organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-(1H-Pyrrol-2-ylmethyl­­idene)hydrazinyl]pyridine monohydrate

aDepartamento de Quimica, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and dCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 22 November 2009; accepted 23 November 2009; online 28 November 2009)

The title hydrate, C10H10N4·H2O, shows a small twist in the hydro­zone derivative, the dihedral angle between the pyridine and pyrrole rings being 11.08 (12)°. The pyridine and pyrrole N atoms lie to the same side of the mol­ecule being sustained in place by hydrogen-bonding inter­actions with the water mol­ecule. Further inter­molecular O—H⋯N and N—H⋯O hydrogen bonding leads to the formation of supra­molecular arrays in the ab plane.

Related literature

For related structures of hydro­zone derivatives, see: Baddeley et al. (2009[Baddeley, T. C., França, L. de S., Howie, R. A., de Lima, G. M., Skakle, J. M. S., de Souza, J. D., Wardell, J. L. & Wardell, S. M. S. V. (2009). Z. Kristallogr. 224, 213-224.]); Ferguson et al. (2005[Ferguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o613-o616.]); Wardell, Low & Glidewell (2007[Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. E63, o1848-o1850.]); Wardell, Skakle, Low & Glidewell (2007[Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o462-o467.]). For additional structural analaysis, see: Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N4·H2O

  • Mr = 204.24

  • Monoclinic, P 21 /c

  • a = 5.6479 (3) Å

  • b = 7.4383 (4) Å

  • c = 24.4233 (11) Å

  • β = 103.300 (3)°

  • V = 998.52 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 K

  • 0.24 × 0.22 × 0.04 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.670, Tmax = 0.746

  • 3068 measured reflections

  • 1680 independent reflections

  • 1636 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.07

  • 1680 reflections

  • 149 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w⋯N1 0.84 (1) 2.04 (1) 2.870 (2) 170 (3)
O1w—H2w⋯N3i 0.84 (1) 2.08 (1) 2.899 (3) 166 (3)
N2—H2n⋯O1wii 0.89 (1) 2.09 (1) 2.959 (3) 166 (2)
N4—H4n⋯O1w 0.88 (1) 1.97 (1) 2.831 (2) 165 (2)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT data reduction: DENZO nd COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

In continuation of studies into the supramolecular arrangements of hydrazones (Baddeley et al., 2009; Wardell, Skakle et al., 2007; Wardell, Low et al., 2007; Ferguson et al., 2005), we now report the structure of the title hydrate, (I).

The molecule of (I), Fig. 1, is non-planar owing to a twist about the C6–C7 bond as seen in the C3–C6–C7–N4 torsion angle of -11.2 (3) °. The dihedral angle between the pyrrole and pyridine rings is 11.08 (12) °. The conformation about the C6N3 bond is E and the pyrrole- and pyridine-N atoms are syn. This arrangement is stabilized by pyrrole-NH···Owater and water-OH···Npyridine hydrogen bonds, Fig. 1 and Table 1.

The water molecule also plays a pivotal role in stabilizing the crystal structure, forming additional donor and acceptor interactions to link three distinct molecules. The molecules stack into columns aligned along the a axis and alternate between organic and water molecules along the b axis, Fig. 2 and Table 1. The resultant layers stack along the c axis, Fig. 3.

Related literature top

For related structures of hydrozone derivatives, see: Baddeley et al. (2009); Ferguson et al. (2005); Wardell, Low & Glidewell (2007); Wardell, Skakle, Low & Glidewell (2007). For additional structural analaysis, see: Spek (2003).

Experimental top

A solution of 2-hydrazinopyridine (0.330 g, 3 mmol) in MeOH (15 ml) was added to a solution of 2-pyrrolcarboxaldehyde (0.270 g, 3 mmol) in MeOH (10 ml). The reaction mixture was refluxed for 20 min, and maintained at room temperature. The crystals which slowly formed were collected and recrystallized twice from MeOH. M. pt. 449 - 452 K. IR(KBr, cm-1): ν 1603(C=N). Anal. Found, C, 59.13; H, 5.81; N, 27.71. Calc. for C10H10N4.H2O: C, 58.82; H, 5.92; N, 27.43%

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O– and N-bound H atoms were located from a difference map and included in their idealized positions with O–H = 0.84±0.01 and N–H = 0.88±0.01 Å, and with Uiso(H) = nUeq(O, N); n = 1.5 for O and n = 1.2 for N. After analysis with PLATON (Spek, 2003), the structure was refined as a twin, with the twin component related by -1 0 0, 0 - 1 0, 2 0 1, and with a fractional contribution of 0.4418 (23).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The O—H···N and N—H···O hydrogen bonds are shown as orange dashed lines.
[Figure 2] Fig. 2. A side-on view of a supramolecular layer in (I) showing O–H···N and N–H···O hydrogen bonding between the molecules (orange dashed lines). Colour code: O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. A view in projection down the b axis showing the stacking of layers along the c axis in (I). The O–H···N and N–H···O hydrogen bonding is shown as orange dashed lines. Colour code: O, red; N, blue; C, grey; and H, green.
2-[(E)-(1H-Pyrrol-2-ylmethylidene)hydrazinyl]pyridine monohydrate top
Crystal data top
C10H10N4·H2OF(000) = 432
Mr = 204.24Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 18744 reflections
a = 5.6479 (3) Åθ = 2.9–27.5°
b = 7.4383 (4) ŵ = 0.09 mm1
c = 24.4233 (11) ÅT = 120 K
β = 103.300 (3)°Block, colourless
V = 998.52 (9) Å30.24 × 0.22 × 0.04 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
1680 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode1636 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.027
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.2°
ϕ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 88
Tmin = 0.670, Tmax = 0.746l = 2828
3068 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.3833P]
where P = (Fo2 + 2Fc2)/3
1680 reflections(Δ/σ)max < 0.001
149 parametersΔρmax = 0.19 e Å3
4 restraintsΔρmin = 0.24 e Å3
Crystal data top
C10H10N4·H2OV = 998.52 (9) Å3
Mr = 204.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.6479 (3) ŵ = 0.09 mm1
b = 7.4383 (4) ÅT = 120 K
c = 24.4233 (11) Å0.24 × 0.22 × 0.04 mm
β = 103.300 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1680 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1636 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 0.746Rint = 0.027
3068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0404 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.19 e Å3
1680 reflectionsΔρmin = 0.24 e Å3
149 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.0268 (3)0.5726 (2)0.74096 (6)0.0234 (4)
H1W0.088 (5)0.635 (3)0.7695 (7)0.035*
H2W0.071 (4)0.501 (3)0.7507 (11)0.035*
N10.2897 (3)0.7646 (2)0.83791 (7)0.0221 (4)
N20.5539 (4)0.8844 (2)0.78669 (8)0.0218 (4)
H2N0.694 (3)0.935 (3)0.7844 (10)0.026*
N30.3760 (4)0.8612 (2)0.73892 (7)0.0205 (4)
N40.0207 (4)0.7784 (2)0.64316 (7)0.0205 (4)
H4N0.000 (5)0.726 (3)0.6740 (6)0.025*
C10.4955 (4)0.8541 (3)0.83784 (8)0.0193 (4)
C20.2360 (4)0.7344 (3)0.88823 (8)0.0238 (5)
H20.09040.67100.88860.029*
C30.3790 (5)0.7898 (3)0.93898 (9)0.0257 (5)
H30.33460.76540.97350.031*
C40.5912 (5)0.8829 (3)0.93755 (9)0.0250 (5)
H40.69420.92450.97160.030*
C50.6526 (4)0.9152 (3)0.88711 (9)0.0229 (5)
H50.79810.97740.88580.027*
C60.4278 (4)0.8846 (3)0.69071 (8)0.0204 (5)
H60.58700.91910.68820.024*
C70.2393 (4)0.8574 (3)0.64086 (8)0.0196 (5)
C80.1198 (4)0.7629 (3)0.59024 (8)0.0230 (5)
H80.27750.71090.58040.028*
C90.0049 (4)0.8353 (3)0.55333 (8)0.0240 (5)
H90.05220.84330.51370.029*
C100.2326 (5)0.8955 (3)0.58482 (8)0.0218 (5)
H100.35710.95120.57050.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0245 (9)0.0239 (7)0.0224 (7)0.0061 (6)0.0065 (7)0.0001 (6)
N10.0242 (10)0.0196 (9)0.0231 (9)0.0003 (8)0.0066 (8)0.0013 (7)
N20.0194 (10)0.0269 (10)0.0200 (8)0.0038 (8)0.0060 (8)0.0001 (7)
N30.0214 (9)0.0194 (8)0.0199 (8)0.0005 (7)0.0027 (8)0.0005 (7)
N40.0229 (10)0.0191 (8)0.0200 (8)0.0011 (8)0.0062 (7)0.0014 (7)
C10.0202 (11)0.0159 (9)0.0217 (10)0.0028 (9)0.0048 (9)0.0013 (8)
C20.0269 (12)0.0195 (9)0.0278 (10)0.0027 (9)0.0120 (10)0.0032 (9)
C30.0361 (13)0.0211 (10)0.0215 (9)0.0040 (10)0.0102 (10)0.0029 (9)
C40.0335 (13)0.0191 (10)0.0198 (10)0.0034 (10)0.0007 (10)0.0001 (9)
C50.0251 (13)0.0178 (9)0.0241 (10)0.0005 (9)0.0025 (10)0.0003 (8)
C60.0209 (11)0.0176 (10)0.0241 (9)0.0001 (8)0.0080 (10)0.0016 (8)
C70.0221 (12)0.0166 (9)0.0210 (10)0.0006 (9)0.0069 (9)0.0005 (8)
C80.0226 (12)0.0209 (10)0.0243 (9)0.0008 (9)0.0027 (9)0.0020 (8)
C90.0301 (13)0.0219 (10)0.0179 (9)0.0025 (9)0.0013 (9)0.0005 (9)
C100.0243 (12)0.0188 (10)0.0234 (10)0.0005 (9)0.0080 (9)0.0008 (8)
Geometric parameters (Å, º) top
O1W—H1W0.842 (10)C3—C41.392 (4)
O1W—H2W0.840 (10)C3—H30.9500
N1—C11.340 (3)C4—C51.375 (3)
N1—C21.350 (3)C4—H40.9500
N2—N31.364 (3)C5—H50.9500
N2—C11.382 (3)C6—C71.435 (3)
N2—H2N0.886 (10)C6—H60.9500
N3—C61.289 (3)C7—C101.390 (3)
N4—C81.357 (3)C8—C91.375 (3)
N4—C71.380 (3)C8—H80.9500
N4—H4N0.879 (10)C9—C101.411 (3)
C1—C51.396 (3)C9—H90.9500
C2—C31.377 (3)C10—H100.9500
C2—H20.9500
H1W—O1W—H2W107 (2)C3—C4—H4119.8
C1—N1—C2117.39 (19)C4—C5—C1118.3 (2)
N3—N2—C1118.06 (17)C4—C5—H5120.9
N3—N2—H2N119.3 (16)C1—C5—H5120.9
C1—N2—H2N121.9 (16)N3—C6—C7118.4 (2)
C6—N3—N2119.13 (18)N3—C6—H6120.8
C8—N4—C7109.25 (17)C7—C6—H6120.8
C8—N4—H4N127.9 (16)N4—C7—C10107.7 (2)
C7—N4—H4N121.4 (17)N4—C7—C6121.43 (19)
N1—C1—N2118.01 (18)C10—C7—C6130.8 (2)
N1—C1—C5122.68 (19)N4—C8—C9108.4 (2)
N2—C1—C5119.31 (19)N4—C8—H8125.8
N1—C2—C3124.2 (2)C9—C8—H8125.8
N1—C2—H2117.9C8—C9—C10107.86 (18)
C3—C2—H2117.9C8—C9—H9126.1
C2—C3—C4117.1 (2)C10—C9—H9126.1
C2—C3—H3121.4C7—C10—C9106.7 (2)
C4—C3—H3121.4C7—C10—H10126.6
C5—C4—C3120.3 (2)C9—C10—H10126.6
C5—C4—H4119.8
C1—N2—N3—C6178.42 (18)N2—N3—C6—C7179.22 (17)
C2—N1—C1—N2179.37 (18)C8—N4—C7—C101.2 (2)
C2—N1—C1—C50.2 (3)C8—N4—C7—C6177.71 (19)
N3—N2—C1—N115.4 (3)N3—C6—C7—N411.2 (3)
N3—N2—C1—C5165.42 (17)N3—C6—C7—C10170.2 (2)
C1—N1—C2—C30.0 (3)C7—N4—C8—C91.2 (2)
N1—C2—C3—C40.2 (3)N4—C8—C9—C100.8 (2)
C2—C3—C4—C50.6 (3)N4—C7—C10—C90.6 (2)
C3—C4—C5—C10.8 (3)C6—C7—C10—C9178.1 (2)
N1—C1—C5—C40.6 (3)C8—C9—C10—C70.1 (2)
N2—C1—C5—C4179.75 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···N10.84 (1)2.04 (1)2.870 (2)170 (3)
O1w—H2w···N3i0.84 (1)2.08 (1)2.899 (3)166 (3)
N2—H2n···O1wii0.89 (1)2.09 (1)2.959 (3)166 (2)
N4—H4n···O1w0.88 (1)1.97 (1)2.831 (2)165 (2)
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H10N4·H2O
Mr204.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)5.6479 (3), 7.4383 (4), 24.4233 (11)
β (°) 103.300 (3)
V3)998.52 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.22 × 0.04
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.670, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
3068, 1680, 1636
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.07
No. of reflections1680
No. of parameters149
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.24

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···N10.842 (10)2.037 (11)2.870 (2)170 (3)
O1w—H2w···N3i0.840 (10)2.078 (12)2.899 (3)166 (3)
N2—H2n···O1wii0.886 (10)2.092 (12)2.959 (3)166 (2)
N4—H4n···O1w0.879 (10)1.971 (11)2.831 (2)165 (2)
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from FAPEMIG (Brazil).

References

First citationBaddeley, T. C., França, L. de S., Howie, R. A., de Lima, G. M., Skakle, J. M. S., de Souza, J. D., Wardell, J. L. & Wardell, S. M. S. V. (2009). Z. Kristallogr. 224, 213–224.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFerguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o613–o616.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. E63, o1848–o1850.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o462–o467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds