organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,3S)-Methyl 2-benzyl-6,7-dimeth­­oxy-1-phenyl-1,2,3,4-tetra­hydro­iso­quinoline-3-carboxyl­ate

aSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa, and bSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: govenderthav@ukzn.ac.za

(Received 20 November 2009; accepted 24 November 2009; online 28 November 2009)

In the title compound, C26H27NO4, a precursor to novel chiral catalysts, the N-containing six-membered ring assumes a half-boat conformation. Various C—H⋯π interactions and intermolecular short contacts (C⋯H = 2.81–2.90 Å) link the mol­ecules together in the crystal structure.

Related literature

For the synthesis, see: Chakka et al. (2009[Chakka, S., Andersson, P. G., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2009). Eur. J. Org. Chem.. In the press. doi:10.1002/EJOC.200.]). For crystallograhic details of analogous mol­ecules, see Alberch et al. (2004[Alberch, L., Bailey, P. D., Clingan, P. D., Mills, T. J., Price, R. A. & Pritchard, R. G. (2004). Eur. J. Org. Chem. 9, 1887-1890.]); Aubry et al. (2006[Aubry, S., Pellet-Rostaing, S., Faure, R. & Lemaire, M. (2006). J. Heterocycl. Chem. 43, 139-148.]).

[Scheme 1]

Experimental

Crystal data
  • C26H27NO4

  • Mr = 417.49

  • Triclinic, P 1

  • a = 6.0199 (1) Å

  • b = 9.2592 (2) Å

  • c = 11.0429 (2) Å

  • α = 73.365 (1)°

  • β = 74.694 (1)°

  • γ = 75.737 (1)°

  • V = 559.05 (2) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 173 K

  • 0.22 × 0.12 × 0.08 mm

Data collection
  • Bruker Kappa Duo APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.692, Tmax = 0.753

  • 7546 measured reflections

  • 3561 independent reflections

  • 3536 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.077

  • S = 1.07

  • 3561 reflections

  • 281 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1483 Friedel pairs

  • Flack parameter: −0.01 (14)

Table 1
C—H⋯π interaction (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19ACgi 0.98 2.82 3.639 (2) 148
Symmetry code: (i) x+1, y+1, z-1. Cg is the centroid of the C21–C26 ring.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: ORTEP-3.

Supporting information


Comment top

The title compound (2, Scheme 1) is a precursor in the synthesis of novel chiral ligands containing a tetrahydroisoquinoline backbone. We have recently reported the use of these ligands as successful catalysts for transfer hydrogenations reactions (Chakka et al., 2009).

Compound 2 was derived from commercially available L-DOPA and benzaldehyde. Diastereomers formed during the first step of the synthesis were separated to yield subsequent derivatives and the title compound and with the stereochemistry as illustrated in Figure 1. The absolute stereochemistry was confirmed to be R,S at C1 and C9 positions respectively.

From the crystal structure it is evident that the N-containing six membered ring assumes a half boat conformation (Figure 1). This differs from an analogous structure which assumes a half chair conformation (Aubry et al., 2006 and Alberch et al., 2004). A possible reason for this change in conformation could be either the introduction of a substitutent on the nitrogen or the trans position of the phenyl ring at the C1 position.

The molecule exhibits various intermolecular short contacts i.e. between the methyl ester hydrogen (H11C) and phenyl ring (C14) of a neighbouring molecule; H15 to C6 and C7 and H24 to C14 and C15.

The methoxy groups display different interactions. The first methoxy group at C4 position displays one interaction between H18B and O2, which is the ether oxygen of the other methoxy group. The second methoxy group at C5 position displays three interactions; the first being the above mentioned interaction with H18B and O2, the second being a short contact between O2 and H25, and the third being another CH-π the interaction between H19A and C25. The atoms involved in these short contacts are shown in Figure 2.

Related literature top

For the synthesis, see: Chakka et al. (2009). For crystallograhic details of analogous molecules, see Alberch et al. (2004); Aubry et al. (2006).

Experimental top

To a solution of 1 (Scheme 1) (500 mg, 1.52 mmol) in acetonitrile (20 ml), solid K2CO3 (635 mg, 4.58 mmol) was added followed by benzyl bromide (286 mg, 1.67 mmol) at ambient temperature. There after the reaction mixture was refluxed for 3 h. Completion of the reaction was monitored with TLC using hexane/ethyl acetate (60:40, Rf 1/2). The solvent was evaporated and 30 ml of ethylacetate was added, washed with 2 × 10 ml of water, the organic layer was separated, and dried over anhydrous MgSO4. The solvent was evaporated under reduced pressure to afford crude product, which was purified by column chromatography using hexane/ethyl acetate (60:40) as the eluent to yield pure benzyl ester 2 (0.44 g, 90%) as a white solid.

1H NMR (400 MHz/CDCl3): δ = 7.44 (d, J = 1.16 Hz, 2H), 7.32–7.10 (m, 14H), 7.0–6.88 (m, 6H), 6.69 (s, 1H), 6.38 (s, 1H), 4.74 (s,1H), 4.21 (d, J = 13.60 Hz, 1H), 4.14 (q, J = 3.70, 12.74 Hz, 1H), 3.89 (s, 3H), 3.72 (s, 3H), 3.57 (s, 1H), 3.30–3.18 (m, 2H), 2.60 (dd, J = 3.60, 16.48 Hz, 1H).

Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of 2 in dichloromethane at room temperature.

Refinement top

Hydrogen atoms, first located in the difference map, were positioned geometrically and allowed to ride on their respective parent atoms, with C—H bond lengths of 1.00 (CH), 0.99 (CH2), 0.98 (CH3) or 0.93 (aromatic CH). They were then refined with a riding model with Uiso(H) = 1.5Ueq(CH3) and Uiso(H) = 1.2Ueq(X) for X = CH or CH2. The largest residual electron density peak of 0.16 e/Å3 is 0.86 Å from O4.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and X-SEED (Barbour, 2001); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound 2 showing numbering scheme. Displacement elipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Intermolecular short contact interactions present in the crystal structure of the title compound 2. The atoms involved in the interactions (as discussed) are labelled. different interactions displayed by methoxy groups. Displacement ellipsoids are drawn at the 30% probability level, and the hydrogen atoms appear as speheres of arbitrary radii.
[Figure 3] Fig. 3. The formation of the title compound.
(1R,3S)-Methyl 2-benzyl-6,7-dimethoxy-1-phenyl-1,2,3,4- tetrahydroisoquinoline-3-carboxylate top
Crystal data top
C26H27NO4Z = 1
Mr = 417.49F(000) = 222
Triclinic, P1Dx = 1.240 Mg m3
Hall symbol: P 1Melting point: 420 K
a = 6.0199 (1) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.2592 (2) ÅCell parameters from 7546 reflections
c = 11.0429 (2) Åθ = 4.3–68.9°
α = 73.365 (1)°µ = 0.67 mm1
β = 74.694 (1)°T = 173 K
γ = 75.737 (1)°Needle, yellow
V = 559.05 (2) Å30.22 × 0.12 × 0.08 mm
Data collection top
Bruker Kappa Duo APEXII
diffractometer
3561 independent reflections
Radiation source: fine-focus sealed tube3536 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
0.5° ϕ scans and ω scansθmax = 68.9°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 67
Tmin = 0.692, Tmax = 0.753k = 1010
7546 measured reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.0785P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.16 e Å3
3561 reflectionsΔρmin = 0.16 e Å3
281 parametersExtinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.0426 (18)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1483 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (14)
Crystal data top
C26H27NO4γ = 75.737 (1)°
Mr = 417.49V = 559.05 (2) Å3
Triclinic, P1Z = 1
a = 6.0199 (1) ÅCu Kα radiation
b = 9.2592 (2) ŵ = 0.67 mm1
c = 11.0429 (2) ÅT = 173 K
α = 73.365 (1)°0.22 × 0.12 × 0.08 mm
β = 74.694 (1)°
Data collection top
Bruker Kappa Duo APEXII
diffractometer
3561 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3536 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.753Rint = 0.012
7546 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.16 e Å3
S = 1.07Δρmin = 0.16 e Å3
3561 reflectionsAbsolute structure: Flack (1983), 1483 Friedel pairs
281 parametersAbsolute structure parameter: 0.01 (14)
3 restraints
Special details top

Experimental. Half sphere of data collected using SAINT strategy (Bruker, 2006). Crystal to detector distance = 50 mm; combination of ϕ and ω scans of 0.5°, 80 s per °, 2 iterations.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2537 (2)0.14310 (13)0.46249 (10)0.0396 (3)
O20.51646 (19)0.27489 (12)0.53134 (10)0.0364 (3)
O30.3602 (2)0.20138 (13)1.02179 (14)0.0468 (3)
O40.1914 (3)0.23948 (15)1.16480 (12)0.0514 (4)
N10.0675 (2)0.10502 (13)1.05031 (11)0.0262 (3)
C10.1027 (2)0.07812 (15)0.91791 (14)0.0247 (3)
H10.26410.01790.91330.030*
C20.0745 (2)0.01232 (15)0.81875 (14)0.0256 (3)
C30.0848 (3)0.03078 (16)0.68640 (14)0.0283 (3)
H30.01280.01690.66120.034*
C40.2340 (3)0.11668 (16)0.59283 (14)0.0298 (3)
C50.3790 (2)0.18793 (15)0.63010 (14)0.0280 (3)
C60.3717 (2)0.16708 (16)0.75934 (14)0.0270 (3)
H60.47250.21220.78460.032*
C70.2187 (2)0.08063 (15)0.85461 (13)0.0252 (3)
C80.2148 (2)0.06332 (17)0.99497 (14)0.0292 (3)
H8A0.23700.16061.00670.035*
H8B0.34680.01801.02060.035*
C90.0138 (3)0.02263 (16)1.08230 (14)0.0269 (3)
H90.01520.01551.17210.032*
C100.2107 (3)0.16235 (17)1.08378 (14)0.0308 (3)
C110.3714 (5)0.3725 (2)1.1814 (2)0.0633 (6)
H11A0.33930.41991.24220.095*
H11B0.52440.34121.21530.095*
H11C0.37250.44661.09790.095*
C120.0842 (3)0.23317 (16)0.89052 (13)0.0263 (3)
C130.2621 (3)0.26446 (17)0.84954 (14)0.0293 (3)
H130.39660.18760.83630.035*
C140.2445 (3)0.40782 (18)0.82777 (16)0.0346 (3)
H140.36730.42850.79980.042*
C150.0496 (3)0.52049 (17)0.84649 (16)0.0368 (4)
H150.03780.61840.83150.044*
C160.1286 (3)0.48936 (17)0.88734 (16)0.0382 (4)
H160.26320.56620.90020.046*
C170.1116 (3)0.34743 (17)0.90937 (16)0.0330 (3)
H170.23440.32740.93770.040*
C180.1052 (3)0.0782 (2)0.41938 (17)0.0462 (4)
H18A0.13490.10620.32470.069*
H18B0.05910.11760.45410.069*
H18C0.13790.03370.44970.069*
C190.6262 (3)0.3736 (2)0.56531 (18)0.0429 (4)
H19A0.71980.42940.48720.064*
H19B0.72830.31230.62490.064*
H19C0.50590.44690.60720.064*
C200.2513 (3)0.17390 (17)1.15037 (14)0.0304 (3)
H20A0.29270.25421.12190.037*
H20B0.39340.09441.16350.037*
C210.1694 (3)0.24341 (17)1.27560 (14)0.0311 (3)
C220.2758 (3)0.1877 (2)1.38479 (16)0.0404 (4)
H220.40930.10751.38260.049*
C230.1904 (4)0.2472 (2)1.49690 (17)0.0506 (5)
H230.26610.20861.57140.061*
C240.0038 (4)0.3620 (2)1.50087 (18)0.0536 (5)
H240.06420.40161.57750.064*
C250.1101 (4)0.4193 (3)1.39405 (19)0.0553 (5)
H250.24360.49941.39710.066*
C260.0240 (3)0.3612 (2)1.28165 (17)0.0442 (4)
H260.09800.40221.20820.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0486 (7)0.0478 (7)0.0253 (5)0.0190 (5)0.0072 (5)0.0048 (5)
O20.0368 (6)0.0380 (6)0.0331 (6)0.0168 (5)0.0028 (5)0.0019 (4)
O30.0365 (6)0.0370 (6)0.0757 (9)0.0013 (5)0.0246 (6)0.0222 (6)
O40.0722 (10)0.0442 (7)0.0412 (6)0.0050 (6)0.0192 (6)0.0217 (5)
N10.0261 (6)0.0264 (6)0.0261 (6)0.0075 (5)0.0070 (5)0.0023 (5)
C10.0222 (7)0.0244 (7)0.0275 (7)0.0042 (5)0.0065 (6)0.0050 (5)
C20.0230 (7)0.0222 (6)0.0291 (7)0.0020 (5)0.0053 (6)0.0044 (5)
C30.0290 (7)0.0276 (7)0.0295 (7)0.0058 (6)0.0086 (6)0.0058 (6)
C40.0312 (8)0.0294 (8)0.0275 (7)0.0033 (6)0.0076 (6)0.0052 (6)
C50.0250 (7)0.0236 (7)0.0311 (7)0.0033 (5)0.0040 (6)0.0027 (5)
C60.0230 (7)0.0245 (7)0.0337 (8)0.0024 (5)0.0085 (6)0.0065 (6)
C70.0228 (7)0.0222 (7)0.0297 (7)0.0006 (5)0.0088 (6)0.0049 (6)
C80.0263 (8)0.0325 (7)0.0302 (7)0.0075 (6)0.0081 (6)0.0058 (6)
C90.0275 (7)0.0291 (7)0.0250 (6)0.0072 (5)0.0069 (6)0.0050 (5)
C100.0316 (8)0.0305 (7)0.0298 (7)0.0109 (6)0.0013 (6)0.0065 (6)
C110.0849 (16)0.0475 (11)0.0494 (11)0.0069 (10)0.0024 (11)0.0257 (9)
C120.0268 (7)0.0247 (7)0.0253 (7)0.0068 (5)0.0022 (6)0.0040 (5)
C130.0283 (8)0.0314 (7)0.0285 (7)0.0065 (6)0.0038 (6)0.0085 (6)
C140.0344 (8)0.0366 (8)0.0369 (8)0.0141 (6)0.0029 (7)0.0126 (6)
C150.0429 (9)0.0267 (7)0.0385 (8)0.0109 (7)0.0038 (7)0.0115 (6)
C160.0353 (8)0.0269 (8)0.0444 (9)0.0015 (6)0.0021 (7)0.0057 (6)
C170.0285 (7)0.0303 (8)0.0387 (8)0.0053 (6)0.0058 (6)0.0069 (6)
C180.0482 (10)0.0640 (12)0.0332 (8)0.0173 (8)0.0102 (8)0.0148 (8)
C190.0440 (9)0.0401 (9)0.0446 (9)0.0217 (7)0.0066 (8)0.0005 (7)
C200.0289 (7)0.0335 (7)0.0287 (7)0.0100 (6)0.0052 (6)0.0042 (6)
C210.0307 (8)0.0308 (8)0.0297 (7)0.0122 (6)0.0048 (6)0.0001 (6)
C220.0433 (9)0.0407 (9)0.0340 (8)0.0071 (7)0.0067 (7)0.0055 (7)
C230.0641 (13)0.0568 (11)0.0323 (8)0.0186 (9)0.0081 (8)0.0083 (8)
C240.0515 (11)0.0696 (13)0.0350 (9)0.0169 (10)0.0173 (8)0.0073 (8)
C250.0405 (10)0.0633 (12)0.0423 (10)0.0024 (8)0.0087 (8)0.0080 (9)
C260.0414 (10)0.0460 (10)0.0322 (8)0.0004 (7)0.0032 (7)0.0005 (7)
Geometric parameters (Å, º) top
O1—C41.3668 (18)C12—C171.393 (2)
O1—C181.428 (2)C13—C141.390 (2)
O2—C51.3681 (17)C13—H130.9500
O2—C191.428 (2)C14—C151.382 (2)
O3—C101.197 (2)C14—H140.9500
O4—C101.3363 (19)C15—C161.385 (3)
O4—C111.446 (2)C15—H150.9500
N1—C91.4538 (18)C16—C171.379 (2)
N1—C201.4667 (18)C16—H160.9500
N1—C11.4743 (18)C17—H170.9500
C1—C121.5222 (19)C18—H18A0.9800
C1—C21.5285 (19)C18—H18B0.9800
C1—H11.0000C18—H18C0.9800
C2—C71.381 (2)C19—H19A0.9800
C2—C31.408 (2)C19—H19B0.9800
C3—C41.378 (2)C19—H19C0.9800
C3—H30.9500C20—C211.505 (2)
C4—C51.412 (2)C20—H20A0.9900
C5—C61.375 (2)C20—H20B0.9900
C6—C71.402 (2)C21—C221.384 (2)
C6—H60.9500C21—C261.387 (2)
C7—C81.506 (2)C22—C231.381 (3)
C8—C91.521 (2)C22—H220.9500
C8—H8A0.9900C23—C241.374 (3)
C8—H8B0.9900C23—H230.9500
C9—C101.525 (2)C24—C251.369 (3)
C9—H91.0000C24—H240.9500
C11—H11A0.9800C25—C261.385 (3)
C11—H11B0.9800C25—H250.9500
C11—H11C0.9800C26—H260.9500
C12—C131.386 (2)
C4—O1—C18117.43 (12)C17—C12—C1119.97 (13)
C5—O2—C19116.91 (12)C12—C13—C14120.24 (14)
C10—O4—C11116.59 (16)C12—C13—H13119.9
C9—N1—C20111.85 (11)C14—C13—H13119.9
C9—N1—C1116.21 (11)C15—C14—C13120.45 (15)
C20—N1—C1113.54 (11)C15—C14—H14119.8
N1—C1—C12108.07 (11)C13—C14—H14119.8
N1—C1—C2111.52 (11)C14—C15—C16119.39 (14)
C12—C1—C2111.33 (11)C14—C15—H15120.3
N1—C1—H1108.6C16—C15—H15120.3
C12—C1—H1108.6C17—C16—C15120.36 (14)
C2—C1—H1108.6C17—C16—H16119.8
C7—C2—C3119.04 (13)C15—C16—H16119.8
C7—C2—C1122.20 (12)C16—C17—C12120.60 (15)
C3—C2—C1118.73 (13)C16—C17—H17119.7
C4—C3—C2121.22 (14)C12—C17—H17119.7
C4—C3—H3119.4O1—C18—H18A109.5
C2—C3—H3119.4O1—C18—H18B109.5
O1—C4—C3125.46 (14)H18A—C18—H18B109.5
O1—C4—C5115.04 (12)O1—C18—H18C109.5
C3—C4—C5119.50 (13)H18A—C18—H18C109.5
O2—C5—C6125.15 (14)H18B—C18—H18C109.5
O2—C5—C4115.76 (13)O2—C19—H19A109.5
C6—C5—C4119.09 (13)O2—C19—H19B109.5
C5—C6—C7121.42 (14)H19A—C19—H19B109.5
C5—C6—H6119.3O2—C19—H19C109.5
C7—C6—H6119.3H19A—C19—H19C109.5
C2—C7—C6119.71 (13)H19B—C19—H19C109.5
C2—C7—C8120.93 (12)N1—C20—C21110.54 (12)
C6—C7—C8119.36 (13)N1—C20—H20A109.5
C7—C8—C9112.16 (12)C21—C20—H20A109.5
C7—C8—H8A109.2N1—C20—H20B109.5
C9—C8—H8A109.2C21—C20—H20B109.5
C7—C8—H8B109.2H20A—C20—H20B108.1
C9—C8—H8B109.2C22—C21—C26118.49 (15)
H8A—C8—H8B107.9C22—C21—C20121.50 (15)
N1—C9—C8109.50 (12)C26—C21—C20119.94 (15)
N1—C9—C10115.01 (12)C23—C22—C21120.77 (17)
C8—C9—C10112.26 (12)C23—C22—H22119.6
N1—C9—H9106.5C21—C22—H22119.6
C8—C9—H9106.5C24—C23—C22120.14 (18)
C10—C9—H9106.5C24—C23—H23119.9
O3—C10—O4123.72 (15)C22—C23—H23119.9
O3—C10—C9126.64 (14)C25—C24—C23119.84 (18)
O4—C10—C9109.64 (13)C25—C24—H24120.1
O4—C11—H11A109.5C23—C24—H24120.1
O4—C11—H11B109.5C24—C25—C26120.33 (18)
H11A—C11—H11B109.5C24—C25—H25119.8
O4—C11—H11C109.5C26—C25—H25119.8
H11A—C11—H11C109.5C25—C26—C21120.42 (17)
H11B—C11—H11C109.5C25—C26—H26119.8
C13—C12—C17118.96 (13)C21—C26—H26119.8
C13—C12—C1121.05 (13)
C9—N1—C1—C12163.45 (12)C1—N1—C9—C1065.95 (16)
C20—N1—C1—C1264.73 (15)C7—C8—C9—N149.38 (16)
C9—N1—C1—C240.77 (16)C7—C8—C9—C1079.63 (15)
C20—N1—C1—C2172.59 (11)C11—O4—C10—O33.4 (2)
N1—C1—C2—C710.29 (17)C11—O4—C10—C9177.57 (15)
C12—C1—C2—C7131.08 (14)N1—C9—C10—O328.2 (2)
N1—C1—C2—C3171.92 (11)C8—C9—C10—O397.86 (18)
C12—C1—C2—C351.13 (17)N1—C9—C10—O4152.77 (13)
C7—C2—C3—C40.7 (2)C8—C9—C10—O481.16 (15)
C1—C2—C3—C4177.19 (12)N1—C1—C12—C13125.53 (14)
C18—O1—C4—C30.9 (2)C2—C1—C12—C13111.68 (14)
C18—O1—C4—C5177.87 (13)N1—C1—C12—C1753.04 (16)
C2—C3—C4—O1178.91 (14)C2—C1—C12—C1769.75 (16)
C2—C3—C4—C50.1 (2)C17—C12—C13—C140.0 (2)
C19—O2—C5—C612.4 (2)C1—C12—C13—C14178.56 (13)
C19—O2—C5—C4167.07 (13)C12—C13—C14—C150.1 (2)
O1—C4—C5—O20.83 (18)C13—C14—C15—C160.1 (2)
C3—C4—C5—O2178.07 (12)C14—C15—C16—C170.1 (2)
O1—C4—C5—C6179.67 (13)C15—C16—C17—C120.2 (2)
C3—C4—C5—C61.4 (2)C13—C12—C17—C160.2 (2)
O2—C5—C6—C7177.51 (12)C1—C12—C17—C16178.75 (14)
C4—C5—C6—C71.9 (2)C9—N1—C20—C2164.04 (15)
C3—C2—C7—C60.19 (19)C1—N1—C20—C21162.04 (12)
C1—C2—C7—C6177.59 (12)N1—C20—C21—C22115.75 (16)
C3—C2—C7—C8179.65 (13)N1—C20—C21—C2661.09 (19)
C1—C2—C7—C82.57 (19)C26—C21—C22—C230.5 (3)
C5—C6—C7—C21.1 (2)C20—C21—C22—C23176.41 (16)
C5—C6—C7—C8179.02 (13)C21—C22—C23—C240.7 (3)
C2—C7—C8—C922.20 (18)C22—C23—C24—C251.2 (3)
C6—C7—C8—C9157.96 (12)C23—C24—C25—C260.6 (3)
C20—N1—C9—C8165.87 (12)C24—C25—C26—C210.6 (3)
C1—N1—C9—C861.53 (16)C22—C21—C26—C251.1 (3)
C20—N1—C9—C1066.65 (15)C20—C21—C26—C25175.85 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···Cgi0.982.823.639 (2)148
Symmetry code: (i) x+1, y+1, z1.

Experimental details

Crystal data
Chemical formulaC26H27NO4
Mr417.49
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.0199 (1), 9.2592 (2), 11.0429 (2)
α, β, γ (°)73.365 (1), 74.694 (1), 75.737 (1)
V3)559.05 (2)
Z1
Radiation typeCu Kα
µ (mm1)0.67
Crystal size (mm)0.22 × 0.12 × 0.08
Data collection
DiffractometerBruker Kappa Duo APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.692, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
7546, 3561, 3536
Rint0.012
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.077, 1.07
No. of reflections3561
No. of parameters281
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16
Absolute structureFlack (1983), 1483 Friedel pairs
Absolute structure parameter0.01 (14)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and X-SEED (Barbour, 2001), ORTEP-3 (Farrugia, 1997), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···Cgi0.982.823.639 (2)148
Symmetry code: (i) x+1, y+1, z1.
 

Acknowledgements

The authors wish to thank Dr Hong Su of the Chemistry Department at the University of Cape Town for his assistance with the crystallographic data collection.

References

First citationAlberch, L., Bailey, P. D., Clingan, P. D., Mills, T. J., Price, R. A. & Pritchard, R. G. (2004). Eur. J. Org. Chem. 9, 1887–1890.  Web of Science CSD CrossRef Google Scholar
First citationAubry, S., Pellet-Rostaing, S., Faure, R. & Lemaire, M. (2006). J. Heterocycl. Chem. 43, 139–148.  CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakka, S., Andersson, P. G., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2009). Eur. J. Org. Chem.. In the press. doi:10.1002/EJOC.200.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds