organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Pyridone: monoclinic polymorph

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 19 November 2009; accepted 19 November 2009; online 25 November 2009)

The asymmetric unit in the title compound, C5H5NO, comprises two independent but virtually identical mol­ecules of 2-pyridone, and represents a monoclinic polymorph of the previously reported ortho­rhom­bic (P212121) form [Penfold (1953[Penfold, B. R. (1953). Acta Cryst. 6, 591-600.]). Acta Cryst. 6, 591–600; Ohms et al. (1984[Ohms, U., Guth, H., Hellner, E., Dannohl, H. & Schweig, A. (1984). Z. Kristallogr. 169, 185-200.]). Z. Kristallogr. 169, 185–200; Yang & Craven (1998[Yang, H. W. & Craven, B. M. (1998). Acta Cryst. B54, 912-920.]). Acta Cryst. B54, 912–920]. The independent mol­ecules are linked into supra­molecular dimers via eight-membered {⋯HNC(O)}2 amide synthons in contrast to the helical supra­molecular chains, mediated by {⋯HNC(O)} links, found in the ortho­rhom­bic form.

Related literature

For the structure of the ortho­rhom­bic form of 2-pyridone, see: Penfold (1953[Penfold, B. R. (1953). Acta Cryst. 6, 591-600.]); Ohms et al. (1984[Ohms, U., Guth, H., Hellner, E., Dannohl, H. & Schweig, A. (1984). Z. Kristallogr. 169, 185-200.]); Yang & Craven (1998[Yang, H. W. & Craven, B. M. (1998). Acta Cryst. B54, 912-920.]). For related studies of co-crystal formation, see: Broker & Tiekink (2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.]); Ellis et al. (2009[Ellis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352-1361.]). For analysis of the geometric structures, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C5H5NO

  • Mr = 95.10

  • Monoclinic, P 21 /n

  • a = 6.2027 (13) Å

  • b = 16.327 (4) Å

  • c = 9.1046 (18) Å

  • β = 92.242 (7)°

  • V = 921.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 98 K

  • 0.44 × 0.39 × 0.15 mm

Data collection
  • Rigaku AFC12K/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.840, Tmax = 1

  • 6582 measured reflections

  • 1903 independent reflections

  • 1724 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.117

  • S = 1.10

  • 1903 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O2 0.88 1.86 2.7450 (16) 177
N2—H2n⋯O1 0.88 1.92 2.7915 (16) 171
C2—H2⋯O1i 0.95 2.53 3.3943 (18) 150
C4—H4⋯O2ii 0.95 2.54 3.2989 (18) 137
Symmetry codes: (i) x-1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Crystals of the monoclinic polymorph of 2-pyridone, (I), were isolated during an on-going study into the phenomenon of co-crystal formation (Broker & Tiekink, 2007; Ellis et al., 2009). The orthorhombic form of (I) has been characterized previously (Penfold, 1953; Ohms et al., 1984; Yang & Craven, 1998).

In (I), two independent molecules comprise the asymmetric unit, Fig. 1, and these are virtually identical as seen in the r.m.s. values for bond distances and angles of 0.0025 Å and 0.184 °, respectively (Spek, 2009). Each molecule is essentially planar with the maximum deviation of 0.0102 (14) Å found for the C2 atom in the N1-molecule and 0.0029 (14) Å for the C6 atom in the N2-molecule. The pattern of bond distances matches those in the previously determined orthorhombic form.

The crystal packing in (I) is sustained by eight-membered {···HNC(O)}2 amide synthons whereby the two independent molecules are linked, Table 1 and Fig. 1. The dimeric aggregate is effectively planar with the dihedral between the two 2-pyridone rings being 7.88 (6) °, The dimers are connected into zigzag layers in the ac plane via C—H···O interactions, Table 1 and Fig. 2. The major difference between the two polymeric forms of 2-pyridone rests in the mode of association between the 2-pyridone molecules. In the orthorhombic form, the molecules are lined into supramolecular helical chains through a continuing sequence of {···HNC( O)} links.

Related literature top

For the structure of the orthorhombic form of 2-pyridone, see: Penfold (1953); Ohms et al. (1984); Yang & Craven (1998). For related studies of co-crystal formation, see: Broker & Tiekink (2007); Ellis et al. (2009). For analysis of the geometric structures, see: Spek (2009).

Experimental top

2-Hydroxypyridine (Fluka) was dissolved in chloroform and layered with hexanes. Large rod-like colourless crystals formed within a week.

Refinement top

The N– and C-bound H-atoms were placed in calculated positions (N–H = 0.88 Å and C–H 0.95 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(N, C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structures of the two independent molecules comprising the asymmetric unit in (I), showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The molecules are connected by N–H···O hydrogen bonds (orange dashed lines).
[Figure 2] Fig. 2. View of the stacking of layers along the b axis in crystal structure of (I). Colour code: O, red; N, blue; C, grey; and H, green. The N–H···O hydrogen bonds (orange) and C–H···O contacts (green) are shown as dashed lines.
2-pyridone top
Crystal data top
C5H5NOF(000) = 400
Mr = 95.10Dx = 1.371 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 3046 reflections
a = 6.2027 (13) Åθ = 3.3–40.2°
b = 16.327 (4) ŵ = 0.10 mm1
c = 9.1046 (18) ÅT = 98 K
β = 92.242 (7)°Prism, colourless
V = 921.3 (3) Å30.44 × 0.39 × 0.15 mm
Z = 8
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
1903 independent reflections
Radiation source: fine-focus sealed tube1724 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 26.5°, θmin = 2.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 75
Tmin = 0.840, Tmax = 1k = 2020
6582 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.275P]
where P = (Fo2 + 2Fc2)/3
1903 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C5H5NOV = 921.3 (3) Å3
Mr = 95.10Z = 8
Monoclinic, P21/nMo Kα radiation
a = 6.2027 (13) ŵ = 0.10 mm1
b = 16.327 (4) ÅT = 98 K
c = 9.1046 (18) Å0.44 × 0.39 × 0.15 mm
β = 92.242 (7)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
1903 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1724 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 1Rint = 0.037
6582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.10Δρmax = 0.21 e Å3
1903 reflectionsΔρmin = 0.22 e Å3
127 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27541 (14)0.36020 (6)0.47704 (10)0.0239 (2)
N10.07408 (17)0.31779 (7)0.48531 (12)0.0201 (3)
H1N0.10070.35870.54500.024*
C10.1321 (2)0.30993 (8)0.43716 (14)0.0195 (3)
C20.2397 (2)0.26660 (8)0.44686 (15)0.0232 (3)
H20.37950.27690.48190.028*
C30.2074 (2)0.20065 (8)0.35857 (15)0.0236 (3)
H30.32190.16410.33300.028*
C40.0019 (2)0.18832 (8)0.30615 (14)0.0224 (3)
H40.02890.14260.24500.027*
C50.1649 (2)0.24113 (8)0.34226 (14)0.0209 (3)
H50.30330.23240.30390.025*
O20.14759 (15)0.44304 (6)0.67815 (11)0.0263 (3)
N20.19925 (17)0.48837 (7)0.67120 (12)0.0204 (3)
H2N0.22380.45190.60270.024*
C60.0049 (2)0.49182 (8)0.72495 (14)0.0199 (3)
C70.0344 (2)0.55309 (8)0.83511 (15)0.0236 (3)
H70.17170.55920.87650.028*
C80.1311 (2)0.60263 (9)0.88132 (16)0.0267 (3)
H80.10780.64270.95470.032*
C90.3370 (2)0.59536 (9)0.82168 (17)0.0276 (3)
H90.45260.62990.85390.033*
C100.3652 (2)0.53746 (9)0.71679 (15)0.0243 (3)
H100.50220.53130.67510.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0186 (5)0.0256 (5)0.0277 (5)0.0021 (4)0.0025 (4)0.0048 (4)
N10.0186 (6)0.0198 (5)0.0219 (5)0.0010 (4)0.0027 (4)0.0035 (4)
C10.0180 (6)0.0210 (6)0.0195 (6)0.0012 (5)0.0000 (5)0.0018 (5)
C20.0178 (6)0.0248 (7)0.0272 (7)0.0013 (5)0.0026 (5)0.0022 (5)
C30.0208 (7)0.0220 (7)0.0281 (7)0.0021 (5)0.0013 (5)0.0036 (5)
C40.0244 (7)0.0202 (6)0.0227 (6)0.0036 (5)0.0004 (5)0.0025 (5)
C50.0179 (6)0.0239 (7)0.0211 (6)0.0031 (5)0.0031 (5)0.0010 (5)
O20.0206 (5)0.0245 (5)0.0342 (5)0.0041 (4)0.0062 (4)0.0078 (4)
N20.0209 (6)0.0183 (5)0.0221 (5)0.0003 (4)0.0029 (4)0.0014 (4)
C60.0191 (6)0.0183 (6)0.0222 (6)0.0011 (5)0.0009 (5)0.0029 (5)
C70.0212 (6)0.0252 (7)0.0245 (7)0.0031 (5)0.0025 (5)0.0007 (5)
C80.0268 (7)0.0262 (7)0.0270 (7)0.0035 (5)0.0010 (6)0.0063 (5)
C90.0227 (7)0.0256 (7)0.0342 (8)0.0026 (5)0.0024 (6)0.0043 (6)
C100.0176 (6)0.0251 (7)0.0304 (7)0.0016 (5)0.0015 (5)0.0016 (6)
Geometric parameters (Å, º) top
O1—C11.2529 (16)O2—C61.2530 (16)
N1—C21.3597 (17)N2—C101.3567 (17)
N1—C11.3743 (17)N2—C61.3762 (17)
N1—H1N0.8800N2—H2N0.8800
C1—C51.4365 (18)C6—C71.4335 (18)
C2—C31.3633 (19)C7—C81.3607 (19)
C2—H20.9500C7—H70.9500
C3—C41.4151 (18)C8—C91.412 (2)
C3—H30.9500C8—H80.9500
C4—C51.3590 (19)C9—C101.360 (2)
C4—H40.9500C9—H90.9500
C5—H50.9500C10—H100.9500
C2—N1—C1124.33 (11)C10—N2—C6124.37 (11)
C2—N1—H1N117.8C10—N2—H2N117.8
C1—N1—H1N117.8C6—N2—H2N117.8
O1—C1—N1120.32 (11)O2—C6—N2120.04 (12)
O1—C1—C5124.83 (12)O2—C6—C7124.99 (12)
N1—C1—C5114.84 (11)N2—C6—C7114.96 (11)
N1—C2—C3120.67 (12)C8—C7—C6121.03 (12)
N1—C2—H2119.7C8—C7—H7119.5
C3—C2—H2119.7C6—C7—H7119.5
C2—C3—C4118.00 (12)C7—C8—C9120.93 (13)
C2—C3—H3121.0C7—C8—H8119.5
C4—C3—H3121.0C9—C8—H8119.5
C5—C4—C3120.77 (12)C10—C9—C8118.12 (13)
C5—C4—H4119.6C10—C9—H9120.9
C3—C4—H4119.6C8—C9—H9120.9
C4—C5—C1121.36 (12)N2—C10—C9120.59 (12)
C4—C5—H5119.3N2—C10—H10119.7
C1—C5—H5119.3C9—C10—H10119.7
C2—N1—C1—O1179.47 (12)C10—N2—C6—O2178.77 (12)
C2—N1—C1—C51.04 (18)C10—N2—C6—C70.61 (18)
C1—N1—C2—C32.1 (2)O2—C6—C7—C8178.83 (13)
N1—C2—C3—C41.3 (2)N2—C6—C7—C80.51 (19)
C2—C3—C4—C50.4 (2)C6—C7—C8—C90.2 (2)
C3—C4—C5—C11.5 (2)C7—C8—C9—C100.0 (2)
O1—C1—C5—C4178.72 (12)C6—N2—C10—C90.4 (2)
N1—C1—C5—C40.74 (18)C8—C9—C10—N20.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O20.881.862.7450 (16)177
N2—H2n···O10.881.922.7915 (16)171
C2—H2···O1i0.952.533.3943 (18)150
C4—H4···O2ii0.952.543.2989 (18)137
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC5H5NO
Mr95.10
Crystal system, space groupMonoclinic, P21/n
Temperature (K)98
a, b, c (Å)6.2027 (13), 16.327 (4), 9.1046 (18)
β (°) 92.242 (7)
V3)921.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.44 × 0.39 × 0.15
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.840, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
6582, 1903, 1724
Rint0.037
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.117, 1.10
No. of reflections1903
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O20.881.862.7450 (16)177
N2—H2n···O10.881.922.7915 (16)171
C2—H2···O1i0.952.533.3943 (18)150
C4—H4···O2ii0.952.543.2989 (18)137
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z1/2.
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationEllis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352–1361.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOhms, U., Guth, H., Hellner, E., Dannohl, H. & Schweig, A. (1984). Z. Kristallogr. 169, 185–200.  CrossRef CAS Web of Science Google Scholar
First citationPenfold, B. R. (1953). Acta Cryst. 6, 591–600.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYang, H. W. & Craven, B. M. (1998). Acta Cryst. B54, 912–920.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds