organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3178-o3179

2-[(4-Hy­droxy­phen­yl)diazen­yl]benzoic acid–N,N′-bis­­(4-pyridylmeth­yl)oxamide (2/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 November 2009; accepted 18 November 2009; online 21 November 2009)

The asymmetric unit of the title co-crystal, 2C13H10N2O3·C14H14N4O2, comprises one mol­ecule of 2-(4-hydroxy­phenyl­diazen­yl)benzoic acid and half of an N,N′-bis­(4-pyridylmeth­yl)oxamide mol­ecule as the latter is disposed about an inversion centre. The most notable feature of the crystal structure is the formation of supra­molecular chains arising from hydr­oxy–pyridine O—H⋯N contacts and amide–hydr­oxy C—H⋯O contacts. These give rise to 40-membered {⋯OH⋯NNC4OH⋯NC4NC2NH}2 synthons, generating supra­molecular chains along [01[\overline{1}]]. The chains are connected into a two-dimensional array via C—H⋯π inter­actions. Layers, with a step-ladder topology, are consolidated into the crystal structure via further C—H⋯π inter­actions.

Related literature

For background to the co-crystallization of active pharmaceutical agents and a discussion on the definition of a co-crystal, see: Shan & Zaworotko (2008[Shan, N. & Zaworotko, M. J. (2008). Drug Discovery Today, 13, 440-446.]); Zukerman-Schpector & Tiekink (2008[Zukerman-Schpector, J. & Tiekink, E. R. T. (2008). Z. Kristallogr. 223, 233-234.]). For hydrogen-bonding considerations, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For related studies on co-crystal formation, see: Broker & Tiekink (2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.]); Broker et al. (2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]); Ellis et al. (2009[Ellis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352-1361.]). For a related salt with 2-(4-hydroxy­phenyl­diazen­yl)benzoic acid, see: Corlette & Tiekink (2009[Corlette, E. M. & Tiekink, E. R. T. (2009). J. Chem. Crystallogr. 39, 603-606.]). For related structures, see: Lee & Wang (2007[Lee, G.-H. & Wang, H.-T. (2007). Acta Cryst. C63, m216-m219.]); Qian & Huang (2005[Qian, H. & Huang, W. (2005). J. Mol. Struct. 743, 191-195.]). For co-crystals of N,N′-bis­(4-pyridylmeth­yl)oxamide, see: Wilhelm et al. (2008[Wilhelm, C., Boyd, S. A., Chawda, S., Fowler, F. W., Goroff, N. S., Halada, G. P., Grey, C. P., Lauher, J. W., Luo, L., Martin, C. D., Parise, J. B., Tarabrella, C. & Webb, J. A. (2008). J. Am. Chem. Soc. 130, 4415-4420.]).

[Scheme 1]

Experimental

Crystal data
  • 2C13H10N2O3·C14H14N4O2

  • Mr = 754.75

  • Triclinic, [P \overline 1]

  • a = 5.523 (3) Å

  • b = 11.132 (4) Å

  • c = 15.066 (7) Å

  • α = 72.748 (16)°

  • β = 88.92 (2)°

  • γ = 79.43 (2)°

  • V = 869.0 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 98 K

  • 0.55 × 0.31 × 0.20 mm

Data collection
  • Rigaku AFC12K/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.821, Tmax = 1

  • 6882 measured reflections

  • 3945 independent reflections

  • 3477 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.143

  • S = 1.08

  • 3945 reflections

  • 262 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1o⋯N3 0.84 1.79 2.568 (2) 154
N2—H1n⋯O3i 0.88 2.11 2.966 (2) 163
O4—H2o⋯N1ii 0.84 1.88 2.720 (2) 173
C5—H5⋯O2iii 0.95 2.34 3.187 (3) 148
C6—H6a⋯O2i 0.99 2.54 3.265 (3) 130
C2—H2⋯Cg(3)iv 0.95 2.76 3.542 (3) 140
C4—H4⋯Cg(2) 0.95 2.87 3.684 (3) 145
C11—H11⋯Cg(1)v 0.95 2.96 3.642 (3) 130
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z; (iii) -x+2, -y+1, -z+1; (iv) x, y-1, z; (v) x+1, y, z. Cg(1), Cg(2) and Cg(3) are the centroids of the N1,C2–C5, C8–C13 and C15–C20 rings, respectively.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Co-crystallization of active pharmaceutical ingredients (Shan & Zaworotko, 2008) remains an active area of crystal engineering; see Zukerman-Schpector & Tiekink (2008) for terminology. As a continuation of studies into co-crystallization (Broker & Tiekink, 2007; Broker et al., 2008; Ellis et al., 2009), aimed at establishing a hierarchy of hydrogen bonding (Etter, 1990), the co-crystallization of 2-(4-hydroxyphenyldiazenyl)benzoic acid with N,N'-bis(4-pyridylmethyl)oxamide was investigated.

The title 2:1 co-crystal, (I), comprises a molecule of 2-(4-hydroxyphenyldiazenyl)benzoic acid (Fig. 1) and half a molecule of N,N'-bis(4-pyridylmethyl)oxamide as the latter is disposed about a centre of inversion (Fig. 2). The geometric parameters associated with the benzoic acid derivative in (I), including the intramolecular O—Hhydroxyl···Ndiazenyl hydrogen bond, Table 1, is consistent with that observed in the crystal structure of its hydrate (Qian & Huang, 2005). Similarly, the conformation of the N,N'-bis(4-pyridylmethyl)oxamide molecule is akin to those exhibited by the two independent molecules in its pure form (Lee & Wang, 2007). Unlike 2-(4-hydroxyphenyldiazenyl)benzoic (Corlette & Tiekink, 2009), the oxamide derivative has been investigated in several co-crystallization studies (e.g. Wilhelm et al., 2008).

The primary contacts between molecules occur between the hydroxyl-O4—H···pyridine-N1 and N2-amide···O3-hydroxyl atoms. These combine to form 40-membered {···OH···NNC4OH···NC4NC2NH}2 synthons to generate supramolecular chains with base vector [0 1 1], Fig. 3. Chains are connected into a 2-D array via pyridine-C5—H···O2-carbonyl and pyridine-C2—H···π interactions, where the π-system is the (C15—C20 ring); Table 1 and Fig. 4. Layers, with a step-ladder topology, are consolidated into the crystal structure via further C—H···π interactions, Table 1 and Fig. 5.

Related literature top

For background to the co-crystallization of active pharmaceutical agents and a discussion on the definition of a co-crystal, see: Shan & Zaworotko (2008); Zukerman-Schpector & Tiekink (2008). For hydrogen-bonding considerations, see: Etter (1990). For related studies on co-crystal formation, see: Broker & Tiekink (2007); Broker et al. (2008); Ellis et al. (2009). For a related salt with 2-(4-hydroxyphenyldiazenyl)benzoic acid, see: Corlette & Tiekink (2009). For related structures, see: Lee & Wang (2007); Qian & Huang (2005). For co-crystals of N,N'-bis(4-pyridylmethyl)oxamide, see: Wilhelm et al. (2008). Cg(1), Cg(2) and Cg(3) are the centroids of the N1,C2–C5, C8–C13 and C15–C20 rings, respectively.

Experimental top

Red crystals of (I) were isolated from the co-crystallization of 1:1 molar equivalents of 2-(4-hydroxyphenyldiazenyl)benzoic and N,N'-bis(4-pyridylmethyl)oxamide in an ethanol/chloroform mixture (1/1 v/v).

Refinement top

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O– and N– bound H-atoms were located in a difference Fourier map and refined with O–H and N—H restraints of 0.840±0.001 Å and 0.88±0.001, respectively, and with Uiso(H) = nUeq(carrier atom); n = 1.5 for carrier atom = O, and 1.2 for N.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of 2-(4-hydroxyphenyldiazenyl)benzoic acid, one of the components of co-crystal (I), showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Molecular structure of N,N'-bis(4-pyridylmethyl)oxamide, one of the components of co-crystal (I), showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The molecule is located about a crystallographic centre of inversion. Symmetry operation i: 2 - x, -y, 1 - z.
[Figure 3] Fig. 3. A view of a supramolecular chain mediated by O—H···N and N—H···O (orange dashed lines) hydrogen bonding showing the 40-membered {···OH···NNC4OH···NC4NC2NH}2 synthons. Colour code: S, yellow; O,red; N, blue; C, grey; and H, green.
[Figure 4] Fig. 4. A side-on view of a layer whereby the chains shown in Figure 3 are connected to off-set chains via C—H···O (green dashed lines) and C—H···π (purple dashed lines with the ring centroid represented as a purple sphere) interactions. Colour code: S, yellow; O, red; N, blue; C, grey; and H, green.
[Figure 5] Fig. 5. View of the stacking of layers in (I). Layers are connected by C—H···π interactions, the shortest of these is represented as purple dashed lines with each ring centroid indicated by a purple sphere. Colour code: S, yellow; O, red; N, blue; C, grey; and H, green.
2-[(4-Hydroxyphenyl)diazenyl]benzoic acid–N,N'-bis(4-pyridylmethyl)oxamide (2/1) top
Crystal data top
2C13H10N2O3·C14H14N4O2Z = 1
Mr = 754.75F(000) = 394
Triclinic, P1Dx = 1.442 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 5.523 (3) ÅCell parameters from 3695 reflections
b = 11.132 (4) Åθ = 2.0–40.6°
c = 15.066 (7) ŵ = 0.10 mm1
α = 72.748 (16)°T = 98 K
β = 88.92 (2)°Block, red
γ = 79.43 (2)°0.55 × 0.31 × 0.20 mm
V = 869.0 (7) Å3
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3945 independent reflections
Radiation source: fine-focus sealed tube3477 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 67
Tmin = 0.821, Tmax = 1k = 1414
6882 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.3418P]
where P = (Fo2 + 2Fc2)/3
3945 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.32 e Å3
3 restraintsΔρmin = 0.28 e Å3
Crystal data top
2C13H10N2O3·C14H14N4O2γ = 79.43 (2)°
Mr = 754.75V = 869.0 (7) Å3
Triclinic, P1Z = 1
a = 5.523 (3) ÅMo Kα radiation
b = 11.132 (4) ŵ = 0.10 mm1
c = 15.066 (7) ÅT = 98 K
α = 72.748 (16)°0.55 × 0.31 × 0.20 mm
β = 88.92 (2)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3945 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3477 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 1Rint = 0.033
6882 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0543 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.08Δρmax = 0.32 e Å3
3945 reflectionsΔρmin = 0.28 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0476 (2)0.00128 (11)0.38418 (8)0.0287 (3)
O20.7677 (2)0.68650 (12)0.51985 (8)0.0293 (3)
O30.5687 (2)0.83724 (11)0.40195 (8)0.0264 (3)
H1O0.58730.86730.34460.040*
O40.0094 (2)1.33786 (11)0.01572 (8)0.0298 (3)
H2O0.05241.38920.06380.045*
N10.8421 (3)0.48340 (13)0.16157 (9)0.0268 (3)
N20.7290 (2)0.10782 (13)0.44396 (9)0.0238 (3)
H1N0.67000.11790.49650.029*
N30.7538 (2)0.87835 (12)0.24039 (9)0.0222 (3)
N40.7707 (2)0.94258 (12)0.15667 (9)0.0230 (3)
C10.6793 (3)0.27688 (14)0.28993 (10)0.0216 (3)
C20.5771 (3)0.32819 (15)0.19998 (11)0.0267 (3)
H20.44920.29400.18050.032*
C30.6641 (3)0.42965 (16)0.13916 (11)0.0299 (4)
H30.59300.46310.07780.036*
C40.9377 (3)0.43484 (15)0.24874 (11)0.0264 (3)
H41.06280.47230.26660.032*
C50.8634 (3)0.33260 (15)0.31435 (11)0.0252 (3)
H50.93760.30110.37520.030*
C60.5892 (3)0.16366 (15)0.35621 (11)0.0244 (3)
H6A0.41500.19140.36930.029*
H6B0.59440.09660.32500.029*
C70.9439 (3)0.02757 (14)0.44999 (10)0.0221 (3)
C80.9611 (3)0.71595 (14)0.37441 (10)0.0208 (3)
C90.9623 (3)0.78081 (14)0.27915 (10)0.0212 (3)
C101.1625 (3)0.74920 (15)0.22689 (11)0.0258 (3)
H101.16360.79290.16240.031*
C111.3589 (3)0.65398 (16)0.26952 (12)0.0279 (4)
H111.49540.63300.23410.034*
C121.3583 (3)0.58874 (15)0.36356 (12)0.0265 (3)
H121.49320.52290.39220.032*
C131.1604 (3)0.61987 (15)0.41561 (11)0.0237 (3)
H131.16060.57530.48000.028*
C140.7599 (3)0.74462 (14)0.43795 (10)0.0222 (3)
C150.5672 (3)1.03918 (14)0.11805 (10)0.0224 (3)
C160.3394 (3)1.05976 (15)0.15929 (11)0.0233 (3)
H160.31151.00470.21860.028*
C170.1561 (3)1.16005 (15)0.11346 (11)0.0251 (3)
H170.00181.17370.14140.030*
C180.1956 (3)1.24225 (15)0.02580 (11)0.0238 (3)
C190.4230 (3)1.22184 (16)0.01495 (11)0.0263 (3)
H190.45201.27770.07380.032*
C200.6053 (3)1.12046 (15)0.03040 (11)0.0252 (3)
H200.75821.10570.00180.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0295 (6)0.0338 (6)0.0211 (6)0.0007 (5)0.0015 (5)0.0098 (5)
O20.0308 (6)0.0344 (6)0.0189 (6)0.0012 (5)0.0003 (5)0.0055 (5)
O30.0263 (6)0.0291 (6)0.0201 (5)0.0010 (5)0.0023 (4)0.0057 (5)
O40.0258 (6)0.0295 (6)0.0262 (6)0.0009 (5)0.0010 (5)0.0011 (5)
N10.0282 (7)0.0257 (6)0.0233 (7)0.0017 (5)0.0007 (5)0.0045 (5)
N20.0236 (7)0.0273 (6)0.0176 (6)0.0007 (5)0.0000 (5)0.0048 (5)
N30.0253 (7)0.0217 (6)0.0183 (6)0.0034 (5)0.0022 (5)0.0044 (5)
N40.0268 (7)0.0230 (6)0.0194 (6)0.0057 (5)0.0020 (5)0.0059 (5)
C10.0209 (7)0.0220 (7)0.0210 (7)0.0009 (5)0.0006 (6)0.0080 (6)
C20.0292 (8)0.0264 (7)0.0245 (8)0.0034 (6)0.0056 (6)0.0085 (6)
C30.0388 (9)0.0290 (8)0.0190 (7)0.0020 (7)0.0059 (6)0.0049 (6)
C40.0223 (7)0.0269 (7)0.0280 (8)0.0019 (6)0.0033 (6)0.0066 (6)
C50.0237 (8)0.0273 (7)0.0212 (7)0.0008 (6)0.0038 (6)0.0045 (6)
C60.0237 (7)0.0269 (7)0.0207 (7)0.0029 (6)0.0025 (6)0.0053 (6)
C70.0233 (7)0.0217 (7)0.0212 (8)0.0055 (6)0.0013 (6)0.0054 (6)
C80.0211 (7)0.0209 (7)0.0211 (7)0.0044 (5)0.0010 (6)0.0071 (6)
C90.0226 (7)0.0206 (7)0.0204 (7)0.0044 (6)0.0025 (6)0.0059 (6)
C100.0289 (8)0.0261 (7)0.0205 (7)0.0036 (6)0.0026 (6)0.0054 (6)
C110.0249 (8)0.0308 (8)0.0290 (8)0.0035 (6)0.0046 (6)0.0114 (7)
C120.0231 (8)0.0269 (7)0.0277 (8)0.0003 (6)0.0043 (6)0.0079 (6)
C130.0249 (8)0.0254 (7)0.0204 (7)0.0045 (6)0.0031 (6)0.0064 (6)
C140.0252 (8)0.0222 (7)0.0198 (7)0.0052 (6)0.0013 (6)0.0067 (6)
C150.0267 (8)0.0228 (7)0.0186 (7)0.0059 (6)0.0023 (6)0.0063 (6)
C160.0253 (8)0.0247 (7)0.0197 (7)0.0073 (6)0.0008 (6)0.0045 (6)
C170.0222 (7)0.0274 (7)0.0248 (8)0.0061 (6)0.0004 (6)0.0055 (6)
C180.0246 (8)0.0238 (7)0.0226 (7)0.0045 (6)0.0042 (6)0.0059 (6)
C190.0290 (8)0.0281 (8)0.0186 (7)0.0058 (6)0.0002 (6)0.0016 (6)
C200.0256 (8)0.0290 (8)0.0201 (7)0.0046 (6)0.0003 (6)0.0063 (6)
Geometric parameters (Å, º) top
O1—C71.2304 (19)C6—H6B0.9900
O2—C141.2088 (19)C7—C7i1.542 (3)
O3—C141.3276 (19)C8—C131.393 (2)
O3—H1O0.8402C8—C91.403 (2)
O4—C181.3450 (19)C8—C141.505 (2)
O4—H2O0.8401C9—C101.398 (2)
N1—C31.337 (2)C10—C111.383 (2)
N1—C41.340 (2)C10—H100.9500
N2—C71.335 (2)C11—C121.387 (2)
N2—C61.451 (2)C11—H110.9500
N2—H1N0.8801C12—C131.386 (2)
N3—N41.2632 (19)C12—H120.9500
N3—C91.427 (2)C13—H130.9500
N4—C151.403 (2)C15—C201.399 (2)
C1—C21.390 (2)C15—C161.404 (2)
C1—C51.391 (2)C16—C171.379 (2)
C1—C61.516 (2)C16—H160.9500
C2—C31.384 (2)C17—C181.405 (2)
C2—H20.9500C17—H170.9500
C3—H30.9500C18—C191.398 (2)
C4—C51.389 (2)C19—C201.381 (2)
C4—H40.9500C19—H190.9500
C5—H50.9500C20—H200.9500
C6—H6A0.9900
C14—O3—H1O108.7C10—C9—N3123.07 (14)
C18—O4—H2O112.5C8—C9—N3116.96 (13)
C3—N1—C4116.75 (14)C11—C10—C9119.74 (15)
C7—N2—C6120.86 (13)C11—C10—H10120.1
C7—N2—H1N116.6C9—C10—H10120.1
C6—N2—H1N122.1C10—C11—C12120.63 (15)
N4—N3—C9115.26 (13)C10—C11—H11119.7
N3—N4—C15115.72 (13)C12—C11—H11119.7
C2—C1—C5117.49 (14)C13—C12—C11119.81 (15)
C2—C1—C6119.45 (14)C13—C12—H12120.1
C5—C1—C6123.05 (14)C11—C12—H12120.1
C3—C2—C1119.17 (16)C12—C13—C8120.65 (15)
C3—C2—H2120.4C12—C13—H13119.7
C1—C2—H2120.4C8—C13—H13119.7
N1—C3—C2123.90 (15)O2—C14—O3119.58 (14)
N1—C3—H3118.0O2—C14—C8122.19 (14)
C2—C3—H3118.0O3—C14—C8118.23 (13)
N1—C4—C5123.41 (16)C20—C15—N4114.33 (14)
N1—C4—H4118.3C20—C15—C16119.49 (14)
C5—C4—H4118.3N4—C15—C16126.18 (14)
C4—C5—C1119.28 (15)C17—C16—C15119.85 (15)
C4—C5—H5120.4C17—C16—H16120.1
C1—C5—H5120.4C15—C16—H16120.1
N2—C6—C1114.78 (14)C16—C17—C18120.54 (15)
N2—C6—H6A108.6C16—C17—H17119.7
C1—C6—H6A108.6C18—C17—H17119.7
N2—C6—H6B108.6O4—C18—C19122.69 (14)
C1—C6—H6B108.6O4—C18—C17117.82 (14)
H6A—C6—H6B107.5C19—C18—C17119.49 (14)
O1—C7—N2125.14 (15)C20—C19—C18119.95 (15)
O1—C7—C7i121.86 (17)C20—C19—H19120.0
N2—C7—C7i112.99 (16)C18—C19—H19120.0
C13—C8—C9119.19 (14)C19—C20—C15120.66 (15)
C13—C8—C14116.22 (14)C19—C20—H20119.7
C9—C8—C14124.57 (14)C15—C20—H20119.7
C10—C9—C8119.98 (14)
C9—N3—N4—C15179.67 (12)C9—C10—C11—C120.5 (3)
C5—C1—C2—C30.9 (2)C10—C11—C12—C130.6 (3)
C6—C1—C2—C3178.53 (14)C11—C12—C13—C80.2 (2)
C4—N1—C3—C20.5 (2)C9—C8—C13—C120.3 (2)
C1—C2—C3—N10.5 (3)C14—C8—C13—C12178.21 (14)
C3—N1—C4—C50.9 (2)C13—C8—C14—O21.2 (2)
N1—C4—C5—C10.5 (2)C9—C8—C14—O2179.56 (15)
C2—C1—C5—C40.5 (2)C13—C8—C14—O3178.70 (14)
C6—C1—C5—C4178.93 (14)C9—C8—C14—O30.3 (2)
C7—N2—C6—C179.82 (19)N3—N4—C15—C20171.10 (13)
C2—C1—C6—N2172.60 (14)N3—N4—C15—C168.5 (2)
C5—C1—C6—N26.8 (2)C20—C15—C16—C170.4 (2)
C6—N2—C7—O13.7 (2)N4—C15—C16—C17179.19 (15)
C6—N2—C7—C7i176.57 (15)C15—C16—C17—C180.2 (2)
C13—C8—C9—C100.4 (2)C16—C17—C18—O4179.60 (14)
C14—C8—C9—C10178.01 (14)C16—C17—C18—C190.0 (2)
C13—C8—C9—N3180.00 (13)O4—C18—C19—C20178.74 (15)
C14—C8—C9—N31.6 (2)C17—C18—C19—C200.9 (2)
N4—N3—C9—C105.8 (2)C18—C19—C20—C151.5 (2)
N4—N3—C9—C8173.84 (13)N4—C15—C20—C19178.39 (14)
C8—C9—C10—C110.0 (2)C16—C15—C20—C191.2 (2)
N3—C9—C10—C11179.58 (15)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1o···N30.841.792.568 (2)154
N2—H1n···O3ii0.882.112.966 (2)163
O4—H2o···N1iii0.841.882.720 (2)173
C5—H5···O2iv0.952.343.187 (3)148
C6—H6a···O2ii0.992.543.265 (3)130
C2—H2···Cg(3)v0.952.763.542 (3)140
C4—H4···Cg(2)0.952.873.684 (3)145
C11—H11···Cg(1)vi0.952.963.642 (3)130
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+2, z; (iv) x+2, y+1, z+1; (v) x, y1, z; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula2C13H10N2O3·C14H14N4O2
Mr754.75
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)5.523 (3), 11.132 (4), 15.066 (7)
α, β, γ (°)72.748 (16), 88.92 (2), 79.43 (2)
V3)869.0 (7)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.55 × 0.31 × 0.20
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.821, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
6882, 3945, 3477
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.143, 1.08
No. of reflections3945
No. of parameters262
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.28

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1o···N30.841.792.568 (2)154
N2—H1n···O3i0.882.112.966 (2)163
O4—H2o···N1ii0.841.882.720 (2)173
C5—H5···O2iii0.952.343.187 (3)148
C6—H6a···O2i0.992.543.265 (3)130
C2—H2···Cg(3)iv0.952.763.542 (3)140
C4—H4···Cg(2)0.952.873.684 (3)145
C11—H11···Cg(1)v0.952.963.642 (3)130
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z; (iii) x+2, y+1, z+1; (iv) x, y1, z; (v) x+1, y, z.
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationCorlette, E. M. & Tiekink, E. R. T. (2009). J. Chem. Crystallogr. 39, 603–606.  Web of Science CSD CrossRef CAS Google Scholar
First citationEllis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352–1361.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLee, G.-H. & Wang, H.-T. (2007). Acta Cryst. C63, m216–m219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQian, H. & Huang, W. (2005). J. Mol. Struct. 743, 191–195.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationShan, N. & Zaworotko, M. J. (2008). Drug Discovery Today, 13, 440–446.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationWilhelm, C., Boyd, S. A., Chawda, S., Fowler, F. W., Goroff, N. S., Halada, G. P., Grey, C. P., Lauher, J. W., Luo, L., Martin, C. D., Parise, J. B., Tarabrella, C. & Webb, J. A. (2008). J. Am. Chem. Soc. 130, 4415–4420.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZukerman-Schpector, J. & Tiekink, E. R. T. (2008). Z. Kristallogr. 223, 233–234.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3178-o3179
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds