organic compounds
2-[(E)-(1H-Pyrrol-2-ylmethylidene)hydrazinyl]pyridine monohydrate
aDepartamento de Quimica, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and dCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com
The title hydrate, C10H10N4·H2O, shows a small twist in the hydrozone derivative, the dihedral angle between the pyridine and pyrrole rings being 11.08 (12)°. The pyridine and pyrrole N atoms lie to the same side of the molecule being sustained in place by hydrogen-bonding interactions with the water molecule. Further intermolecular O—H⋯N and N—H⋯O hydrogen bonding leads to the formation of supramolecular arrays in the ab plane.
Related literature
For related structures of hydrozone derivatives, see: Baddeley et al. (2009); Ferguson et al. (2005); Wardell, Low & Glidewell (2007); Wardell, Skakle, Low & Glidewell (2007). For additional structural analaysis, see: Spek (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT data reduction: DENZO nd COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809050296/hg2608sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809050296/hg2608Isup2.hkl
A solution of 2-hydrazinopyridine (0.330 g, 3 mmol) in MeOH (15 ml) was added to a solution of 2-pyrrolcarboxaldehyde (0.270 g, 3 mmol) in MeOH (10 ml). The reaction mixture was refluxed for 20 min, and maintained at room temperature. The crystals which slowly formed were collected and recrystallized twice from MeOH. M. pt. 449 - 452 K. IR(KBr, cm-1): ν 1603(C=N). Anal. Found, C, 59.13; H, 5.81; N, 27.71. Calc. for C10H10N4.H2O: C, 58.82; H, 5.92; N, 27.43%
The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O– and N-bound H atoms were located from a difference map and included in their idealized positions with O–H = 0.84±0.01 and N–H = 0.88±0.01 Å, and with Uiso(H) = nUeq(O, N); n = 1.5 for O and n = 1.2 for N. After analysis with PLATON (Spek, 2003), the structure was refined as a twin, with the twin component related by -1 0 0, 0 - 1 0, 2 0 1, and with a fractional contribution of 0.4418 (23).
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).C10H10N4·H2O | F(000) = 432 |
Mr = 204.24 | Dx = 1.359 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 18744 reflections |
a = 5.6479 (3) Å | θ = 2.9–27.5° |
b = 7.4383 (4) Å | µ = 0.09 mm−1 |
c = 24.4233 (11) Å | T = 120 K |
β = 103.300 (3)° | Block, colourless |
V = 998.52 (9) Å3 | 0.24 × 0.22 × 0.04 mm |
Z = 4 |
Nonius KappaCCD area-detector diffractometer | 1680 independent reflections |
Radiation source: Enraf Nonius FR591 rotating anode | 1636 reflections with I > 2σ(I) |
10 cm confocal mirrors monochromator | Rint = 0.027 |
Detector resolution: 9.091 pixels mm-1 | θmax = 25.0°, θmin = 3.2° |
ϕ and ω scans | h = −6→6 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −8→8 |
Tmin = 0.670, Tmax = 0.746 | l = −28→28 |
3068 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0651P)2 + 0.3833P] where P = (Fo2 + 2Fc2)/3 |
1680 reflections | (Δ/σ)max < 0.001 |
149 parameters | Δρmax = 0.19 e Å−3 |
4 restraints | Δρmin = −0.24 e Å−3 |
C10H10N4·H2O | V = 998.52 (9) Å3 |
Mr = 204.24 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.6479 (3) Å | µ = 0.09 mm−1 |
b = 7.4383 (4) Å | T = 120 K |
c = 24.4233 (11) Å | 0.24 × 0.22 × 0.04 mm |
β = 103.300 (3)° |
Nonius KappaCCD area-detector diffractometer | 1680 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 1636 reflections with I > 2σ(I) |
Tmin = 0.670, Tmax = 0.746 | Rint = 0.027 |
3068 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 4 restraints |
wR(F2) = 0.109 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.19 e Å−3 |
1680 reflections | Δρmin = −0.24 e Å−3 |
149 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1W | 0.0268 (3) | 0.5726 (2) | 0.74096 (6) | 0.0234 (4) | |
H1W | 0.088 (5) | 0.635 (3) | 0.7695 (7) | 0.035* | |
H2W | −0.071 (4) | 0.501 (3) | 0.7507 (11) | 0.035* | |
N1 | 0.2897 (3) | 0.7646 (2) | 0.83791 (7) | 0.0221 (4) | |
N2 | 0.5539 (4) | 0.8844 (2) | 0.78669 (8) | 0.0218 (4) | |
H2N | 0.694 (3) | 0.935 (3) | 0.7844 (10) | 0.026* | |
N3 | 0.3760 (4) | 0.8612 (2) | 0.73892 (7) | 0.0205 (4) | |
N4 | 0.0207 (4) | 0.7784 (2) | 0.64316 (7) | 0.0205 (4) | |
H4N | 0.000 (5) | 0.726 (3) | 0.6740 (6) | 0.025* | |
C1 | 0.4955 (4) | 0.8541 (3) | 0.83784 (8) | 0.0193 (4) | |
C2 | 0.2360 (4) | 0.7344 (3) | 0.88823 (8) | 0.0238 (5) | |
H2 | 0.0904 | 0.6710 | 0.8886 | 0.029* | |
C3 | 0.3790 (5) | 0.7898 (3) | 0.93898 (9) | 0.0257 (5) | |
H3 | 0.3346 | 0.7654 | 0.9735 | 0.031* | |
C4 | 0.5912 (5) | 0.8829 (3) | 0.93755 (9) | 0.0250 (5) | |
H4 | 0.6942 | 0.9245 | 0.9716 | 0.030* | |
C5 | 0.6526 (4) | 0.9152 (3) | 0.88711 (9) | 0.0229 (5) | |
H5 | 0.7981 | 0.9774 | 0.8858 | 0.027* | |
C6 | 0.4278 (4) | 0.8846 (3) | 0.69071 (8) | 0.0204 (5) | |
H6 | 0.5870 | 0.9191 | 0.6882 | 0.024* | |
C7 | 0.2393 (4) | 0.8574 (3) | 0.64086 (8) | 0.0196 (5) | |
C8 | −0.1198 (4) | 0.7629 (3) | 0.59024 (8) | 0.0230 (5) | |
H8 | −0.2775 | 0.7109 | 0.5804 | 0.028* | |
C9 | 0.0049 (4) | 0.8353 (3) | 0.55333 (8) | 0.0240 (5) | |
H9 | −0.0522 | 0.8433 | 0.5137 | 0.029* | |
C10 | 0.2326 (5) | 0.8955 (3) | 0.58482 (8) | 0.0218 (5) | |
H10 | 0.3571 | 0.9512 | 0.5705 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1W | 0.0245 (9) | 0.0239 (7) | 0.0224 (7) | −0.0061 (6) | 0.0065 (7) | 0.0001 (6) |
N1 | 0.0242 (10) | 0.0196 (9) | 0.0231 (9) | −0.0003 (8) | 0.0066 (8) | 0.0013 (7) |
N2 | 0.0194 (10) | 0.0269 (10) | 0.0200 (8) | −0.0038 (8) | 0.0060 (8) | 0.0001 (7) |
N3 | 0.0214 (9) | 0.0194 (8) | 0.0199 (8) | −0.0005 (7) | 0.0027 (8) | 0.0005 (7) |
N4 | 0.0229 (10) | 0.0191 (8) | 0.0200 (8) | −0.0011 (8) | 0.0062 (7) | 0.0014 (7) |
C1 | 0.0202 (11) | 0.0159 (9) | 0.0217 (10) | 0.0028 (9) | 0.0048 (9) | 0.0013 (8) |
C2 | 0.0269 (12) | 0.0195 (9) | 0.0278 (10) | 0.0027 (9) | 0.0120 (10) | 0.0032 (9) |
C3 | 0.0361 (13) | 0.0211 (10) | 0.0215 (9) | 0.0040 (10) | 0.0102 (10) | 0.0029 (9) |
C4 | 0.0335 (13) | 0.0191 (10) | 0.0198 (10) | 0.0034 (10) | 0.0007 (10) | −0.0001 (9) |
C5 | 0.0251 (13) | 0.0178 (9) | 0.0241 (10) | 0.0005 (9) | 0.0025 (10) | 0.0003 (8) |
C6 | 0.0209 (11) | 0.0176 (10) | 0.0241 (9) | −0.0001 (8) | 0.0080 (10) | −0.0016 (8) |
C7 | 0.0221 (12) | 0.0166 (9) | 0.0210 (10) | 0.0006 (9) | 0.0069 (9) | 0.0005 (8) |
C8 | 0.0226 (12) | 0.0209 (10) | 0.0243 (9) | −0.0008 (9) | 0.0027 (9) | −0.0020 (8) |
C9 | 0.0301 (13) | 0.0219 (10) | 0.0179 (9) | 0.0025 (9) | 0.0013 (9) | 0.0005 (9) |
C10 | 0.0243 (12) | 0.0188 (10) | 0.0234 (10) | −0.0005 (9) | 0.0080 (9) | −0.0008 (8) |
O1W—H1W | 0.842 (10) | C3—C4 | 1.392 (4) |
O1W—H2W | 0.840 (10) | C3—H3 | 0.9500 |
N1—C1 | 1.340 (3) | C4—C5 | 1.375 (3) |
N1—C2 | 1.350 (3) | C4—H4 | 0.9500 |
N2—N3 | 1.364 (3) | C5—H5 | 0.9500 |
N2—C1 | 1.382 (3) | C6—C7 | 1.435 (3) |
N2—H2N | 0.886 (10) | C6—H6 | 0.9500 |
N3—C6 | 1.289 (3) | C7—C10 | 1.390 (3) |
N4—C8 | 1.357 (3) | C8—C9 | 1.375 (3) |
N4—C7 | 1.380 (3) | C8—H8 | 0.9500 |
N4—H4N | 0.879 (10) | C9—C10 | 1.411 (3) |
C1—C5 | 1.396 (3) | C9—H9 | 0.9500 |
C2—C3 | 1.377 (3) | C10—H10 | 0.9500 |
C2—H2 | 0.9500 | ||
H1W—O1W—H2W | 107 (2) | C3—C4—H4 | 119.8 |
C1—N1—C2 | 117.39 (19) | C4—C5—C1 | 118.3 (2) |
N3—N2—C1 | 118.06 (17) | C4—C5—H5 | 120.9 |
N3—N2—H2N | 119.3 (16) | C1—C5—H5 | 120.9 |
C1—N2—H2N | 121.9 (16) | N3—C6—C7 | 118.4 (2) |
C6—N3—N2 | 119.13 (18) | N3—C6—H6 | 120.8 |
C8—N4—C7 | 109.25 (17) | C7—C6—H6 | 120.8 |
C8—N4—H4N | 127.9 (16) | N4—C7—C10 | 107.7 (2) |
C7—N4—H4N | 121.4 (17) | N4—C7—C6 | 121.43 (19) |
N1—C1—N2 | 118.01 (18) | C10—C7—C6 | 130.8 (2) |
N1—C1—C5 | 122.68 (19) | N4—C8—C9 | 108.4 (2) |
N2—C1—C5 | 119.31 (19) | N4—C8—H8 | 125.8 |
N1—C2—C3 | 124.2 (2) | C9—C8—H8 | 125.8 |
N1—C2—H2 | 117.9 | C8—C9—C10 | 107.86 (18) |
C3—C2—H2 | 117.9 | C8—C9—H9 | 126.1 |
C2—C3—C4 | 117.1 (2) | C10—C9—H9 | 126.1 |
C2—C3—H3 | 121.4 | C7—C10—C9 | 106.7 (2) |
C4—C3—H3 | 121.4 | C7—C10—H10 | 126.6 |
C5—C4—C3 | 120.3 (2) | C9—C10—H10 | 126.6 |
C5—C4—H4 | 119.8 | ||
C1—N2—N3—C6 | −178.42 (18) | N2—N3—C6—C7 | 179.22 (17) |
C2—N1—C1—N2 | 179.37 (18) | C8—N4—C7—C10 | 1.2 (2) |
C2—N1—C1—C5 | 0.2 (3) | C8—N4—C7—C6 | −177.71 (19) |
N3—N2—C1—N1 | 15.4 (3) | N3—C6—C7—N4 | −11.2 (3) |
N3—N2—C1—C5 | −165.42 (17) | N3—C6—C7—C10 | 170.2 (2) |
C1—N1—C2—C3 | 0.0 (3) | C7—N4—C8—C9 | −1.2 (2) |
N1—C2—C3—C4 | 0.2 (3) | N4—C8—C9—C10 | 0.8 (2) |
C2—C3—C4—C5 | −0.6 (3) | N4—C7—C10—C9 | −0.6 (2) |
C3—C4—C5—C1 | 0.8 (3) | C6—C7—C10—C9 | 178.1 (2) |
N1—C1—C5—C4 | −0.6 (3) | C8—C9—C10—C7 | −0.1 (2) |
N2—C1—C5—C4 | −179.75 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—H1w···N1 | 0.84 (1) | 2.04 (1) | 2.870 (2) | 170 (3) |
O1w—H2w···N3i | 0.84 (1) | 2.08 (1) | 2.899 (3) | 166 (3) |
N2—H2n···O1wii | 0.89 (1) | 2.09 (1) | 2.959 (3) | 166 (2) |
N4—H4n···O1w | 0.88 (1) | 1.97 (1) | 2.831 (2) | 165 (2) |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C10H10N4·H2O |
Mr | 204.24 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 5.6479 (3), 7.4383 (4), 24.4233 (11) |
β (°) | 103.300 (3) |
V (Å3) | 998.52 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.24 × 0.22 × 0.04 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.670, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3068, 1680, 1636 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.109, 1.07 |
No. of reflections | 1680 |
No. of parameters | 149 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.19, −0.24 |
Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1w—H1w···N1 | 0.842 (10) | 2.037 (11) | 2.870 (2) | 170 (3) |
O1w—H2w···N3i | 0.840 (10) | 2.078 (12) | 2.899 (3) | 166 (3) |
N2—H2n···O1wii | 0.886 (10) | 2.092 (12) | 2.959 (3) | 166 (2) |
N4—H4n···O1w | 0.879 (10) | 1.971 (11) | 2.831 (2) | 165 (2) |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x+1, y+1/2, −z+3/2. |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from FAPEMIG (Brazil).
References
Baddeley, T. C., França, L. de S., Howie, R. A., de Lima, G. M., Skakle, J. M. S., de Souza, J. D., Wardell, J. L. & Wardell, S. M. S. V. (2009). Z. Kristallogr. 224, 213–224. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Ferguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o613–o616. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. E63, o1848–o1850. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o462–o467. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In continuation of studies into the supramolecular arrangements of hydrazones (Baddeley et al., 2009; Wardell, Skakle et al., 2007; Wardell, Low et al., 2007; Ferguson et al., 2005), we now report the structure of the title hydrate, (I).
The molecule of (I), Fig. 1, is non-planar owing to a twist about the C6–C7 bond as seen in the C3–C6–C7–N4 torsion angle of -11.2 (3) °. The dihedral angle between the pyrrole and pyridine rings is 11.08 (12) °. The conformation about the C6═N3 bond is E and the pyrrole- and pyridine-N atoms are syn. This arrangement is stabilized by pyrrole-NH···Owater and water-OH···Npyridine hydrogen bonds, Fig. 1 and Table 1.
The water molecule also plays a pivotal role in stabilizing the crystal structure, forming additional donor and acceptor interactions to link three distinct molecules. The molecules stack into columns aligned along the a axis and alternate between organic and water molecules along the b axis, Fig. 2 and Table 1. The resultant layers stack along the c axis, Fig. 3.