organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Chloro-4-[(E)-(3-chloro­benzyl­­idene)hydrazinyl]-1λ4-quinolinium 3-chloro­benzoate

aInstituto de Tecnologia em Farmacos, Fundação Oswaldo Cruz (FIOCRUZ), FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Old Aberdeen AB15 5NY, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 19 November 2009; accepted 20 November 2009; online 25 November 2009)

The title salt, C16H12Cl2N3+·C7H4ClO2, features a non-planar cation, the dihedral angle between the quinolinium and benzene residues being 18.98 (10)°. The cation adopts an E conformation about the C—N bond, and the amine group is oriented towards the quinolinium residue. In the crystal, N—H⋯O hydrogen bonds link two cations with two anions, forming a 20-membered {⋯OCO⋯HNC3NH}2 synthon. The dimeric units are connected into a linear supra­molecular chain along [100] via ππ inter­actions [centroid–centroid distance = 3.5625 (13) Å].

Related literature

For background information on the pharmacological activity of quinoline derivatives, see: Elslager et al. (1969[Elslager, E. F., Tendick, F. H. & Werbel, L. M. (1969). J. Med. Chem. 12, 600-607.]); Font et al. (1997[Font, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug. Des. Disc. 14, 259-272.]); Kaminsky & Meltzer (1968[Kaminsky, D. & Meltzer, R. I. (1968). J. Med. Chem. 11, 160-163.]); Musiol et al. (2006[Musiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592-3598.]); Nakamura et al. (1999[Nakamura, T., Oka, M., Aizawa, K., Soda, H., Fukuda, M., Terashi, K., Ikeda, K., Mizuta, Y., Noguchi, Y., Kimura, Y., Tsuruo, T. & Kohno, S. (1999). Biochem. Biophys. Res. Commun. 255, 618-624.]); Palmer et al. (1993[Palmer, K. J., Holliday, S. M. & and Brogden, R. N. (1993). Drugs, 45, 430-475.]); Ridley (2002[Ridley, R. G. (2002). Nature (London), 415, 686-693.]); Sloboda et al. (1991[Sloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855-860.]); Tanenbaum & Tuffanelli (1980[Tanenbaum, L. & Tuffanelli, D. L. (1980). Arch. Dermatol. 116, 587-591.]); Warshakoon et al. (2006[Warshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett. 16, 5207-5211.]). For recent studies into quinoline-based anti-malarials, see: Andrade et al. (2007[Andrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm. 558, 194-198.]); Cunico et al. (2006[Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, G. M. A. P., Zanetta, N., de Souza, M. V. N., Freitas, I. Q., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649-653.]); da Silva et al. (2003[Silva, A. D. da, de Almeida, M. V., de Souza, M. V. N. & Couri, M. R. C. (2003). Curr. Med. Chem. 10, 21-39.]); de Souza (2005[Souza, M. V. N. de (2005). Mini Rev. Med. Chem. 5, 1009-1017.]). For a related crystallographic study on neutral species related to the title compound, see: Kaiser et al. (2009[Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133-1140.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12Cl2N3+·C7H4ClO2

  • Mr = 472.74

  • Triclinic, [P \overline 1]

  • a = 8.8777 (2) Å

  • b = 10.7064 (3) Å

  • c = 11.9807 (3) Å

  • α = 112.5318 (12)°

  • β = 91.6382 (15)°

  • γ = 97.4362 (15)°

  • V = 1039.17 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 120 K

  • 0.06 × 0.04 × 0.03 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.922, Tmax = 1.000

  • 16836 measured reflections

  • 4746 independent reflections

  • 3949 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.104

  • S = 1.07

  • 4746 reflections

  • 283 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O2i 0.89 (3) 1.76 (3) 2.641 (3) 175 (3)
N2—H2n⋯O1ii 0.88 2.00 2.809 (3) 152
Symmetry codes: (i) x-1, y-1, z; (ii) -x+1, -y+1, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The majority of anti-malarial drugs, such as chloroquine (Tanenbaum & Tuffanelli, 1980), mefloquine (Palmer et al., 1993), primaquine (Elslager et al., 1969) and amodiaquine (Ridley, 2002), possess a quinoline ring, the mainstay of malaria chemotherapy for much of the past 40 years (Font et al., 1997; Kaminsky & Meltzer, 1968; Musiol et al., 2006; Nakamura et al., 1999; Sloboda et al., 1991; Warshakoon et al., 2006). The above motivates our studies aimed towards the development anti-malarial compounds based on the quinoline nucleus (Andrade et al., 2007; Cunico et al., 2006; da Silva et al., 2003; de Souza et al., 2005. The title salt, (I), was prepared as a part of these investigations.

The cation in (I) is twisted about the N2–N3 bond, Fig. 1, as seen in the C3–N2–N3–C10 torsion angle of -168.3 (2) °. This is also reflected in the dihedral angle formed between the quinolinium (maximum deviation = 0.043 (2) for the C2 atom) and benzene planes of 18.98 (10) °. The conformation about the C10N3 bond is E, and the amine-H is oriented towards the quinolinium residue as seen in related structures (Kaiser et al., 2009). The benzoate anion, Fig. 2, is planar with the O1–C17–C18–C19 torsion angle being -10.0 (3) °. The C17–O1, O2 distances in the carboxylate residue are 1.250 (3) and 1.269 (3) Å, respectively, consistent with deprotonation.

The crystal packing is dominated by N–H···O hydrogen bonding, Table 1. A pair of centrosymmetrically related benzoate anions each bridge the quinolinium-H and amine-H atoms of a cation to form a centrosymmetric 20-membered {···OCO···HNC3NH}2 synthon, Fig. 3. The dimeric units face each other to allow the formation of ππ interactions between the quinolinium residues with the Cg(N1, C1—C4, C9)···Cg(C4—C9)i distance = 3.5625 (13) Å for i: -x, -y, 1 - z. The net result is the formation of linear supramolecular chains aligned along [1 0 0], Fig. 4.

Related literature top

For background information on the pharmacological activity of quinoline derivatives, see: Elslager et al. (1969); Font et al. (1997); Kaminsky & Meltzer (1968); Musiol et al. (2006); Nakamura et al. (1999); Palmer et al. (1993); Ridley (2002); Sloboda et al. (1991); Tanenbaum & Tuffanelli (1980); Warshakoon et al. (2006). For recent studies into quinoline-based anti-malarials, see: Andrade et al. (2007); Cunico et al. (2006); da Silva et al. (2003); de Souza et al. (2005). For a related crystallographic study on neutral species related to the title compound, see: Kaiser et al. (2009).

Experimental top

A solution of 7-chloro-4-hydrazinylquinoline (0.20 g, 1.0 mmol) and 3-chorobenzaldehyde (1.2 mmol) in EtOH (5 ml) was maintained at room temperature overnight and rotary evaporated. The solid residue was washed with cold Et2O (3 x 10 ml) and recrystallized from EtOH m. pt. 463–465 K, yield 0.24 g The sample for the X-ray study was slowly grown from moist EtOH and the compound isolated was found to be the salt with 3-chlorobenzoic acid. MS/ESI: 315 [C16H10Cl2N3], based on 35Cl. IR [KBr, cm-1] ν 3197 (NH), 1611 and 1552 (CN), 1362 (C—O). The 3-chlorobenzoic acid was subsequently found to be an impurity in the 3-chlorobenzaldehyde reagent.

Refinement top

The quinolinium- and C-bound H atoms were geometrically placed (N–H = 0.88 Å and C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The amine-bound H atom was located from a difference map and refined (N–H = 0.89 (3) Å) with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the cation in (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. The molecular structure of the anion in (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 3] Fig. 3. View of the centrosymmetric 20-membered {···OCO···HNC3NH}2 synthon in (I) showing the N–H···O hydrogen bonding as orange dashed lines. Colour code: Cl, cyan; O, red; N, blue; C, grey; and H, green.
[Figure 4] Fig. 4. A view of the linear supramolecular chain aligned along [1 0 0] in (I) where the dimeric aggregates illustrated in Fig. 3 are linked by ππ interactions (pink dashed lines).
7-Chloro-4-[(E)-(3-chlorobenzylidene)hydrazinyl]-1λ4-quinolinium 3-chlorobenzoate top
Crystal data top
C16H12Cl2N3+·C7H4ClO2Z = 2
Mr = 472.74F(000) = 484
Triclinic, P1Dx = 1.511 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8777 (2) ÅCell parameters from 16230 reflections
b = 10.7064 (3) Åθ = 2.9–27.5°
c = 11.9807 (3) ŵ = 0.47 mm1
α = 112.5318 (12)°T = 120 K
β = 91.6382 (15)°Block, yellow
γ = 97.4362 (15)°0.06 × 0.04 × 0.03 mm
V = 1039.17 (5) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
4746 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode3949 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.044
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1313
Tmin = 0.922, Tmax = 1.000l = 1515
16836 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0078P)2 + 1.9095P]
where P = (Fo2 + 2Fc2)/3
4746 reflections(Δ/σ)max = 0.001
283 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C16H12Cl2N3+·C7H4ClO2γ = 97.4362 (15)°
Mr = 472.74V = 1039.17 (5) Å3
Triclinic, P1Z = 2
a = 8.8777 (2) ÅMo Kα radiation
b = 10.7064 (3) ŵ = 0.47 mm1
c = 11.9807 (3) ÅT = 120 K
α = 112.5318 (12)°0.06 × 0.04 × 0.03 mm
β = 91.6382 (15)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4746 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3949 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 1.000Rint = 0.044
16836 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.40 e Å3
4746 reflectionsΔρmin = 0.45 e Å3
283 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20629 (7)0.15682 (6)0.12224 (5)0.02306 (14)
Cl20.85051 (7)0.10932 (6)1.02577 (5)0.02465 (15)
N10.0669 (2)0.2783 (2)0.43607 (18)0.0167 (4)
H1N0.007 (3)0.349 (3)0.417 (2)0.020*
N20.3644 (2)0.08652 (19)0.57378 (17)0.0161 (4)
H2N0.35800.14990.54480.019*
N30.4690 (2)0.1101 (2)0.67007 (17)0.0165 (4)
C10.1764 (3)0.2566 (2)0.5229 (2)0.0176 (5)
H10.18150.32460.55500.021*
C20.2826 (3)0.1393 (2)0.5677 (2)0.0169 (5)
H20.36190.12900.62690.020*
C30.2724 (2)0.0350 (2)0.5250 (2)0.0150 (4)
C40.1584 (2)0.0590 (2)0.4281 (2)0.0152 (4)
C50.1406 (3)0.0354 (2)0.3736 (2)0.0160 (4)
H50.20700.12030.40120.019*
C60.0291 (3)0.0063 (2)0.2819 (2)0.0178 (5)
H60.01730.07090.24690.021*
C70.0678 (3)0.1204 (2)0.2400 (2)0.0174 (5)
C80.0558 (3)0.2149 (2)0.2900 (2)0.0163 (4)
H80.12260.29960.26070.020*
C90.0570 (2)0.1842 (2)0.3852 (2)0.0148 (4)
C100.5321 (3)0.2345 (2)0.7240 (2)0.0183 (5)
H100.50720.30080.69480.022*
C110.6420 (3)0.2766 (2)0.8300 (2)0.0190 (5)
C120.6897 (3)0.1816 (2)0.8718 (2)0.0178 (5)
H120.65190.08690.83130.021*
C130.7928 (3)0.2280 (2)0.9730 (2)0.0197 (5)
C140.8501 (3)0.3651 (3)1.0350 (2)0.0262 (6)
H140.92080.39451.10430.031*
C150.8015 (3)0.4585 (3)0.9931 (2)0.0316 (6)
H150.83880.55321.03460.038*
C160.6988 (3)0.4153 (3)0.8908 (2)0.0274 (6)
H160.66730.48030.86250.033*
Cl30.12274 (6)0.37851 (6)0.30843 (6)0.02426 (14)
O10.67939 (19)0.66372 (16)0.43847 (15)0.0212 (4)
O20.84256 (18)0.51324 (17)0.36860 (16)0.0216 (4)
C170.7100 (3)0.5460 (2)0.3827 (2)0.0165 (5)
C180.5784 (3)0.4312 (2)0.3217 (2)0.0164 (4)
C190.4291 (3)0.4533 (2)0.3442 (2)0.0173 (5)
H190.40910.53820.40190.021*
C200.3100 (3)0.3500 (2)0.2816 (2)0.0182 (5)
C210.3357 (3)0.2254 (2)0.1967 (2)0.0218 (5)
H210.25260.15640.15350.026*
C220.4848 (3)0.2028 (3)0.1756 (2)0.0243 (5)
H220.50410.11750.11830.029*
C230.6058 (3)0.3051 (2)0.2385 (2)0.0206 (5)
H230.70770.28890.22450.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0229 (3)0.0245 (3)0.0229 (3)0.0014 (2)0.0066 (2)0.0127 (2)
Cl20.0323 (3)0.0204 (3)0.0219 (3)0.0074 (2)0.0037 (2)0.0082 (2)
N10.0171 (10)0.0126 (9)0.0215 (10)0.0015 (7)0.0001 (8)0.0081 (8)
N20.0163 (9)0.0142 (9)0.0183 (10)0.0005 (7)0.0038 (7)0.0080 (8)
N30.0153 (9)0.0180 (10)0.0158 (9)0.0014 (7)0.0011 (7)0.0067 (8)
C10.0199 (11)0.0147 (11)0.0211 (12)0.0062 (9)0.0018 (9)0.0092 (9)
C20.0163 (11)0.0156 (11)0.0181 (11)0.0020 (9)0.0011 (9)0.0061 (9)
C30.0127 (10)0.0143 (11)0.0177 (11)0.0041 (8)0.0035 (8)0.0051 (9)
C40.0141 (10)0.0159 (11)0.0165 (11)0.0047 (8)0.0028 (8)0.0065 (9)
C50.0173 (11)0.0125 (10)0.0178 (11)0.0025 (8)0.0033 (9)0.0052 (9)
C60.0210 (12)0.0159 (11)0.0188 (11)0.0043 (9)0.0030 (9)0.0087 (9)
C70.0162 (11)0.0200 (12)0.0156 (11)0.0033 (9)0.0003 (9)0.0067 (9)
C80.0161 (11)0.0132 (10)0.0177 (11)0.0001 (8)0.0014 (9)0.0048 (9)
C90.0159 (11)0.0128 (10)0.0162 (11)0.0025 (8)0.0019 (8)0.0060 (9)
C100.0195 (11)0.0164 (11)0.0195 (12)0.0004 (9)0.0005 (9)0.0085 (9)
C110.0211 (12)0.0179 (11)0.0179 (11)0.0009 (9)0.0007 (9)0.0075 (9)
C120.0183 (11)0.0150 (11)0.0177 (11)0.0006 (9)0.0001 (9)0.0050 (9)
C130.0231 (12)0.0198 (12)0.0190 (12)0.0044 (9)0.0018 (9)0.0103 (10)
C140.0321 (14)0.0227 (13)0.0207 (12)0.0044 (11)0.0088 (10)0.0083 (10)
C150.0453 (17)0.0165 (12)0.0277 (14)0.0068 (11)0.0131 (12)0.0077 (11)
C160.0376 (15)0.0193 (12)0.0257 (13)0.0007 (11)0.0082 (11)0.0115 (11)
Cl30.0161 (3)0.0240 (3)0.0307 (3)0.0009 (2)0.0005 (2)0.0094 (3)
O10.0227 (9)0.0133 (8)0.0253 (9)0.0007 (6)0.0033 (7)0.0061 (7)
O20.0170 (8)0.0168 (8)0.0296 (10)0.0006 (6)0.0019 (7)0.0085 (7)
C170.0195 (11)0.0154 (11)0.0166 (11)0.0018 (9)0.0025 (9)0.0092 (9)
C180.0180 (11)0.0145 (11)0.0175 (11)0.0012 (8)0.0011 (9)0.0085 (9)
C190.0208 (11)0.0145 (11)0.0165 (11)0.0020 (9)0.0003 (9)0.0065 (9)
C200.0168 (11)0.0195 (12)0.0205 (11)0.0012 (9)0.0002 (9)0.0108 (9)
C210.0222 (12)0.0180 (12)0.0208 (12)0.0049 (9)0.0012 (10)0.0054 (10)
C220.0279 (13)0.0158 (11)0.0233 (13)0.0006 (10)0.0033 (10)0.0024 (10)
C230.0208 (12)0.0195 (12)0.0211 (12)0.0019 (9)0.0029 (9)0.0077 (10)
Geometric parameters (Å, º) top
Cl1—C71.735 (2)C11—C161.395 (3)
Cl2—C131.744 (2)C11—C121.398 (3)
N1—C11.334 (3)C12—C131.383 (3)
N1—C91.373 (3)C12—H120.9500
N1—H1N0.89 (3)C13—C141.384 (3)
N2—C31.348 (3)C14—C151.386 (4)
N2—N31.383 (3)C14—H140.9500
N2—H2N0.8800C15—C161.392 (4)
N3—C101.277 (3)C15—H150.9500
C1—C21.379 (3)C16—H160.9500
C1—H10.9500Cl3—C201.745 (2)
C2—C31.407 (3)O1—C171.250 (3)
C2—H20.9500O2—C171.269 (3)
C3—C41.440 (3)C17—C181.517 (3)
C4—C91.416 (3)C18—C191.392 (3)
C4—C51.420 (3)C18—C231.394 (3)
C5—C61.371 (3)C19—C201.385 (3)
C5—H50.9500C19—H190.9500
C6—C71.408 (3)C20—C211.385 (3)
C6—H60.9500C21—C221.389 (4)
C7—C81.372 (3)C21—H210.9500
C8—C91.405 (3)C22—C231.392 (3)
C8—H80.9500C22—H220.9500
C10—C111.465 (3)C23—H230.9500
C10—H100.9500
C1—N1—C9120.8 (2)C16—C11—C10118.8 (2)
C1—N1—H1N119.7 (17)C12—C11—C10121.6 (2)
C9—N1—H1N119.0 (17)C13—C12—C11118.9 (2)
C3—N2—N3119.06 (18)C13—C12—H12120.6
C3—N2—H2N120.5C11—C12—H12120.6
N3—N2—H2N120.5C12—C13—C14122.4 (2)
C10—N3—N2114.66 (19)C12—C13—Cl2118.72 (18)
N1—C1—C2122.5 (2)C14—C13—Cl2118.83 (19)
N1—C1—H1118.8C13—C14—C15118.2 (2)
C2—C1—H1118.8C13—C14—H14120.9
C1—C2—C3119.4 (2)C15—C14—H14120.9
C1—C2—H2120.3C14—C15—C16120.9 (2)
C3—C2—H2120.3C14—C15—H15119.6
N2—C3—C2121.7 (2)C16—C15—H15119.6
N2—C3—C4119.7 (2)C15—C16—C11120.0 (2)
C2—C3—C4118.6 (2)C15—C16—H16120.0
C9—C4—C5117.9 (2)C11—C16—H16120.0
C9—C4—C3118.0 (2)O1—C17—O2125.9 (2)
C5—C4—C3124.1 (2)O1—C17—C18118.0 (2)
C6—C5—C4121.1 (2)O2—C17—C18116.1 (2)
C6—C5—H5119.4C19—C18—C23119.6 (2)
C4—C5—H5119.4C19—C18—C17120.1 (2)
C5—C6—C7119.3 (2)C23—C18—C17120.1 (2)
C5—C6—H6120.4C20—C19—C18119.3 (2)
C7—C6—H6120.4C20—C19—H19120.4
C8—C7—C6121.8 (2)C18—C19—H19120.4
C8—C7—Cl1119.40 (18)C19—C20—C21121.6 (2)
C6—C7—Cl1118.75 (17)C19—C20—Cl3119.25 (18)
C7—C8—C9118.8 (2)C21—C20—Cl3119.13 (18)
C7—C8—H8120.6C20—C21—C22119.1 (2)
C9—C8—H8120.6C20—C21—H21120.5
N1—C9—C8118.6 (2)C22—C21—H21120.5
N1—C9—C4120.5 (2)C21—C22—C23120.0 (2)
C8—C9—C4120.9 (2)C21—C22—H22120.0
N3—C10—C11121.2 (2)C23—C22—H22120.0
N3—C10—H10119.4C22—C23—C18120.4 (2)
C11—C10—H10119.4C22—C23—H23119.8
C16—C11—C12119.6 (2)C18—C23—H23119.8
C3—N2—N3—C10168.3 (2)C11—C12—C13—C140.3 (4)
C9—N1—C1—C21.3 (3)C11—C12—C13—Cl2179.37 (18)
N1—C1—C2—C32.9 (3)C12—C13—C14—C150.0 (4)
N3—N2—C3—C21.5 (3)Cl2—C13—C14—C15179.1 (2)
N3—N2—C3—C4177.33 (19)C13—C14—C15—C160.5 (4)
C1—C2—C3—N2173.8 (2)C14—C15—C16—C110.7 (4)
C1—C2—C3—C45.1 (3)C12—C11—C16—C150.4 (4)
N2—C3—C4—C9175.6 (2)C10—C11—C16—C15178.9 (2)
C2—C3—C4—C93.3 (3)O1—C17—C18—C1910.0 (3)
N2—C3—C4—C53.8 (3)O2—C17—C18—C19172.1 (2)
C2—C3—C4—C5177.3 (2)O1—C17—C18—C23166.8 (2)
C9—C4—C5—C60.3 (3)O2—C17—C18—C2311.1 (3)
C3—C4—C5—C6179.7 (2)C23—C18—C19—C201.1 (3)
C4—C5—C6—C70.9 (3)C17—C18—C19—C20175.7 (2)
C5—C6—C7—C81.2 (3)C18—C19—C20—C210.3 (3)
C5—C6—C7—Cl1178.96 (18)C18—C19—C20—Cl3179.20 (17)
C6—C7—C8—C90.3 (3)C19—C20—C21—C221.2 (4)
Cl1—C7—C8—C9179.89 (17)Cl3—C20—C21—C22179.88 (19)
C1—N1—C9—C8176.9 (2)C20—C21—C22—C230.7 (4)
C1—N1—C9—C43.2 (3)C21—C22—C23—C180.7 (4)
C7—C8—C9—N1179.0 (2)C19—C18—C23—C221.7 (4)
C7—C8—C9—C41.0 (3)C17—C18—C23—C22175.2 (2)
C5—C4—C9—N1178.7 (2)C2—C3—N2—N31.5 (3)
C3—C4—C9—N10.8 (3)C4—C3—N2—N3177.33 (19)
C5—C4—C9—C81.3 (3)N3—C10—C11—C124.1 (4)
C3—C4—C9—C8179.3 (2)N3—C10—C11—C16175.2 (2)
N2—N3—C10—C11178.2 (2)C19—C18—C17—O110.0 (3)
N3—C10—C11—C16175.2 (2)C19—C18—C17—O2172.1 (2)
N3—C10—C11—C124.1 (4)C23—C18—C17—O1166.8 (2)
C16—C11—C12—C130.1 (4)C23—C18—C17—O211.1 (3)
C10—C11—C12—C13179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O2i0.89 (3)1.76 (3)2.641 (3)175 (3)
N2—H2n···O1ii0.882.002.809 (3)152
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H12Cl2N3+·C7H4ClO2
Mr472.74
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.8777 (2), 10.7064 (3), 11.9807 (3)
α, β, γ (°)112.5318 (12), 91.6382 (15), 97.4362 (15)
V3)1039.17 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.06 × 0.04 × 0.03
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.922, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16836, 4746, 3949
Rint0.044
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.104, 1.07
No. of reflections4746
No. of parameters283
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.45

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O2i0.89 (3)1.76 (3)2.641 (3)175 (3)
N2—H2n···O1ii0.882.002.809 (3)152
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationAndrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm. 558, 194–198.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, G. M. A. P., Zanetta, N., de Souza, M. V. N., Freitas, I. Q., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649–653.  Web of Science CrossRef PubMed CAS Google Scholar
First citationElslager, E. F., Tendick, F. H. & Werbel, L. M. (1969). J. Med. Chem. 12, 600–607.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFont, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug. Des. Disc. 14, 259–272.  CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaminsky, D. & Meltzer, R. I. (1968). J. Med. Chem. 11, 160–163.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMusiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNakamura, T., Oka, M., Aizawa, K., Soda, H., Fukuda, M., Terashi, K., Ikeda, K., Mizuta, Y., Noguchi, Y., Kimura, Y., Tsuruo, T. & Kohno, S. (1999). Biochem. Biophys. Res. Commun. 255, 618–624.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPalmer, K. J., Holliday, S. M. & and Brogden, R. N. (1993). Drugs, 45, 430–475.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRidley, R. G. (2002). Nature (London), 415, 686–693.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, A. D. da, de Almeida, M. V., de Souza, M. V. N. & Couri, M. R. C. (2003). Curr. Med. Chem. 10, 21–39.  Web of Science PubMed Google Scholar
First citationSloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855–860.  PubMed CAS Web of Science Google Scholar
First citationSouza, M. V. N. de (2005). Mini Rev. Med. Chem. 5, 1009–1017.  Web of Science PubMed Google Scholar
First citationTanenbaum, L. & Tuffanelli, D. L. (1980). Arch. Dermatol. 116, 587–591.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWarshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett. 16, 5207–5211.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds