaporated to leave a residue of [(H2N)2CNHNH2][3-O2NC6H4CO2]. The crude material was dissolved in acetone and the solution left at room temperature to produce crystals characterized as (I), m. pt. 436–435 K.

Refinement top

The N– and C-bound H atoms were geometrically placed with N—H = 0.88 Å and C—H = 0.95–0.98 Å, and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). A rotating group model was used for the methyl groups. The water-bound H atoms were located from a difference map and included in the model with restraints O–H = 0.840±0. 001 Å and H1w···Hw2 = 1.39±0.01, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structures of the components of the asymmetric unit in (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A plan view of the 2-D array in the bc plane in the crystal structure of (I). The O—H···O and N—H···O hydrogen bonding is shown as orange dashed lines.
[Figure 3] Fig. 3. A side-on view of the 2-D array in the bc plane in the crystal structure of (I) highlighting the undulating topology. The O—H···O and N—H···O hydrogen bonding is shown as orange dashed lines.
[Figure 4] Fig. 4. A view in projection down the c axis showing the stacking of layers in the crystal structure of (I). Layers are connected by C—H···O contacts, shown as brown dashed lines.
Bis[1-(isopropylideneamino)guanidinium] bis(3-nitrobenzoate) monohydrate top
Crystal data top
2C4H11N4+·2C7H4NO4·H2OF(000) = 1224
Mr = 580.58Dx = 1.387 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6191 reflections
a = 16.5833 (6) Åθ = 1.0–27.5°
b = 22.2457 (10) ŵ = 0.11 mm1
c = 7.5424 (3) ÅT = 120 K
β = 92.232 (2)°Prism, colourless
V = 2780.33 (19) Å30.20 × 0.08 × 0.06 mm
Z = 4
Data collection top
Enraf–Nonius KappaCCD area-detector
diffractometer
6339 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode3607 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.072
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 1.2°
ϕ and ω scansh = 2121
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2628
Tmin = 0.041, Tmax = 0.099l = 99
29694 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0941P)2]
where P = (Fo2 + 2Fc2)/3
6339 reflections(Δ/σ)max < 0.001
380 parametersΔρmax = 0.35 e Å3
3 restraintsΔρmin = 0.56 e Å3
Crystal data top
2C4H11N4+·2C7H4NO4·H2OV = 2780.33 (19) Å3
Mr = 580.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.5833 (6) ŵ = 0.11 mm1
b = 22.2457 (10) ÅT = 120 K
c = 7.5424 (3) Å0.20 × 0.08 × 0.06 mm
β = 92.232 (2)°
Data collection top
Enraf–Nonius KappaCCD area-detector
diffractometer
6339 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3607 reflections with I > 2σ(I)
Tmin = 0.041, Tmax = 0.099Rint = 0.072
29694 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0533 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.06Δρmax = 0.35 e Å3
6339 reflectionsΔρmin = 0.56 e Å3
380 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53214 (10)0.81252 (8)0.2856 (2)0.0255 (4)
O20.51509 (10)0.71297 (8)0.2780 (2)0.0320 (5)
O30.80185 (12)0.89030 (10)0.4371 (3)0.0526 (6)
O40.90614 (12)0.83281 (11)0.4219 (4)0.0656 (7)
N10.83303 (14)0.84104 (12)0.4178 (3)0.0426 (6)
C10.55819 (14)0.75937 (12)0.2933 (3)0.0219 (6)
C20.64799 (14)0.74986 (11)0.3288 (3)0.0222 (6)
C30.69888 (15)0.79915 (12)0.3527 (3)0.0247 (6)
H30.67830.83900.34480.030*
C40.77989 (15)0.78874 (13)0.3881 (3)0.0285 (6)
C50.81320 (16)0.73169 (13)0.3984 (4)0.0327 (7)
H50.86950.72620.42000.039*
C60.76174 (16)0.68290 (13)0.3763 (4)0.0338 (7)
H60.78250.64320.38500.041*
C70.68044 (15)0.69216 (12)0.3418 (3)0.0288 (6)
H70.64570.65840.32650.035*
O80.11247 (11)0.93385 (11)0.1007 (3)0.0561 (6)
O70.03790 (12)0.86476 (10)0.0110 (3)0.0499 (6)
O60.24821 (10)0.86769 (8)0.0634 (2)0.0280 (4)
O50.31194 (9)0.93239 (8)0.2451 (2)0.0240 (4)
N20.04684 (13)0.91043 (12)0.0778 (3)0.0384 (6)
C80.24919 (14)0.91177 (11)0.1672 (3)0.0214 (5)
C90.16892 (14)0.94107 (11)0.1993 (3)0.0219 (5)
C100.09944 (14)0.91448 (12)0.1272 (3)0.0253 (6)
H100.10300.87900.05780.030*
C110.02547 (14)0.93963 (12)0.1564 (3)0.0286 (6)
C120.01764 (16)0.99132 (13)0.2560 (4)0.0338 (7)
H120.03411.00780.27590.041*
C130.08689 (16)1.01847 (13)0.3262 (4)0.0340 (7)
H130.08291.05420.39430.041*
C140.16210 (15)0.99375 (12)0.2974 (3)0.0275 (6)
H140.20931.01290.34510.033*
N30.36556 (12)0.70834 (10)0.4243 (3)0.0270 (5)
H3A0.41530.70700.38800.032*
H3B0.34060.67490.45180.032*
N40.36412 (12)0.81090 (10)0.3975 (3)0.0255 (5)
H4A0.41390.81060.36090.031*
H4B0.33810.84520.40730.031*
N50.25179 (11)0.75952 (9)0.4934 (3)0.0241 (5)
H5A0.22680.72530.51210.029*
N60.21349 (12)0.81397 (9)0.5205 (3)0.0238 (5)
C150.32863 (14)0.76011 (11)0.4374 (3)0.0216 (5)
C160.14172 (14)0.81102 (12)0.5791 (3)0.0237 (6)
C170.09737 (16)0.75369 (13)0.6148 (4)0.0331 (7)
H17A0.08840.73150.50350.050*
H17B0.04530.76310.66510.050*
H17C0.12950.72910.69900.050*
C180.09902 (16)0.86897 (13)0.6092 (4)0.0335 (7)
H18A0.13450.90260.58100.050*
H18B0.08450.87160.73370.050*
H18C0.05000.87080.53260.050*
N70.53461 (12)0.89118 (9)0.5808 (3)0.0249 (5)
H7A0.50640.86720.64760.030*
H7B0.54890.87910.47550.030*
N80.53482 (12)0.96461 (9)0.7968 (3)0.0250 (5)
H8A0.50660.94150.86600.030*
H8B0.54951.00080.83250.030*
N90.59766 (12)0.98184 (9)0.5355 (3)0.0228 (5)
H90.60831.01930.56550.027*
N100.62350 (12)0.95652 (9)0.3776 (3)0.0235 (5)
C190.55533 (14)0.94484 (11)0.6384 (3)0.0210 (5)
C200.66388 (14)0.99055 (12)0.2777 (3)0.0242 (6)
C210.69303 (16)0.96204 (14)0.1118 (3)0.0356 (7)
H21A0.67310.92060.10330.053*
H21B0.75220.96190.11540.053*
H21C0.67290.98500.00830.053*
C220.68386 (17)1.05488 (13)0.3123 (4)0.0355 (7)
H22A0.63431.07710.33520.053*
H22B0.70921.07200.20850.053*
H22C0.72121.05780.41590.053*
O1W0.45485 (10)0.90793 (8)0.0851 (2)0.0270 (4)
H1W0.48540.88200.13330.041*
H2W0.41020.91000.13360.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0233 (9)0.0224 (11)0.0309 (9)0.0022 (7)0.0003 (7)0.0020 (8)
O20.0231 (9)0.0249 (11)0.0485 (11)0.0021 (8)0.0076 (8)0.0120 (9)
O30.0361 (12)0.0316 (13)0.0890 (17)0.0050 (10)0.0122 (12)0.0060 (12)
O40.0224 (12)0.0513 (16)0.122 (2)0.0042 (10)0.0123 (12)0.0050 (15)
N10.0237 (13)0.0381 (17)0.0651 (17)0.0057 (12)0.0076 (12)0.0023 (13)
C10.0208 (13)0.0239 (15)0.0213 (12)0.0004 (11)0.0050 (10)0.0049 (10)
C20.0221 (13)0.0243 (15)0.0205 (12)0.0010 (10)0.0016 (10)0.0010 (10)
C30.0229 (13)0.0246 (15)0.0266 (13)0.0004 (11)0.0010 (11)0.0002 (11)
C40.0220 (13)0.0323 (17)0.0310 (14)0.0018 (12)0.0025 (11)0.0013 (12)
C50.0249 (14)0.0386 (18)0.0343 (15)0.0059 (13)0.0035 (12)0.0016 (13)
C60.0333 (16)0.0278 (17)0.0399 (15)0.0071 (13)0.0040 (13)0.0006 (12)
C70.0279 (14)0.0265 (16)0.0317 (14)0.0000 (11)0.0014 (12)0.0015 (11)
O80.0191 (11)0.0653 (17)0.0839 (17)0.0052 (11)0.0019 (11)0.0086 (13)
O70.0302 (11)0.0425 (15)0.0761 (15)0.0055 (10)0.0088 (11)0.0168 (12)
O60.0258 (10)0.0232 (11)0.0354 (10)0.0020 (8)0.0049 (8)0.0071 (8)
O50.0189 (9)0.0230 (10)0.0302 (9)0.0009 (7)0.0003 (7)0.0001 (7)
N20.0213 (13)0.0424 (17)0.0516 (15)0.0009 (11)0.0009 (11)0.0014 (13)
C80.0216 (13)0.0179 (14)0.0248 (12)0.0013 (10)0.0028 (11)0.0036 (11)
C90.0213 (12)0.0195 (14)0.0252 (12)0.0018 (10)0.0037 (10)0.0012 (10)
C100.0255 (14)0.0202 (14)0.0304 (13)0.0027 (11)0.0027 (11)0.0003 (11)
C110.0194 (13)0.0305 (16)0.0358 (14)0.0001 (11)0.0016 (11)0.0014 (12)
C120.0231 (14)0.0344 (17)0.0442 (16)0.0079 (12)0.0059 (13)0.0002 (13)
C130.0319 (15)0.0288 (16)0.0414 (15)0.0075 (12)0.0039 (13)0.0101 (13)
C140.0241 (13)0.0252 (15)0.0333 (13)0.0008 (11)0.0007 (11)0.0025 (12)
N30.0219 (11)0.0174 (12)0.0425 (13)0.0011 (9)0.0099 (10)0.0044 (10)
N40.0187 (10)0.0208 (12)0.0375 (12)0.0029 (9)0.0065 (9)0.0043 (9)
N50.0203 (11)0.0177 (12)0.0348 (12)0.0009 (9)0.0054 (9)0.0004 (9)
N60.0217 (11)0.0199 (12)0.0300 (11)0.0009 (9)0.0023 (9)0.0009 (9)
C150.0205 (13)0.0196 (14)0.0245 (12)0.0008 (11)0.0014 (10)0.0017 (10)
C160.0208 (13)0.0254 (15)0.0250 (13)0.0018 (11)0.0019 (10)0.0017 (11)
C170.0279 (15)0.0336 (17)0.0384 (15)0.0005 (12)0.0086 (12)0.0007 (13)
C180.0270 (14)0.0324 (17)0.0415 (16)0.0031 (12)0.0075 (13)0.0016 (13)
N70.0275 (12)0.0198 (12)0.0278 (11)0.0032 (9)0.0075 (9)0.0017 (9)
N80.0289 (12)0.0219 (12)0.0247 (11)0.0077 (9)0.0056 (9)0.0014 (9)
N90.0258 (11)0.0160 (11)0.0271 (11)0.0042 (9)0.0064 (9)0.0005 (9)
N100.0228 (11)0.0242 (12)0.0239 (11)0.0010 (9)0.0043 (9)0.0004 (9)
C190.0178 (12)0.0203 (14)0.0247 (12)0.0013 (10)0.0012 (10)0.0027 (11)
C200.0153 (12)0.0289 (16)0.0283 (13)0.0019 (11)0.0003 (10)0.0063 (11)
C210.0306 (15)0.0459 (19)0.0309 (14)0.0076 (13)0.0069 (12)0.0053 (13)
C220.0384 (16)0.0370 (18)0.0311 (14)0.0112 (13)0.0030 (13)0.0060 (12)
O1W0.0215 (9)0.0268 (11)0.0330 (10)0.0019 (8)0.0047 (8)0.0037 (8)
Geometric parameters (Å, º) top
O1—C11.259 (3)N4—C151.314 (3)
O2—C11.258 (3)N4—H4A0.8800
O3—N11.223 (3)N4—H4B0.8800
O4—N11.225 (3)N5—C151.358 (3)
N1—C41.471 (4)N5—N61.387 (3)
C1—C21.517 (3)N5—H5A0.8800
C2—C31.391 (3)N6—C161.287 (3)
C2—C71.394 (4)C16—C181.492 (4)
C3—C41.379 (4)C16—C171.502 (4)
C3—H30.9500C17—H17A0.9800
C4—C51.385 (4)C17—H17B0.9800
C5—C61.387 (4)C17—H17C0.9800
C5—H50.9500C18—H18A0.9800
C6—C71.379 (4)C18—H18B0.9800
C6—H60.9500C18—H18C0.9800
C7—H70.9500N7—C191.311 (3)
O8—N21.225 (3)N7—H7A0.8800
O7—N21.229 (3)N7—H7B0.8800
O6—C81.255 (3)N8—C191.330 (3)
O5—C81.261 (3)N8—H8A0.8800
N2—C111.468 (3)N8—H8B0.8800
C8—C91.510 (3)N9—C191.347 (3)
C9—C101.387 (3)N9—N101.400 (3)
C9—C141.393 (4)N9—H90.8800
C10—C111.374 (3)N10—C201.276 (3)
C10—H100.9500C20—C221.490 (4)
C11—C121.383 (4)C20—C211.499 (4)
C12—C131.384 (4)C21—H21A0.9800
C12—H120.9500C21—H21B0.9800
C13—C141.388 (4)C21—H21C0.9800
C13—H130.9500C22—H22A0.9800
C14—H140.9500C22—H22B0.9800
N3—C151.310 (3)C22—H22C0.9800
N3—H3A0.8800O1W—H1W0.8400
N3—H3B0.8800O1W—H2W0.8399
O3—N1—O4123.6 (3)H4A—N4—H4B120.0
O3—N1—C4118.2 (2)C15—N5—N6118.6 (2)
O4—N1—C4118.2 (3)C15—N5—H5A120.7
O2—C1—O1125.0 (2)N6—N5—H5A120.7
O2—C1—C2116.9 (2)C16—N6—N5116.2 (2)
O1—C1—C2118.1 (2)N3—C15—N4121.6 (2)
C3—C2—C7119.1 (2)N3—C15—N5117.5 (2)
C3—C2—C1119.9 (2)N4—C15—N5120.9 (2)
C7—C2—C1121.0 (2)N6—C16—C18117.3 (2)
C4—C3—C2118.3 (2)N6—C16—C17124.8 (2)
C4—C3—H3120.8C18—C16—C17117.9 (2)
C2—C3—H3120.8C16—C17—H17A109.5
C3—C4—C5123.2 (3)C16—C17—H17B109.5
C3—C4—N1118.0 (2)H17A—C17—H17B109.5
C5—C4—N1118.7 (2)C16—C17—H17C109.5
C4—C5—C6117.9 (2)H17A—C17—H17C109.5
C4—C5—H5121.0H17B—C17—H17C109.5
C6—C5—H5121.0C16—C18—H18A109.5
C7—C6—C5119.9 (3)C16—C18—H18B109.5
C7—C6—H6120.1H18A—C18—H18B109.5
C5—C6—H6120.1C16—C18—H18C109.5
C6—C7—C2121.5 (3)H18A—C18—H18C109.5
C6—C7—H7119.2H18B—C18—H18C109.5
C2—C7—H7119.2C19—N7—H7A120.0
O8—N2—O7123.7 (2)C19—N7—H7B120.0
O8—N2—C11118.1 (3)H7A—N7—H7B120.0
O7—N2—C11118.1 (2)C19—N8—H8A120.0
O6—C8—O5124.4 (2)C19—N8—H8B120.0
O6—C8—C9116.6 (2)H8A—N8—H8B120.0
O5—C8—C9119.0 (2)C19—N9—N10115.4 (2)
C10—C9—C14118.9 (2)C19—N9—H9122.3
C10—C9—C8118.5 (2)N10—N9—H9122.3
C14—C9—C8122.6 (2)C20—N10—N9116.7 (2)
C11—C10—C9119.8 (2)N7—C19—N8121.7 (2)
C11—C10—H10120.1N7—C19—N9120.0 (2)
C9—C10—H10120.1N8—C19—N9118.2 (2)
C10—C11—C12122.0 (2)N10—C20—C22125.8 (2)
C10—C11—N2118.4 (2)N10—C20—C21115.8 (2)
C12—C11—N2119.7 (2)C22—C20—C21118.4 (2)
C11—C12—C13118.5 (2)C20—C21—H21A109.5
C11—C12—H12120.8C20—C21—H21B109.5
C13—C12—H12120.8H21A—C21—H21B109.5
C12—C13—C14120.3 (3)C20—C21—H21C109.5
C12—C13—H13119.8H21A—C21—H21C109.5
C14—C13—H13119.8H21B—C21—H21C109.5
C13—C14—C9120.6 (2)C20—C22—H22A109.5
C13—C14—H14119.7C20—C22—H22B109.5
C9—C14—H14119.7H22A—C22—H22B109.5
C15—N3—H3A120.0C20—C22—H22C109.5
C15—N3—H3B120.0H22A—C22—H22C109.5
H3A—N3—H3B120.0H22B—C22—H22C109.5
C15—N4—H4A120.0H1W—O1W—H2W112.0
C15—N4—H4B120.0
O2—C1—C2—C3178.0 (2)C8—C9—C10—C11179.0 (2)
O1—C1—C2—C30.3 (3)C9—C10—C11—C120.2 (4)
O2—C1—C2—C70.6 (3)C9—C10—C11—N2179.9 (2)
O1—C1—C2—C7178.9 (2)O8—N2—C11—C10178.3 (2)
C7—C2—C3—C40.1 (3)O7—N2—C11—C100.1 (4)
C1—C2—C3—C4178.8 (2)O8—N2—C11—C121.4 (4)
C2—C3—C4—C51.0 (4)O7—N2—C11—C12179.6 (3)
C2—C3—C4—N1178.4 (2)C10—C11—C12—C130.7 (4)
O3—N1—C4—C311.1 (4)N2—C11—C12—C13178.9 (2)
O4—N1—C4—C3168.9 (3)C11—C12—C13—C140.5 (4)
O3—N1—C4—C5168.3 (3)C12—C13—C14—C90.6 (4)
O4—N1—C4—C511.7 (4)C10—C9—C14—C131.5 (4)
C3—C4—C5—C61.7 (4)C8—C9—C14—C13178.8 (2)
N1—C4—C5—C6177.7 (2)C15—N5—N6—C16177.8 (2)
C4—C5—C6—C71.2 (4)N6—N5—C15—N3175.4 (2)
C5—C6—C7—C20.2 (4)N6—N5—C15—N44.8 (3)
C3—C2—C7—C60.5 (4)N5—N6—C16—C18179.9 (2)
C1—C2—C7—C6179.1 (2)N5—N6—C16—C171.5 (4)
O6—C8—C9—C106.1 (3)C19—N9—N10—C20179.9 (2)
O5—C8—C9—C10173.7 (2)N10—N9—C19—N76.3 (3)
O6—C8—C9—C14173.6 (2)N10—N9—C19—N8174.5 (2)
O5—C8—C9—C146.7 (4)N9—N10—C20—C221.7 (4)
C14—C9—C10—C111.3 (4)N9—N10—C20—C21178.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···O10.842.062.878 (2)164
O1w—H2w···O50.841.932.755 (2)168
N3—H3A···O20.881.882.755 (3)170
N3—H3B···O6i0.882.012.812 (3)150
N4—H4A···O10.882.062.943 (3)177
N4—H4B···O50.882.323.049 (3)139
N5—H5A···O6i0.882.132.880 (3)142
N7—H7A···O2i0.882.042.779 (3)141
N7—H7B···O10.882.072.831 (3)144
N8—H8A···O1wii0.882.032.881 (3)161
N8—H8B···O1wiii0.882.132.975 (3)162
N9—H9···O5iii0.882.192.904 (3)138
C5—H5···O7iv0.952.583.322 (3)135
C13—H13···O3iii0.952.573.233 (4)127
C21—H21B···O8v0.982.343.290 (3)164
C22—H22B···O6vi0.982.573.538 (3)168
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y, z+1; (iii) x+1, y+2, z+1; (iv) x+1, y+3/2, z+1/2; (v) x+1, y, z; (vi) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula2C4H11N4+·2C7H4NO4·H2O
Mr580.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)16.5833 (6), 22.2457 (10), 7.5424 (3)
β (°) 92.232 (2)
V3)2780.33 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.08 × 0.06
Data collection
DiffractometerEnraf–Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.041, 0.099
No. of measured, independent and
observed [I > 2σ(I)] reflections
29694, 6339, 3607
Rint0.072
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.177, 1.06
No. of reflections6339
No. of parameters380
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.56

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···O10.842.062.878 (2)164
O1w—H2w···O50.841.932.755 (2)168
N3—H3A···O20.881.882.755 (3)170
N3—H3B···O6i0.882.012.812 (3)150
N4—H4A···O10.882.062.943 (3)177
N4—H4B···O50.882.323.049 (3)139
N5—H5A···O6i0.882.132.880 (3)142
N7—H7A···O2i0.882.042.779 (3)141
N7—H7B···O10.882.072.831 (3)144
N8—H8A···O1wii0.882.032.881 (3)161
N8—H8B···O1wiii0.882.132.975 (3)162
N9—H9···O5iii0.882.192.904 (3)138
C5—H5···O7iv0.952.583.322 (3)135
C13—H13···O3iii0.952.573.233 (4)127
C21—H21B···O8v0.982.343.290 (3)164
C22—H22B···O6vi0.982.573.538 (3)168
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y, z+1; (iii) x+1, y+2, z+1; (iv) x+1, y+3/2, z+1/2; (v) x+1, y, z; (vi) x+1, y+2, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from FAPEMIG (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkakle, J. M. S., Wardell, J. L. & Wardell, S. M. S. V. (2006). Acta Cryst. C62, o476–o477.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3221-o3222
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds