organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3190-o3191

4-(Pyrimidin-2-yl)-1-thia-4-aza­spiro­[4.5]decan-3-one

aDepartamento de Química Orgânica, Universidade Federal de Pelotas (UFPel), Campus Universitário, s/n°, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil, bFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos–Farmanguinhos, R. Sizenando Nabuco 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 19 November 2009; accepted 19 November 2009; online 25 November 2009)

The title compound, C12H15N3OS, features an envelope conformation for the 1,3-thia­zolidin-4-one ring with the S atom as the flap atom. The pyrimidine ring is almost orthogonal to the 1,3-thia­zolidin-4-one ring as indicated by the N—C—C—N torsion angle of −111.96 (18)°. Supra­molecular dimers are formed in the crystal structure through the agency of C—H⋯O contacts occurring between centrosymmetrically related mol­ecules. These are linked into supra­molecular tapes along [100] via C—H⋯S contacts.

Related literature

For the biological activity of thia­zolidinones, see: Cunico et al. (2008a[Cunico, W., Gomes, C. R. B. & Vellasco Junior, W. T. (2008a). Mini-Rev. Org. Chem. 5, 336-344.]); Solomon et al. (2007[Solomon, V. R., Haq, W., Srivastava, K., Puri, S. K. & Katti, S. B. (2007). J. Med. Chem. 50, 394-398.]); Kavitha et al. (2006[Kavitha, C. V., Nanjunda Swamy, B. S., Mantelingu, K., Doreswamy, S., Sridhar, M. A., Prasad, J. S. & Rangappa, K. S. (2006). Bioorg. Med. Chem. 14, 2290-2290.]); Sharma et al. (2006[Sharma, S., Singh, T., Mittal, R., Saxena, K. K., Srivastava, V. K. & Kumar, A. (2006). Arch. Pharm. Chem. Life Sci. 339, 145-152.]); Ravichandran et al. (2009[Ravichandran, V., Prashantha Kumar, B. R., Sankar, S. & Agrawal, R. K. (2009). Eur. J. Med. Chem. 44, 1180-1187.]); Rao et al. (2004[Rao, A., Chimirri, A., Ferro, S., Monforte, A. M., Monforte, P. & Maria Zappalà, M. (2004). Arkivoc, pp. 147-155.]). For background to the synthesis, see: Cunico et al. (2008b[Cunico, W., Vellasco, W. T. Jr, Moreth, M. & Gomes, C. R. B. (2008b). Lett. Org. Chem. 5, 349-352.]); Rawal et al. (2008[Rawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. & De Clercq, E. (2008). Eur. J. Med. Chem. 43, 2800-2806.]). For related studies on the synthesis and biological evaluation of thia­zolidinones, see: Cunico et al. (2006[Cunico, W., Capri, L. R., Gomes, C. R. B., Sizilio, R. H. & Wardell, S. M. S. V. (2006). Synthesis, pp. 3405-3408.], 2007[Cunico, W., Gomes, C. R. B., Ferreira, M. L. G., Capri, L. R., Soares, M. & Wardell, S. M. S. V. (2007). Tetrahedron Lett. 48, 6217-6220.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15N3OS

  • Mr = 249.33

  • Monoclinic, P 21 /n

  • a = 6.2466 (2) Å

  • b = 8.6748 (2) Å

  • c = 22.0439 (6) Å

  • β = 95.698 (1)°

  • V = 1188.61 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 120 K

  • 0.26 × 0.22 × 0.14 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.658, Tmax = 0.746

  • 14004 measured reflections

  • 2661 independent reflections

  • 2227 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.113

  • S = 1.14

  • 2661 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10a⋯S1i 0.99 2.80 3.4765 (13) 126
C10—H10b⋯O1ii 0.99 2.44 3.361 (2) 155
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Thiazolidinones constitute an important group of heterocyclic compounds (Cunico et al., 2008a), having valuable biological uses, for example, as anti-malarial (Solomon et al., 2007), anti-microbial (Kavitha et al., 2006), anti-inflammatory (Sharma et al., 2006), and anti-viral agents, especially as anti-HIV agents (Ravichandran et al., 2009; Rao et al., 2004). The main synthetic routes to 1,3-thiazolidin-4-ones involve three components (an aldehyde, an amine and mercaptoacetic acid), either in a one- or two-step process (Cunico et al., 2008a; Rawal et al., 2006). In continuation of our research on thiazolidinones, (Cunico et al., 2006; Cunico et al., 2007: Cunico et al., 2008b), we report the structure of the title compound, 1-thia-4-azaspiro[4.5]decan-3-one, (I).

The molecule structure of (I) shows the five-membered 1,3-thiazolidin-4-one ring to adopt an envelope conformation with the S1 atom as the flap atom. The cyclohexyl ring adopts a regular chair conformation. The pyrimidine is twisted out of the plane of the 1,3-thiazolidin-4-one ring as seen in the value of the C4–N3–C11–N1 torsion angle of -111.96 (18) °. When viewed along the plane through the N1, C2, C4 and C5 atoms, the molecule, with the exception of the S1 atom, has approximate mirror symmetry.

In the crystal structure, centrosymmetric pairs associate via C—H···O contacts to form dimers, Table 1. The dimeric aggregates are linked into a supramolecular tape aligned along [1 0 0] via C—H···S contacts, Table 1 and Fig.2. The pivotal role of the C10-methylene group is noted in the stabilization of the crystal structure as each of the C10-bound H atoms forms a significant intermolecular contact.

Related literature top

For biological activity of thiazolidinones, see: Cunico et al. (2008a); Solomon et al. (2007); Kavitha et al. (2006); Sharma et al. (2006); Ravichandran et al. (2009); Rao et al. (2004). For background to the synthesis, see: Cunico et al. (2008b); Rawal et al. (2008). For related studies on the synthesis and biological evaluation of thiazolidinones, see: Cunico et al. (2006, 2007).

Experimental top

A mixture of 2-aminopyrimidine (1 mmol), cyclohexanone (2 mmol) and mercaptoacetic acid (3 mmol) in toluene (35 ml) was heated at 403 K with a Dean-Stark trap for 16 h. The reaction was cooled, washed with NaHCO3 (3 x 20 ml), and dried with MgSO4. The crude product was washed with a hot solvent mixture of hexane/ethyl acetate (9:1) and recrystallized from EtOH. Yield 80%. m. pt. 475–476 K. 1H NMR (200 MHz, CDCl3): δ 8.76 (s, 2H, aryl), 7.22 (s, 1H, aryl), 3.66 (s, 2H, H5), 2.21–1.57 (m, 10H, CH2) p.p.m. 13C NMR (100 MHz, CDCl3): δ 172.4 (CO), 158.5, 158.4, 119.3 (aryl), 75.7 (C2), 39.5 (CH2), 38.0 (CH2), 31.9 (C5), 24.4 (CH2), 23.6 (CH2) p.p.m.

Refinement top

The C-bound H atoms were geometrically placed with C—H = 0.95–0.99 Å, and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular tape formation in (I) whereby dimeric aggregates sustained by C—H···O (orange dashed lines) contacts are linked via C—H···S contacts (brown dashed lines) along [1 0 0].
4-(Pyrimidin-2-yl)-1-thia-4-azaspiro[4.5]decan-3-one top
Crystal data top
C12H15N3OSF(000) = 528
Mr = 249.33Dx = 1.393 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7514 reflections
a = 6.2466 (2) Åθ = 2.9–27.5°
b = 8.6748 (2) ŵ = 0.26 mm1
c = 22.0439 (6) ÅT = 120 K
β = 95.698 (1)°Block, colourless
V = 1188.61 (6) Å30.26 × 0.22 × 0.14 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2661 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2227 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.054
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 87
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1011
Tmin = 0.658, Tmax = 0.746l = 2828
14004 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.5459P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
2661 reflectionsΔρmax = 0.36 e Å3
155 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (2)
Crystal data top
C12H15N3OSV = 1188.61 (6) Å3
Mr = 249.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.2466 (2) ŵ = 0.26 mm1
b = 8.6748 (2) ÅT = 120 K
c = 22.0439 (6) Å0.26 × 0.22 × 0.14 mm
β = 95.698 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2661 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2227 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 0.746Rint = 0.054
14004 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.14Δρmax = 0.36 e Å3
2661 reflectionsΔρmin = 0.40 e Å3
155 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30913 (6)0.59301 (5)0.14394 (2)0.02184 (17)
O10.19102 (19)0.33684 (15)0.00174 (6)0.0215 (3)
N10.2660 (2)0.24603 (17)0.08348 (7)0.0189 (3)
N20.0587 (2)0.09881 (17)0.08941 (8)0.0206 (3)
N30.0732 (2)0.36704 (16)0.09593 (6)0.0147 (3)
C20.0699 (2)0.47007 (19)0.14937 (7)0.0143 (3)
C40.1922 (2)0.40748 (19)0.04984 (8)0.0161 (4)
C50.3225 (3)0.5513 (2)0.06440 (8)0.0207 (4)
H5A0.26300.63840.03900.025*
H5B0.47370.53490.05610.025*
C60.0987 (3)0.3792 (2)0.20899 (8)0.0194 (4)
H6A0.23530.32070.21100.023*
H6B0.02040.30410.20980.023*
C70.1015 (3)0.4855 (2)0.26444 (8)0.0239 (4)
H7A0.10980.42240.30200.029*
H7B0.23110.55170.26650.029*
C80.0989 (3)0.5870 (2)0.26138 (8)0.0230 (4)
H8A0.22660.52170.26550.028*
H8B0.08520.66070.29590.028*
C90.1310 (3)0.6762 (2)0.20155 (8)0.0186 (4)
H9A0.01290.75180.19990.022*
H9B0.26830.73380.19960.022*
C100.1346 (2)0.5672 (2)0.14669 (8)0.0159 (4)
H10A0.26120.49830.14610.019*
H10B0.14860.62840.10860.019*
C110.0534 (2)0.22881 (19)0.08959 (8)0.0144 (3)
C120.3796 (3)0.1143 (2)0.07570 (9)0.0214 (4)
H120.53230.11940.07220.026*
C130.2817 (3)0.0280 (2)0.07264 (8)0.0215 (4)
H130.36300.12000.06580.026*
C140.0591 (3)0.0296 (2)0.08007 (9)0.0246 (4)
H140.01310.12560.07850.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0154 (2)0.0251 (3)0.0259 (3)0.00679 (16)0.00633 (17)0.00990 (19)
O10.0249 (6)0.0233 (7)0.0168 (6)0.0011 (5)0.0045 (5)0.0020 (5)
N10.0163 (7)0.0159 (8)0.0243 (8)0.0001 (5)0.0017 (6)0.0026 (6)
N20.0177 (7)0.0163 (8)0.0279 (9)0.0001 (5)0.0023 (6)0.0012 (6)
N30.0144 (6)0.0138 (7)0.0161 (7)0.0015 (5)0.0033 (5)0.0025 (6)
C20.0123 (7)0.0152 (8)0.0154 (8)0.0015 (6)0.0015 (6)0.0035 (7)
C40.0137 (7)0.0186 (9)0.0161 (9)0.0030 (6)0.0016 (6)0.0023 (7)
C50.0195 (8)0.0224 (9)0.0204 (9)0.0039 (7)0.0037 (7)0.0002 (8)
C60.0230 (8)0.0171 (9)0.0173 (9)0.0021 (7)0.0019 (7)0.0006 (7)
C70.0331 (10)0.0221 (10)0.0156 (9)0.0008 (8)0.0021 (7)0.0002 (8)
C80.0297 (9)0.0236 (10)0.0168 (9)0.0026 (7)0.0071 (7)0.0045 (8)
C90.0156 (7)0.0195 (9)0.0208 (9)0.0015 (6)0.0028 (6)0.0026 (7)
C100.0133 (7)0.0171 (9)0.0173 (9)0.0016 (6)0.0017 (6)0.0012 (7)
C110.0158 (7)0.0144 (8)0.0130 (8)0.0010 (6)0.0015 (6)0.0017 (6)
C120.0166 (8)0.0230 (10)0.0243 (10)0.0034 (7)0.0008 (7)0.0023 (8)
C130.0243 (9)0.0166 (9)0.0235 (10)0.0050 (7)0.0017 (7)0.0041 (7)
C140.0243 (9)0.0164 (9)0.0334 (11)0.0015 (7)0.0036 (8)0.0018 (8)
Geometric parameters (Å, º) top
S1—C51.8004 (19)C6—H6B0.9900
S1—C21.8494 (16)C7—C81.527 (3)
O1—C41.224 (2)C7—H7A0.9900
N1—C111.330 (2)C7—H7B0.9900
N1—C121.347 (2)C8—C91.525 (3)
N2—C111.328 (2)C8—H8A0.9900
N2—C141.339 (2)C8—H8B0.9900
N3—C41.363 (2)C9—C101.533 (2)
N3—C111.436 (2)C9—H9A0.9900
N3—C21.480 (2)C9—H9B0.9900
C2—C101.527 (2)C10—H10A0.9900
C2—C61.528 (2)C10—H10B0.9900
C4—C51.507 (2)C12—C131.382 (3)
C5—H5A0.9900C12—H120.9500
C5—H5B0.9900C13—C141.384 (2)
C6—C71.530 (3)C13—H130.9500
C6—H6A0.9900C14—H140.9500
C5—S1—C293.63 (8)H7A—C7—H7B108.0
C11—N1—C12115.20 (15)C9—C8—C7111.57 (14)
C11—N2—C14115.15 (15)C9—C8—H8A109.3
C4—N3—C11118.58 (14)C7—C8—H8A109.3
C4—N3—C2119.29 (14)C9—C8—H8B109.3
C11—N3—C2122.06 (13)C7—C8—H8B109.3
N3—C2—C10112.34 (13)H8A—C8—H8B108.0
N3—C2—C6111.29 (14)C8—C9—C10111.08 (15)
C10—C2—C6110.16 (13)C8—C9—H9A109.4
N3—C2—S1102.80 (10)C10—C9—H9A109.4
C10—C2—S1110.96 (12)C8—C9—H9B109.4
C6—C2—S1109.06 (11)C10—C9—H9B109.4
O1—C4—N3124.04 (15)H9A—C9—H9B108.0
O1—C4—C5123.77 (15)C2—C10—C9111.29 (13)
N3—C4—C5112.18 (15)C2—C10—H10A109.4
C4—C5—S1107.29 (12)C9—C10—H10A109.4
C4—C5—H5A110.3C2—C10—H10B109.4
S1—C5—H5A110.3C9—C10—H10B109.4
C4—C5—H5B110.3H10A—C10—H10B108.0
S1—C5—H5B110.3N2—C11—N1128.08 (15)
H5A—C5—H5B108.5N2—C11—N3115.10 (13)
C2—C6—C7111.52 (15)N1—C11—N3116.80 (14)
C2—C6—H6A109.3N1—C12—C13122.23 (16)
C7—C6—H6A109.3N1—C12—H12118.9
C2—C6—H6B109.3C13—C12—H12118.9
C7—C6—H6B109.3C12—C13—C14116.59 (16)
H6A—C6—H6B108.0C12—C13—H13121.7
C8—C7—C6111.59 (15)C14—C13—H13121.7
C8—C7—H7A109.3N2—C14—C13122.69 (17)
C6—C7—H7A109.3N2—C14—H14118.7
C8—C7—H7B109.3C13—C14—H14118.7
C6—C7—H7B109.3
C4—N3—C2—C10101.41 (16)C2—C6—C7—C854.95 (19)
C11—N3—C2—C1075.57 (19)C6—C7—C8—C953.8 (2)
C4—N3—C2—C6134.54 (15)C7—C8—C9—C1054.38 (19)
C11—N3—C2—C648.48 (19)N3—C2—C10—C9178.32 (14)
C4—N3—C2—S117.93 (17)C6—C2—C10—C957.00 (18)
C11—N3—C2—S1165.09 (12)S1—C2—C10—C963.87 (16)
C5—S1—C2—N319.77 (12)C8—C9—C10—C256.35 (18)
C5—S1—C2—C10100.52 (12)C14—N2—C11—N12.2 (3)
C5—S1—C2—C6137.96 (12)C14—N2—C11—N3176.42 (16)
C11—N3—C4—O13.4 (2)C12—N1—C11—N20.6 (3)
C2—N3—C4—O1173.65 (15)C12—N1—C11—N3177.99 (15)
C11—N3—C4—C5177.71 (14)C4—N3—C11—N266.8 (2)
C2—N3—C4—C55.2 (2)C2—N3—C11—N2116.21 (17)
O1—C4—C5—S1170.17 (14)C4—N3—C11—N1111.96 (18)
N3—C4—C5—S110.98 (18)C2—N3—C11—N165.0 (2)
C2—S1—C5—C418.17 (13)C11—N1—C12—C131.7 (3)
N3—C2—C6—C7178.46 (13)N1—C12—C13—C142.1 (3)
C10—C2—C6—C756.27 (18)C11—N2—C14—C131.6 (3)
S1—C2—C6—C765.74 (15)C12—C13—C14—N20.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10a···S1i0.992.803.4765 (13)126
C10—H10b···O1ii0.992.443.361 (2)155
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H15N3OS
Mr249.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)6.2466 (2), 8.6748 (2), 22.0439 (6)
β (°) 95.698 (1)
V3)1188.61 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.26 × 0.22 × 0.14
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.658, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
14004, 2661, 2227
Rint0.054
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.113, 1.14
No. of reflections2661
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.40

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10a···S1i0.992.803.4765 (13)126
C10—H10b···O1ii0.992.443.361 (2)155
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from FAPEMIG (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCunico, W., Capri, L. R., Gomes, C. R. B., Sizilio, R. H. & Wardell, S. M. S. V. (2006). Synthesis, pp. 3405–3408.  Web of Science CSD CrossRef Google Scholar
First citationCunico, W., Gomes, C. R. B., Ferreira, M. L. G., Capri, L. R., Soares, M. & Wardell, S. M. S. V. (2007). Tetrahedron Lett. 48, 6217–6220.  Web of Science CSD CrossRef CAS Google Scholar
First citationCunico, W., Gomes, C. R. B. & Vellasco Junior, W. T. (2008a). Mini-Rev. Org. Chem. 5, 336–344.  Web of Science CrossRef CAS Google Scholar
First citationCunico, W., Vellasco, W. T. Jr, Moreth, M. & Gomes, C. R. B. (2008b). Lett. Org. Chem. 5, 349–352.  Web of Science CrossRef CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKavitha, C. V., Nanjunda Swamy, B. S., Mantelingu, K., Doreswamy, S., Sridhar, M. A., Prasad, J. S. & Rangappa, K. S. (2006). Bioorg. Med. Chem. 14, 2290–2290.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRao, A., Chimirri, A., Ferro, S., Monforte, A. M., Monforte, P. & Maria Zappalà, M. (2004). Arkivoc, pp. 147–155.  CrossRef Google Scholar
First citationRavichandran, V., Prashantha Kumar, B. R., Sankar, S. & Agrawal, R. K. (2009). Eur. J. Med. Chem. 44, 1180–1187.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. & De Clercq, E. (2008). Eur. J. Med. Chem. 43, 2800–2806.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharma, S., Singh, T., Mittal, R., Saxena, K. K., Srivastava, V. K. & Kumar, A. (2006). Arch. Pharm. Chem. Life Sci. 339, 145–152.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolomon, V. R., Haq, W., Srivastava, K., Puri, S. K. & Katti, S. B. (2007). J. Med. Chem. 50, 394–398.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3190-o3191
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds