organic compounds
2-Pyridone: monoclinic polymorph
aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com
The 5H5NO, comprises two independent but virtually identical molecules of 2-pyridone, and represents a monoclinic polymorph of the previously reported orthorhombic (P212121) form [Penfold (1953). Acta Cryst. 6, 591–600; Ohms et al. (1984). Z. Kristallogr. 169, 185–200; Yang & Craven (1998). Acta Cryst. B54, 912–920]. The independent molecules are linked into supramolecular dimers via eight-membered {⋯HNC(O)}2 amide synthons in contrast to the helical supramolecular chains, mediated by {⋯HNC(O)} links, found in the orthorhombic form.
in the title compound, CRelated literature
For the structure of the orthorhombic form of 2-pyridone, see: Penfold (1953); Ohms et al. (1984); Yang & Craven (1998). For related studies of formation, see: Broker & Tiekink (2007); Ellis et al. (2009). For analysis of the geometric structures, see: Spek (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809049496/hg2602sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809049496/hg2602Isup2.hkl
2-Hydroxypyridine (Fluka) was dissolved in chloroform and layered with hexanes. Large rod-like colourless crystals formed within a week.
The N– and C-bound H-atoms were placed in calculated positions (N–H = 0.88 Å and C–H 0.95 Å) and were included in the
in the riding model approximation with Uiso(H) set to 1.2Ueq(N, C).Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).C5H5NO | F(000) = 400 |
Mr = 95.10 | Dx = 1.371 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2yn | Cell parameters from 3046 reflections |
a = 6.2027 (13) Å | θ = 3.3–40.2° |
b = 16.327 (4) Å | µ = 0.10 mm−1 |
c = 9.1046 (18) Å | T = 98 K |
β = 92.242 (7)° | Prism, colourless |
V = 921.3 (3) Å3 | 0.44 × 0.39 × 0.15 mm |
Z = 8 |
Rigaku AFC12K/SATURN724 diffractometer | 1903 independent reflections |
Radiation source: fine-focus sealed tube | 1724 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ω scans | θmax = 26.5°, θmin = 2.5° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −7→5 |
Tmin = 0.840, Tmax = 1 | k = −20→20 |
6582 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0583P)2 + 0.275P] where P = (Fo2 + 2Fc2)/3 |
1903 reflections | (Δ/σ)max = 0.001 |
127 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C5H5NO | V = 921.3 (3) Å3 |
Mr = 95.10 | Z = 8 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.2027 (13) Å | µ = 0.10 mm−1 |
b = 16.327 (4) Å | T = 98 K |
c = 9.1046 (18) Å | 0.44 × 0.39 × 0.15 mm |
β = 92.242 (7)° |
Rigaku AFC12K/SATURN724 diffractometer | 1903 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1724 reflections with I > 2σ(I) |
Tmin = 0.840, Tmax = 1 | Rint = 0.037 |
6582 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.21 e Å−3 |
1903 reflections | Δρmin = −0.22 e Å−3 |
127 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.27541 (14) | 0.36020 (6) | 0.47704 (10) | 0.0239 (2) | |
N1 | −0.07408 (17) | 0.31779 (7) | 0.48531 (12) | 0.0201 (3) | |
H1N | −0.1007 | 0.3587 | 0.5450 | 0.024* | |
C1 | 0.1321 (2) | 0.30993 (8) | 0.43716 (14) | 0.0195 (3) | |
C2 | −0.2397 (2) | 0.26660 (8) | 0.44686 (15) | 0.0232 (3) | |
H2 | −0.3795 | 0.2769 | 0.4819 | 0.028* | |
C3 | −0.2074 (2) | 0.20065 (8) | 0.35857 (15) | 0.0236 (3) | |
H3 | −0.3219 | 0.1641 | 0.3330 | 0.028* | |
C4 | 0.0019 (2) | 0.18832 (8) | 0.30615 (14) | 0.0224 (3) | |
H4 | 0.0289 | 0.1426 | 0.2450 | 0.027* | |
C5 | 0.1649 (2) | 0.24113 (8) | 0.34226 (14) | 0.0209 (3) | |
H5 | 0.3033 | 0.2324 | 0.3039 | 0.025* | |
O2 | −0.14759 (15) | 0.44304 (6) | 0.67815 (11) | 0.0263 (3) | |
N2 | 0.19925 (17) | 0.48837 (7) | 0.67120 (12) | 0.0204 (3) | |
H2N | 0.2238 | 0.4519 | 0.6027 | 0.024* | |
C6 | −0.0049 (2) | 0.49182 (8) | 0.72495 (14) | 0.0199 (3) | |
C7 | −0.0344 (2) | 0.55309 (8) | 0.83511 (15) | 0.0236 (3) | |
H7 | −0.1717 | 0.5592 | 0.8765 | 0.028* | |
C8 | 0.1311 (2) | 0.60263 (9) | 0.88132 (16) | 0.0267 (3) | |
H8 | 0.1078 | 0.6427 | 0.9547 | 0.032* | |
C9 | 0.3370 (2) | 0.59536 (9) | 0.82168 (17) | 0.0276 (3) | |
H9 | 0.4526 | 0.6299 | 0.8539 | 0.033* | |
C10 | 0.3652 (2) | 0.53746 (9) | 0.71679 (15) | 0.0243 (3) | |
H10 | 0.5022 | 0.5313 | 0.6751 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0186 (5) | 0.0256 (5) | 0.0277 (5) | −0.0021 (4) | 0.0025 (4) | −0.0048 (4) |
N1 | 0.0186 (6) | 0.0198 (5) | 0.0219 (5) | 0.0010 (4) | 0.0027 (4) | −0.0035 (4) |
C1 | 0.0180 (6) | 0.0210 (6) | 0.0195 (6) | 0.0012 (5) | 0.0000 (5) | 0.0018 (5) |
C2 | 0.0178 (6) | 0.0248 (7) | 0.0272 (7) | −0.0013 (5) | 0.0026 (5) | −0.0022 (5) |
C3 | 0.0208 (7) | 0.0220 (7) | 0.0281 (7) | −0.0021 (5) | 0.0013 (5) | −0.0036 (5) |
C4 | 0.0244 (7) | 0.0202 (6) | 0.0227 (6) | 0.0036 (5) | −0.0004 (5) | −0.0025 (5) |
C5 | 0.0179 (6) | 0.0239 (7) | 0.0211 (6) | 0.0031 (5) | 0.0031 (5) | −0.0010 (5) |
O2 | 0.0206 (5) | 0.0245 (5) | 0.0342 (5) | −0.0041 (4) | 0.0062 (4) | −0.0078 (4) |
N2 | 0.0209 (6) | 0.0183 (5) | 0.0221 (5) | −0.0003 (4) | 0.0029 (4) | −0.0014 (4) |
C6 | 0.0191 (6) | 0.0183 (6) | 0.0222 (6) | 0.0011 (5) | 0.0009 (5) | 0.0029 (5) |
C7 | 0.0212 (6) | 0.0252 (7) | 0.0245 (7) | 0.0031 (5) | 0.0025 (5) | −0.0007 (5) |
C8 | 0.0268 (7) | 0.0262 (7) | 0.0270 (7) | 0.0035 (5) | −0.0010 (6) | −0.0063 (5) |
C9 | 0.0227 (7) | 0.0256 (7) | 0.0342 (8) | −0.0026 (5) | −0.0024 (6) | −0.0043 (6) |
C10 | 0.0176 (6) | 0.0251 (7) | 0.0304 (7) | −0.0016 (5) | 0.0015 (5) | 0.0016 (6) |
O1—C1 | 1.2529 (16) | O2—C6 | 1.2530 (16) |
N1—C2 | 1.3597 (17) | N2—C10 | 1.3567 (17) |
N1—C1 | 1.3743 (17) | N2—C6 | 1.3762 (17) |
N1—H1N | 0.8800 | N2—H2N | 0.8800 |
C1—C5 | 1.4365 (18) | C6—C7 | 1.4335 (18) |
C2—C3 | 1.3633 (19) | C7—C8 | 1.3607 (19) |
C2—H2 | 0.9500 | C7—H7 | 0.9500 |
C3—C4 | 1.4151 (18) | C8—C9 | 1.412 (2) |
C3—H3 | 0.9500 | C8—H8 | 0.9500 |
C4—C5 | 1.3590 (19) | C9—C10 | 1.360 (2) |
C4—H4 | 0.9500 | C9—H9 | 0.9500 |
C5—H5 | 0.9500 | C10—H10 | 0.9500 |
C2—N1—C1 | 124.33 (11) | C10—N2—C6 | 124.37 (11) |
C2—N1—H1N | 117.8 | C10—N2—H2N | 117.8 |
C1—N1—H1N | 117.8 | C6—N2—H2N | 117.8 |
O1—C1—N1 | 120.32 (11) | O2—C6—N2 | 120.04 (12) |
O1—C1—C5 | 124.83 (12) | O2—C6—C7 | 124.99 (12) |
N1—C1—C5 | 114.84 (11) | N2—C6—C7 | 114.96 (11) |
N1—C2—C3 | 120.67 (12) | C8—C7—C6 | 121.03 (12) |
N1—C2—H2 | 119.7 | C8—C7—H7 | 119.5 |
C3—C2—H2 | 119.7 | C6—C7—H7 | 119.5 |
C2—C3—C4 | 118.00 (12) | C7—C8—C9 | 120.93 (13) |
C2—C3—H3 | 121.0 | C7—C8—H8 | 119.5 |
C4—C3—H3 | 121.0 | C9—C8—H8 | 119.5 |
C5—C4—C3 | 120.77 (12) | C10—C9—C8 | 118.12 (13) |
C5—C4—H4 | 119.6 | C10—C9—H9 | 120.9 |
C3—C4—H4 | 119.6 | C8—C9—H9 | 120.9 |
C4—C5—C1 | 121.36 (12) | N2—C10—C9 | 120.59 (12) |
C4—C5—H5 | 119.3 | N2—C10—H10 | 119.7 |
C1—C5—H5 | 119.3 | C9—C10—H10 | 119.7 |
C2—N1—C1—O1 | 179.47 (12) | C10—N2—C6—O2 | −178.77 (12) |
C2—N1—C1—C5 | −1.04 (18) | C10—N2—C6—C7 | 0.61 (18) |
C1—N1—C2—C3 | 2.1 (2) | O2—C6—C7—C8 | 178.83 (13) |
N1—C2—C3—C4 | −1.3 (2) | N2—C6—C7—C8 | −0.51 (19) |
C2—C3—C4—C5 | −0.4 (2) | C6—C7—C8—C9 | 0.2 (2) |
C3—C4—C5—C1 | 1.5 (2) | C7—C8—C9—C10 | 0.0 (2) |
O1—C1—C5—C4 | 178.72 (12) | C6—N2—C10—C9 | −0.4 (2) |
N1—C1—C5—C4 | −0.74 (18) | C8—C9—C10—N2 | 0.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1n···O2 | 0.88 | 1.86 | 2.7450 (16) | 177 |
N2—H2n···O1 | 0.88 | 1.92 | 2.7915 (16) | 171 |
C2—H2···O1i | 0.95 | 2.53 | 3.3943 (18) | 150 |
C4—H4···O2ii | 0.95 | 2.54 | 3.2989 (18) | 137 |
Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C5H5NO |
Mr | 95.10 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 98 |
a, b, c (Å) | 6.2027 (13), 16.327 (4), 9.1046 (18) |
β (°) | 92.242 (7) |
V (Å3) | 921.3 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.44 × 0.39 × 0.15 |
Data collection | |
Diffractometer | Rigaku AFC12K/SATURN724 diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.840, 1 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6582, 1903, 1724 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.117, 1.10 |
No. of reflections | 1903 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.22 |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1n···O2 | 0.88 | 1.86 | 2.7450 (16) | 177 |
N2—H2n···O1 | 0.88 | 1.92 | 2.7915 (16) | 171 |
C2—H2···O1i | 0.95 | 2.53 | 3.3943 (18) | 150 |
C4—H4···O2ii | 0.95 | 2.54 | 3.2989 (18) | 137 |
Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+1/2, z−1/2. |
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109. Web of Science CSD CrossRef CAS Google Scholar
Ellis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352–1361. Web of Science CSD CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Ohms, U., Guth, H., Hellner, E., Dannohl, H. & Schweig, A. (1984). Z. Kristallogr. 169, 185–200. CrossRef CAS Web of Science Google Scholar
Penfold, B. R. (1953). Acta Cryst. 6, 591–600. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
Yang, H. W. & Craven, B. M. (1998). Acta Cryst. B54, 912–920. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Crystals of the monoclinic polymorph of 2-pyridone, (I), were isolated during an on-going study into the phenomenon of co-crystal formation (Broker & Tiekink, 2007; Ellis et al., 2009). The orthorhombic form of (I) has been characterized previously (Penfold, 1953; Ohms et al., 1984; Yang & Craven, 1998).
In (I), two independent molecules comprise the asymmetric unit, Fig. 1, and these are virtually identical as seen in the r.m.s. values for bond distances and angles of 0.0025 Å and 0.184 °, respectively (Spek, 2009). Each molecule is essentially planar with the maximum deviation of 0.0102 (14) Å found for the C2 atom in the N1-molecule and 0.0029 (14) Å for the C6 atom in the N2-molecule. The pattern of bond distances matches those in the previously determined orthorhombic form.
The crystal packing in (I) is sustained by eight-membered {···HNC(O)}2 amide synthons whereby the two independent molecules are linked, Table 1 and Fig. 1. The dimeric aggregate is effectively planar with the dihedral between the two 2-pyridone rings being 7.88 (6) °, The dimers are connected into zigzag layers in the ac plane via C—H···O interactions, Table 1 and Fig. 2. The major difference between the two polymeric forms of 2-pyridone rests in the mode of association between the 2-pyridone molecules. In the orthorhombic form, the molecules are lined into supramolecular helical chains through a continuing sequence of {···HNC( O)} links.