organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3170-o3171

(S)-6-Chloro-4-cyclo­propyl­ethynyl-4-tri­fluoro­methyl-1H-3,1-benzoxazin-2(4H)-one

aSubsecretaria Ceprocor, Ministerio de Ciência y Tecnologia de Córdoba, Alvarez de Arenales 230, 5014 Córdoba, Argentina, bDepartment of Chemistry, University of Aberdeen, Old Aberdeen, AB15 5NY, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswald Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos Av. Brasil 4365, 21040-900, Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 November 2009; accepted 18 November 2009; online 21 November 2009)

Two independent mol­ecules comprise the crystallographic asymmetric unit in the title anti­retroviral agent Efavirenz, C14H9ClF3NO2, and these have noteworthy differences in conformation. The major difference relates to the orientation of the 2-cyclo­propyl­ethynyl residue relative to the six-membered heterocycle: this approaches an orthogonal disposition in mol­ecule a compared to a more flattened conformation in mol­ecule b, the difference being reflected in the Oring—C—C—Cethyne torsion angles of 65 (4) and 159 (5)°, respectively. The independent mol­ecules are connected via the eight-membered {⋯HNC (O)}2 amide synthon. Disorder is noted in the cyclo­propane ring of mol­ecule b in that two orientations of equal weight were discerned.

Related literature

For background to the use of Efavirenz, see: Adkins & Noble (1998[Adkins, J. C. & Noble, S. (1998). Drugs, 56, 1055-1064.]); Gazzard (1999[Gazzard, B. G. (1999). Int. J. Clin. Pract. 53, 60-64.]); de Clercq et al. (2009[Clercq, E. de (2009). Rev. Med. Virol. 19, 287-299.]); Markowitz et al. (2009[Markowitz, M., Nguyen, B. Y., Gotuzzo, E., Mendo, F., Ratanasuwan, W., Kovacs, C., Prada, G., Morales-Ramirez, J. O., Crumpacker, C. S., Isaacs, R. D., Campbell, H., Strohmaier, K. M., Wan, H., Danovich, R. M. & Teppler, H. (2009). J. Acquir. Immune Defic. Syndr. 52, 350-356.]); Young et al. (2009[Young, J., Bucher, H. C., Guenthard, H. F., Rickenbach, M., Fux, C. A., Hirschel, B., Cavassini, M., Vernazza, P., Bernasconi, E. & Battegay, M. (2009). Antivir. Ther. 14, 771-779.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9ClF3NO2

  • Mr = 315.67

  • Orthorhombic, P 21 21 21

  • a = 8.1403 (4) Å

  • b = 13.5859 (11) Å

  • c = 24.962 (2) Å

  • V = 2760.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 120 K

  • 0.28 × 0.08 × 0.04 mm

Data collection
  • Bruker–Nonius 95mm CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.917, Tmax = 0.988

  • 18370 measured reflections

  • 6099 independent reflections

  • 3675 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.127

  • S = 1.03

  • 6099 reflections

  • 395 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2598 Friedel pairs

  • Flack parameter: 0.14 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O2B 0.85 (4) 2.00 (4) 2.834 (4) 167 (4)
N1B—H1C⋯O2A 0.89 (4) 1.94 (4) 2.820 (4) 168 (4)

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The title anti-retroviral agent, Efavirenz, is a second-generation non-nucleoside inhibitor of HIV-1 reverse transcriptase (RT) that has been approved for use against HIV-1 infection. It is also called Sustiva or Stocrin and is manufactured by Bristol-Myers Squibb. Compared with first-generation drugs such as nevirapine, Efavirenz shows greater resilience to drug resistance mutations within HIV-1 RT. Effective treatment through inhibition of HIV reverse transcriptase has been shown for both nucleoside based inhibitors, such as azidothymidine, and non-nucleoside based inhibitors, such as Efavirenz. Efavirenz is also used in combination with other anti-retroviral agents as part of an expanded post-exposure prophylaxis regimen to reduce the risk of HIV infection in people exposed to a significant risk (Adkins & Noble, 1998; Gazzard, 1999; de Clercq et al., 2009; Markowitz et al., 2009; Young et al., 2009).

Two independent molecules comprise the asymmetric unit in (I), labelled a and b, Fig. 1. There are significant differences in conformation between the molecules and these relate primarily to the disposition of the 2-cyclopropylethynyl residue to the six-membered hetero-ring. As seen from Fig. 1, each hetero ring adopts a flattened half-chain conformation with the C4a and C4b atoms being the pivotal atoms. In molecule a, the C4a atom is orientated towards the same side of the six-membered ring as the 2-cyclopropylethynyl residue which occupies a position orthogonal to the six-membered ring as seen in the O3a/C4a/C10a/C11a torsion angle of 65 (4) °. In molecule b, the C4b atom and 2-cyclopropylethynyl residue lie to opposite sides of the six-membered ring and the comparable torsion angle is 159 (5) °. The independent molecules associate via the eight-membered {···HNC(O)}2 amide synthon, Table 1 and Fig. 1.

Related literature top

For background to the use of Efavirenz, see: Adkins & Noble (1998); Gazzard (1999); de Clercq et al. (2009); Markowitz et al. (2009); Young et al. (2009).

Experimental top

Crystals used in the crystallographic study were grown from aqueous methanol solution of (I).

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The amide-N H atoms were refined freely, see Table 1 for distances. Disorder was resolved for the cyclopropane ring of molecule b in that two positions, of equal weight (from refinement), were discerned for one of wing C atoms, C14b, so that each component of the disordered ring shared two atoms, C12b and C13b.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure (I) showing the hydrogen bonding (orange dashed lines) between the two molecules comprising the crystallographic asymmetric unit, the atom-labelling scheme, and displacement ellipsoids at the 50% probability level. Only one component of the disordered C12b–C14b cyclohexane ring is shown for reasons of clarity.
(S)-6-Chloro-4-cyclopropylethynyl-4-trifluoromethyl- 1H-3,1-benzoxazin-2(4H)-one top
Crystal data top
C14H9ClF3NO2F(000) = 1280
Mr = 315.67Dx = 1.519 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3202 reflections
a = 8.1403 (4) Åθ = 2.9–27.5°
b = 13.5859 (11) ŵ = 0.31 mm1
c = 24.962 (2) ÅT = 120 K
V = 2760.6 (3) Å3Rod, colourless
Z = 80.28 × 0.08 × 0.04 mm
Data collection top
Bruker–Nonius 95mm CCD camera on κ-goniostat
diffractometer
6099 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3675 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.064
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 106
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1017
Tmin = 0.917, Tmax = 0.988l = 3230
18370 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.0117P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6099 reflectionsΔρmax = 0.26 e Å3
395 parametersΔρmin = 0.25 e Å3
5 restraintsAbsolute structure: Flack (1983), 2598 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.14 (8)
Crystal data top
C14H9ClF3NO2V = 2760.6 (3) Å3
Mr = 315.67Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 8.1403 (4) ŵ = 0.31 mm1
b = 13.5859 (11) ÅT = 120 K
c = 24.962 (2) Å0.28 × 0.08 × 0.04 mm
Data collection top
Bruker–Nonius 95mm CCD camera on κ-goniostat
diffractometer
6099 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3675 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.988Rint = 0.064
18370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127Δρmax = 0.26 e Å3
S = 1.03Δρmin = 0.25 e Å3
6099 reflectionsAbsolute structure: Flack (1983), 2598 Friedel pairs
395 parametersAbsolute structure parameter: 0.14 (8)
5 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1A0.51005 (11)0.32715 (8)0.73151 (5)0.0602 (3)
O2A0.3501 (3)0.5959 (2)0.74717 (10)0.0507 (8)
O3A0.1228 (3)0.59292 (19)0.69880 (10)0.0370 (6)
N1A0.1615 (4)0.4768 (2)0.76479 (13)0.0358 (8)
H1A0.207 (5)0.457 (3)0.7936 (15)0.043*
F1A0.0025 (3)0.65810 (18)0.60948 (9)0.0526 (6)
F2A0.1987 (3)0.55204 (18)0.60690 (8)0.0512 (6)
F3A0.1848 (3)0.65650 (16)0.67151 (8)0.0497 (6)
C2A0.2190 (5)0.5547 (3)0.73799 (15)0.0377 (9)
C4A0.0094 (5)0.5259 (3)0.67159 (14)0.0348 (9)
C4AA0.0859 (4)0.4654 (3)0.71220 (14)0.0334 (9)
C5A0.2433 (4)0.4314 (3)0.70474 (15)0.0343 (9)
H5A0.30420.45030.67390.045*
C6A0.3118 (4)0.3698 (3)0.74239 (17)0.0434 (10)
C7A0.2254 (4)0.3397 (3)0.78715 (16)0.0426 (10)
H7A0.27260.29480.81190.055*
C8A0.0678 (4)0.3764 (3)0.79520 (16)0.0369 (9)
H8A0.00770.35830.82630.048*
C8AA0.0015 (4)0.4393 (3)0.75789 (14)0.0326 (9)
C9A0.0952 (5)0.5989 (3)0.63969 (15)0.0398 (10)
C10A0.1021 (4)0.4604 (3)0.63575 (16)0.0366 (9)
C11A0.1844 (5)0.4037 (3)0.61164 (16)0.0411 (10)
C12A0.2841 (5)0.3343 (3)0.58197 (16)0.0507 (11)
H12A0.26960.26350.59190.061*
C13A0.3236 (5)0.3538 (3)0.52437 (17)0.0530 (12)
H13A0.32920.29670.49980.064*
H13B0.28020.41500.50810.064*
C14A0.4533 (5)0.3634 (4)0.56533 (18)0.0597 (13)
H14A0.49090.43060.57460.072*
H14B0.54000.31230.56630.072*
Cl1B1.21317 (12)0.70229 (9)0.86981 (4)0.0532 (3)
O2B0.3568 (3)0.4274 (2)0.85483 (11)0.0607 (9)
O3B0.5822 (3)0.4297 (2)0.90321 (11)0.0470 (8)
N1B0.5495 (4)0.5424 (3)0.83487 (13)0.0392 (9)
H1C0.498 (5)0.566 (3)0.8061 (15)0.047*
F1B0.7286 (3)0.60158 (18)1.00057 (9)0.0534 (6)
F2B0.5402 (3)0.49001 (19)1.00565 (9)0.0612 (7)
F3B0.5136 (3)0.61081 (19)0.95046 (9)0.0539 (6)
C2B0.4865 (5)0.4670 (3)0.86305 (16)0.0445 (10)
C4B0.7093 (5)0.4883 (3)0.92846 (15)0.0388 (9)
C4BA0.7914 (4)0.5559 (3)0.88837 (14)0.0333 (9)
C5B0.9506 (4)0.5922 (3)0.89599 (15)0.0360 (9)
H5C1.01240.57290.92650.047*
C6B1.0174 (4)0.6561 (3)0.85898 (15)0.0375 (9)
C7B0.9312 (4)0.6826 (3)0.81354 (15)0.0372 (10)
H7C0.97800.72710.78850.048*
C8B0.7766 (4)0.6439 (3)0.80484 (15)0.0356 (9)
H8C0.71820.65980.77310.046*
C8BA0.7071 (4)0.5820 (3)0.84245 (15)0.0344 (9)
C9B0.6220 (5)0.5474 (3)0.97213 (15)0.0440 (11)
C10B0.8249 (5)0.4199 (3)0.95367 (16)0.0461 (11)
C11B0.9272 (6)0.3707 (3)0.97389 (19)0.0599 (13)
C12B1.0542 (6)0.3081 (4)0.9974 (2)0.0782 (17)
H12C1.02190.23861.00520.094*0.50
H12E1.07980.24450.97910.094*0.50
C13B1.1770 (9)0.3495 (4)1.0313 (4)0.120 (3)
H13C1.22250.30751.06010.144*0.50
H13D1.16780.42021.04040.144*0.50
H13E1.18760.42211.03120.144*0.50
H13F1.28340.31431.03320.144*0.50
C14B1.2189 (13)0.3225 (12)0.9731 (6)0.135 (6)0.50
H14C1.23290.37670.94700.162*0.50
H14D1.28780.26370.96670.162*0.50
C14C1.0387 (19)0.3074 (14)1.0626 (5)0.165 (9)0.50
H14E0.96000.35321.07960.198*0.50
H14F1.05670.24441.08170.198*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0346 (5)0.0526 (7)0.0935 (9)0.0044 (5)0.0009 (5)0.0029 (7)
O2A0.0581 (18)0.0487 (19)0.0454 (18)0.0176 (14)0.0172 (14)0.0066 (15)
O3A0.0439 (15)0.0350 (17)0.0321 (15)0.0036 (12)0.0100 (12)0.0013 (13)
N1A0.0408 (19)0.034 (2)0.033 (2)0.0030 (14)0.0090 (14)0.0037 (17)
F1A0.0536 (13)0.0630 (16)0.0411 (14)0.0041 (13)0.0026 (11)0.0163 (13)
F2A0.0464 (13)0.0691 (17)0.0380 (13)0.0053 (12)0.0114 (11)0.0007 (13)
F3A0.0596 (14)0.0504 (15)0.0393 (13)0.0158 (12)0.0032 (10)0.0000 (12)
C2A0.046 (2)0.037 (2)0.031 (2)0.004 (2)0.0032 (19)0.001 (2)
C4A0.036 (2)0.039 (2)0.029 (2)0.0024 (18)0.0054 (16)0.0042 (19)
C4AA0.040 (2)0.031 (2)0.030 (2)0.0059 (17)0.0014 (16)0.0010 (19)
C5A0.031 (2)0.034 (2)0.037 (2)0.0050 (16)0.0057 (16)0.0082 (19)
C6A0.039 (2)0.036 (3)0.055 (3)0.0028 (18)0.005 (2)0.006 (2)
C7A0.045 (2)0.033 (2)0.049 (3)0.0018 (19)0.011 (2)0.003 (2)
C8A0.044 (2)0.032 (2)0.035 (2)0.0074 (17)0.0016 (18)0.0007 (19)
C8AA0.036 (2)0.031 (2)0.030 (2)0.0026 (17)0.0033 (17)0.0059 (18)
C9A0.046 (2)0.044 (3)0.030 (2)0.008 (2)0.0004 (18)0.002 (2)
C10A0.034 (2)0.041 (3)0.034 (2)0.0009 (18)0.0027 (17)0.001 (2)
C11A0.040 (2)0.044 (3)0.039 (2)0.001 (2)0.0028 (19)0.005 (2)
C12A0.061 (3)0.040 (3)0.051 (3)0.002 (2)0.018 (2)0.005 (2)
C13A0.054 (3)0.055 (3)0.049 (3)0.005 (2)0.012 (2)0.001 (2)
C14A0.042 (3)0.068 (4)0.070 (3)0.012 (2)0.007 (2)0.003 (3)
Cl1B0.0405 (6)0.0650 (8)0.0541 (7)0.0059 (5)0.0014 (5)0.0164 (6)
O2B0.0549 (19)0.073 (2)0.054 (2)0.0245 (17)0.0208 (15)0.0135 (17)
O3B0.0509 (16)0.0488 (19)0.0415 (18)0.0135 (14)0.0137 (13)0.0082 (15)
N1B0.045 (2)0.043 (2)0.029 (2)0.0009 (15)0.0112 (14)0.0047 (18)
F1B0.0537 (14)0.0714 (17)0.0350 (12)0.0047 (12)0.0044 (11)0.0097 (13)
F2B0.0564 (15)0.088 (2)0.0389 (15)0.0101 (13)0.0021 (11)0.0188 (14)
F3B0.0457 (13)0.0757 (18)0.0402 (14)0.0112 (13)0.0009 (11)0.0075 (13)
C2B0.048 (3)0.052 (3)0.034 (2)0.006 (2)0.016 (2)0.004 (2)
C4B0.039 (2)0.040 (2)0.037 (2)0.0039 (19)0.0116 (18)0.002 (2)
C4BA0.038 (2)0.031 (2)0.031 (2)0.0003 (18)0.0004 (17)0.0039 (18)
C5B0.037 (2)0.039 (3)0.032 (2)0.0036 (17)0.0053 (17)0.006 (2)
C6B0.034 (2)0.041 (2)0.037 (2)0.0032 (18)0.0011 (17)0.003 (2)
C7B0.048 (2)0.032 (2)0.032 (2)0.0035 (19)0.0070 (17)0.0009 (19)
C8B0.046 (2)0.034 (2)0.026 (2)0.0097 (18)0.0012 (17)0.0017 (18)
C8BA0.032 (2)0.038 (2)0.033 (2)0.0078 (17)0.0056 (17)0.0085 (19)
C9B0.045 (3)0.062 (3)0.025 (2)0.006 (2)0.0056 (19)0.010 (2)
C10B0.052 (3)0.046 (3)0.040 (3)0.012 (2)0.010 (2)0.011 (2)
C11B0.066 (3)0.049 (3)0.064 (3)0.012 (2)0.022 (3)0.016 (3)
C12B0.094 (4)0.044 (3)0.096 (4)0.002 (3)0.042 (3)0.022 (3)
C13B0.129 (6)0.061 (4)0.169 (8)0.032 (4)0.099 (6)0.027 (5)
C14B0.071 (8)0.197 (17)0.136 (13)0.054 (9)0.004 (8)0.086 (13)
C14C0.169 (15)0.24 (2)0.081 (10)0.143 (16)0.016 (9)0.061 (12)
Geometric parameters (Å, º) top
Cl1A—C6A1.736 (4)N1B—C2B1.344 (5)
O2A—C2A1.227 (4)N1B—C8BA1.404 (5)
O3A—C2A1.356 (4)N1B—H1C0.89 (4)
O3A—C4A1.464 (4)F1B—C9B1.341 (4)
N1A—C2A1.337 (5)F2B—C9B1.323 (4)
N1A—C8AA1.409 (5)F3B—C9B1.346 (4)
N1A—H1A0.85 (4)C4B—C10B1.465 (5)
F1A—C9A1.336 (4)C4B—C4BA1.514 (5)
F2A—C9A1.336 (4)C4B—C9B1.529 (6)
F3A—C9A1.333 (4)C4BA—C8BA1.383 (5)
C4A—C10A1.470 (6)C4BA—C5B1.400 (5)
C4A—C4AA1.518 (5)C5B—C6B1.379 (5)
C4A—C9A1.531 (5)C5B—H5C0.9500
C4AA—C5A1.375 (5)C6B—C7B1.381 (5)
C4AA—C8AA1.390 (5)C7B—C8B1.381 (5)
C5A—C6A1.377 (5)C7B—H7C0.9500
C5A—H5A0.9500C8B—C8BA1.381 (5)
C6A—C7A1.382 (5)C8B—H8C0.9500
C7A—C8A1.391 (5)C10B—C11B1.181 (5)
C7A—H7A0.9500C11B—C12B1.461 (6)
C8A—C8AA1.384 (5)C12B—C13B1.425 (7)
C8A—H8A0.9500C12B—C14B1.484 (11)
C10A—C11A1.186 (5)C12B—C14C1.632 (12)
C11A—C12A1.448 (6)C12B—H12C1.0000
C12A—C14A1.492 (5)C12B—H12E1.0000
C12A—C13A1.497 (5)C13B—C14C1.485 (14)
C12A—H12A1.0000C13B—C14B1.536 (13)
C13A—C14A1.475 (6)C13B—H13C0.9900
C13A—H13A0.9900C13B—H13D0.9900
C13A—H13B0.9900C13B—H13E0.9900
C14A—H14A0.9900C13B—H13F0.9900
C14A—H14B0.9900C14B—H14C0.9900
Cl1B—C6B1.734 (4)C14B—H14D0.9900
O2B—C2B1.202 (5)C14C—H14E0.9900
O3B—C2B1.368 (4)C14C—H14F0.9900
O3B—C4B1.450 (4)
C2A—O3A—C4A117.4 (3)C5B—C4BA—C4B122.2 (3)
C2A—N1A—C8AA123.3 (3)C6B—C5B—C4BA119.7 (3)
C2A—N1A—H1A121 (3)C6B—C5B—H5C120.1
C8AA—N1A—H1A113 (3)C4BA—C5B—H5C120.1
O2A—C2A—N1A124.9 (4)C5B—C6B—C7B120.9 (3)
O2A—C2A—O3A117.6 (3)C5B—C6B—Cl1B119.1 (3)
N1A—C2A—O3A117.5 (3)C7B—C6B—Cl1B120.0 (3)
O3A—C4A—C10A109.6 (3)C8B—C7B—C6B119.5 (4)
O3A—C4A—C4AA110.4 (3)C8B—C7B—H7C120.2
C10A—C4A—C4AA110.0 (3)C6B—C7B—H7C120.2
O3A—C4A—C9A100.9 (3)C7B—C8B—C8BA119.9 (3)
C10A—C4A—C9A111.1 (3)C7B—C8B—H8C120.1
C4AA—C4A—C9A114.4 (3)C8BA—C8B—H8C120.1
C5A—C4AA—C8AA120.1 (3)C8B—C8BA—C4BA121.1 (3)
C5A—C4AA—C4A124.6 (3)C8B—C8BA—N1B121.1 (3)
C8AA—C4AA—C4A115.1 (3)C4BA—C8BA—N1B117.8 (3)
C4AA—C5A—C6A119.3 (3)F2B—C9B—F1B108.3 (3)
C4AA—C5A—H5A120.3F2B—C9B—F3B107.5 (3)
C6A—C5A—H5A120.3F1B—C9B—F3B106.6 (4)
C5A—C6A—C7A121.7 (4)F2B—C9B—C4B112.0 (4)
C5A—C6A—Cl1A118.2 (3)F1B—C9B—C4B111.4 (3)
C7A—C6A—Cl1A120.1 (3)F3B—C9B—C4B110.8 (3)
C6A—C7A—C8A118.7 (4)C11B—C10B—C4B174.7 (4)
C6A—C7A—H7A120.6C10B—C11B—C12B178.3 (6)
C8A—C7A—H7A120.6C13B—C12B—C11B120.4 (5)
C8AA—C8A—C7A120.0 (4)C13B—C12B—C14B63.7 (6)
C8AA—C8A—H8A120.0C11B—C12B—C14B113.4 (6)
C7A—C8A—H8A120.0C13B—C12B—C14C57.7 (6)
C8A—C8AA—C4AA120.1 (4)C11B—C12B—C14C110.5 (7)
C8A—C8AA—N1A121.2 (3)C14B—C12B—C14C118.6 (8)
C4AA—C8AA—N1A118.7 (3)C13B—C12B—H12C116.2
F3A—C9A—F1A107.0 (3)C11B—C12B—H12C116.2
F3A—C9A—F2A107.4 (3)C14B—C12B—H12C116.2
F1A—C9A—F2A107.3 (3)C14C—C12B—H12C77.3
F3A—C9A—C4A112.0 (3)C13B—C12B—H12E117.8
F1A—C9A—C4A111.7 (3)C11B—C12B—H12E117.8
F2A—C9A—C4A111.2 (3)C14B—C12B—H12E74.9
C11A—C10A—C4A173.0 (4)C14C—C12B—H12E117.8
C10A—C11A—C12A179.7 (5)H12C—C12B—H12E47.7
C11A—C12A—C14A119.2 (4)C12B—C13B—C14C68.2 (6)
C11A—C12A—C13A119.8 (4)C12B—C13B—C14B60.0 (5)
C14A—C12A—C13A59.2 (3)C14C—C13B—C14B125.0 (9)
C11A—C12A—H12A115.7C12B—C13B—H13C117.8
C14A—C12A—H12A115.7C14C—C13B—H13C71.3
C13A—C12A—H12A115.7C14B—C13B—H13C117.8
C14A—C13A—C12A60.3 (3)C12B—C13B—H13D117.8
C14A—C13A—H13A117.7C14C—C13B—H13D101.3
C12A—C13A—H13A117.7C14B—C13B—H13D117.8
C14A—C13A—H13B117.7H13C—C13B—H13D114.9
C12A—C13A—H13B117.7C12B—C13B—H13E116.9
H13A—C13A—H13B114.9C14C—C13B—H13E116.9
C13A—C14A—C12A60.6 (3)C14B—C13B—H13E102.4
C13A—C14A—H14A117.7H13C—C13B—H13E123.0
C12A—C14A—H14A117.7C12B—C13B—H13F116.9
C13A—C14A—H14B117.7C14C—C13B—H13F116.9
C12A—C14A—H14B117.7C14B—C13B—H13F74.7
H14A—C14A—H14B114.8H13C—C13B—H13F50.2
C2B—O3B—C4B121.4 (3)H13D—C13B—H13F121.6
C2B—N1B—C8BA124.8 (4)H13E—C13B—H13F113.9
C2B—N1B—H1C121 (3)C12B—C14B—C13B56.3 (5)
C8BA—N1B—H1C114 (3)C12B—C14B—H14C118.1
O2B—C2B—N1B126.0 (4)C13B—C14B—H14C118.1
O2B—C2B—O3B117.3 (4)C12B—C14B—H14D118.1
N1B—C2B—O3B116.7 (4)C13B—C14B—H14D118.1
O3B—C4B—C10B107.3 (3)H14C—C14B—H14D115.3
O3B—C4B—C4BA111.2 (3)C13B—C14C—C12B54.2 (5)
C10B—C4B—C4BA112.6 (3)C13B—C14C—H14E118.3
O3B—C4B—C9B105.5 (3)C12B—C14C—H14E118.3
C10B—C4B—C9B109.0 (3)C13B—C14C—H14F118.3
C4BA—C4B—C9B111.0 (3)C12B—C14C—H14F118.3
C8BA—C4BA—C5B118.8 (3)H14E—C14C—H14F115.6
C8BA—C4BA—C4B119.0 (3)
C8AA—N1A—C2A—O2A171.5 (4)C2B—O3B—C4B—C4BA35.7 (5)
C8AA—N1A—C2A—O3A6.4 (5)C2B—O3B—C4B—C9B84.6 (4)
C4A—O3A—C2A—O2A153.8 (3)O3B—C4B—C4BA—C8BA23.4 (5)
C4A—O3A—C2A—N1A28.2 (5)C10B—C4B—C4BA—C8BA143.8 (3)
C2A—O3A—C4A—C10A73.1 (4)C9B—C4B—C4BA—C8BA93.6 (4)
C2A—O3A—C4A—C4AA48.2 (4)O3B—C4B—C4BA—C5B156.0 (3)
C2A—O3A—C4A—C9A169.6 (3)C10B—C4B—C4BA—C5B35.6 (5)
O3A—C4A—C4AA—C5A149.0 (3)C9B—C4B—C4BA—C5B86.9 (4)
C10A—C4A—C4AA—C5A89.9 (4)C8BA—C4BA—C5B—C6B2.6 (5)
C9A—C4A—C4AA—C5A36.0 (5)C4B—C4BA—C5B—C6B177.9 (3)
O3A—C4A—C4AA—C8AA35.3 (4)C4BA—C5B—C6B—C7B1.9 (6)
C10A—C4A—C4AA—C8AA85.8 (4)C4BA—C5B—C6B—Cl1B178.7 (3)
C9A—C4A—C4AA—C8AA148.3 (3)C5B—C6B—C7B—C8B0.6 (6)
C8AA—C4AA—C5A—C6A1.3 (5)Cl1B—C6B—C7B—C8B178.8 (3)
C4A—C4AA—C5A—C6A174.1 (3)C6B—C7B—C8B—C8BA2.3 (5)
C4AA—C5A—C6A—C7A1.1 (6)C7B—C8B—C8BA—C4BA1.6 (5)
C4AA—C5A—C6A—Cl1A179.4 (3)C7B—C8B—C8BA—N1B179.4 (3)
C5A—C6A—C7A—C8A2.8 (6)C5B—C4BA—C8BA—C8B0.8 (5)
Cl1A—C6A—C7A—C8A179.0 (3)C4B—C4BA—C8BA—C8B179.7 (3)
C6A—C7A—C8A—C8AA2.1 (5)C5B—C4BA—C8BA—N1B178.2 (3)
C7A—C8A—C8AA—C4AA0.3 (6)C4B—C4BA—C8BA—N1B1.3 (5)
C7A—C8A—C8AA—N1A179.4 (3)C2B—N1B—C8BA—C8B165.5 (4)
C5A—C4AA—C8AA—C8A2.0 (5)C2B—N1B—C8BA—C4BA13.5 (5)
C4A—C4AA—C8AA—C8A173.8 (3)O3B—C4B—C9B—F2B55.3 (4)
C5A—C4AA—C8AA—N1A178.9 (3)C10B—C4B—C9B—F2B59.6 (4)
C4A—C4AA—C8AA—N1A5.3 (5)C4BA—C4B—C9B—F2B175.8 (3)
C2A—N1A—C8AA—C8A163.0 (4)O3B—C4B—C9B—F1B176.8 (3)
C2A—N1A—C8AA—C4AA17.9 (5)C10B—C4B—C9B—F1B61.9 (4)
O3A—C4A—C9A—F3A66.2 (4)C4BA—C4B—C9B—F1B62.7 (4)
C10A—C4A—C9A—F3A177.7 (3)O3B—C4B—C9B—F3B64.7 (4)
C4AA—C4A—C9A—F3A52.4 (4)C10B—C4B—C9B—F3B179.6 (3)
O3A—C4A—C9A—F1A53.8 (4)C4BA—C4B—C9B—F3B55.8 (4)
C10A—C4A—C9A—F1A62.3 (4)O3B—C4B—C10B—C11B159 (5)
C4AA—C4A—C9A—F1A172.4 (3)C4BA—C4B—C10B—C11B36 (5)
O3A—C4A—C9A—F2A173.6 (3)C9B—C4B—C10B—C11B88 (5)
C10A—C4A—C9A—F2A57.5 (4)C4B—C10B—C11B—C12B107 (17)
C4AA—C4A—C9A—F2A67.8 (4)C10B—C11B—C12B—C13B140 (18)
O3A—C4A—C10A—C11A65 (4)C10B—C11B—C12B—C14B67 (18)
C4AA—C4A—C10A—C11A57 (4)C10B—C11B—C12B—C14C157 (18)
C9A—C4A—C10A—C11A176 (3)C11B—C12B—C13B—C14C96.3 (9)
C4A—C10A—C11A—C12A147 (100)C14B—C12B—C13B—C14C160.8 (10)
C10A—C11A—C12A—C14A125 (100)C11B—C12B—C13B—C14B103.0 (8)
C10A—C11A—C12A—C13A56 (97)C14C—C12B—C13B—C14B160.8 (10)
C11A—C12A—C13A—C14A108.2 (5)C11B—C12B—C14B—C13B113.6 (6)
C11A—C12A—C14A—C13A109.2 (4)C14C—C12B—C14B—C13B18.5 (10)
C8BA—N1B—C2B—O2B174.4 (4)C14C—C13B—C14B—C12B21.9 (10)
C8BA—N1B—C2B—O3B2.6 (6)C14B—C13B—C14C—C12B20.4 (9)
C4B—O3B—C2B—O2B158.9 (4)C11B—C12B—C14C—C13B113.7 (6)
C4B—O3B—C2B—N1B23.9 (5)C14B—C12B—C14C—C13B19.7 (10)
C2B—O3B—C4B—C10B159.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O2B0.85 (4)2.00 (4)2.834 (4)167 (4)
N1B—H1C···O2A0.89 (4)1.94 (4)2.820 (4)168 (4)

Experimental details

Crystal data
Chemical formulaC14H9ClF3NO2
Mr315.67
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)8.1403 (4), 13.5859 (11), 24.962 (2)
V3)2760.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.28 × 0.08 × 0.04
Data collection
DiffractometerBruker–Nonius 95mm CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.917, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
18370, 6099, 3675
Rint0.064
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.127, 1.03
No. of reflections6099
No. of parameters395
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.25
Absolute structureFlack (1983), 2598 Friedel pairs
Absolute structure parameter0.14 (8)

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O2B0.85 (4)2.00 (4)2.834 (4)167 (4)
N1B—H1C···O2A0.89 (4)1.94 (4)2.820 (4)168 (4)
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationAdkins, J. C. & Noble, S. (1998). Drugs, 56, 1055–1064.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClercq, E. de (2009). Rev. Med. Virol. 19, 287–299.  Web of Science PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGazzard, B. G. (1999). Int. J. Clin. Pract. 53, 60–64.  Web of Science PubMed CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMarkowitz, M., Nguyen, B. Y., Gotuzzo, E., Mendo, F., Ratanasuwan, W., Kovacs, C., Prada, G., Morales-Ramirez, J. O., Crumpacker, C. S., Isaacs, R. D., Campbell, H., Strohmaier, K. M., Wan, H., Danovich, R. M. & Teppler, H. (2009). J. Acquir. Immune Defic. Syndr. 52, 350–356.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYoung, J., Bucher, H. C., Guenthard, H. F., Rickenbach, M., Fux, C. A., Hirschel, B., Cavassini, M., Vernazza, P., Bernasconi, E. & Battegay, M. (2009). Antivir. Ther. 14, 771–779.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3170-o3171
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds