metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1566-m1567

Poly[di­aqua­bis­(μ3-1H-benzimidazole-5,6-di­carboxyl­ato-κ4N3:O5,O5′:O6)bis­­(μ2-1H,3H-benzimidazolium-5,6-di­carboxyl­ato-κ3O5,O5′:O6)digadolinium(III)]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and bKey Laboratory of Technology of Electrochemical Energy Storage and Power Generation in Guangdong Universities, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: zrh321@yahoo.com.cn

(Received 19 October 2009; accepted 5 November 2009; online 14 November 2009)

In the title complex, [Gd2(C9H4N2O4)2(C9H5N2O4)2(H2O)2]n, two of the benzimidazole-5,6-dicarboxyl­ate ligands are pro­ton­ated at the imidazole groups. Each GdIII ion is coordinated by six O atoms and one N atom from five ligands and one water mol­ecule, displaying a distorted bicapped trigonal-prismatic geometry. The GdIII ions are linked by the carboxyl­ate groups and imidazole N atoms, forming a layer parallel to (001). These layers are further connected by O—H⋯O and N—H⋯O hydrogen bonds into a three-dimensional supra­molecular network.

Related literature

For related structures, see: Gao et al. (2008[Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.]); Lo et al. (2007[Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657-m2658.]); Wei et al. (2008[Wei, Y.-Q., Yu, Y.-F. & Wu, K.-C. (2008). Cryst. Growth Des. 8, 2087-2089.]); Yao et al. (2008[Yao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2299-2306.]).

[Scheme 1]

Experimental

Crystal data
  • [Gd2(C9H4N2O4)2(C9H5N2O4)2(H2O)2]

  • Mr = 1169.12

  • Monoclinic, P 21 /c

  • a = 18.7856 (11) Å

  • b = 12.7745 (7) Å

  • c = 15.4776 (9) Å

  • β = 108.010 (1)°

  • V = 3532.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.82 mm−1

  • T = 296 K

  • 0.25 × 0.24 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.448, Tmax = 0.501

  • 24827 measured reflections

  • 6338 independent reflections

  • 5929 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.049

  • S = 1.08

  • 6338 reflections

  • 595 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Gd1—O1 2.338 (2)
Gd1—O2 2.526 (2)
Gd1—O3i 2.350 (2)
Gd1—O5ii 2.461 (2)
Gd1—O6ii 2.499 (2)
Gd1—O8 2.314 (2)
Gd1—N6 2.617 (3)
Gd1—O1W 2.374 (2)
Gd2—O9 2.312 (2)
Gd2—O11iii 2.539 (2)
Gd2—O12iii 2.342 (2)
Gd2—O13iv 2.267 (2)
Gd2—O15 2.449 (2)
Gd2—O16 2.520 (2)
Gd2—N1iii 2.612 (3)
Gd2—O2W 2.384 (2)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O7v 0.84 1.80 2.629 (3) 167
O1W—H2W⋯O4i 0.82 1.92 2.670 (3) 153
O2W—H3W⋯O10vi 0.86 1.74 2.590 (3) 172
O2W—H4WA⋯O15 0.82 2.14 2.716 (5) 127
O2W—H4WB⋯O2Wvi 0.82 1.91 2.723 (4) 170
N2—H2A⋯O14vii 0.82 (4) 1.94 (4) 2.742 (3) 169 (3)
N3—H3A⋯O10vii 0.81 (4) 1.94 (4) 2.731 (4) 166 (4)
N4—H4A⋯O16 0.84 (4) 1.97 (4) 2.801 (4) 170 (4)
N5—H5A⋯O4v 0.83 (4) 1.96 (4) 2.772 (3) 165 (4)
N7—H7A⋯O5 0.77 (4) 2.08 (4) 2.845 (3) 171 (4)
N8—H8A⋯O7viii 0.80 (4) 1.95 (4) 2.747 (3) 172 (4)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) -x+1, -y, -z; (vii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (viii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In recent years, research on coordination polymers has made considerable progress in the fields of supramolecular chemistry and crystal engineering, because of their intriguing structural motifs and functional properties, such as molecular adsorption, magnetism and luminescence. In general, the structural motifs of these hybrid compounds are closely related to the geometries of metal centers and the number of coordination sites provided by multidentate ligands. On the other hand, the supramolecular interactions such as hydrogen-bonding, ππ stacking and metallophilic interactions also play the key roles in the recognition process forming final three-dimensional architectures. As a building block, benzimidazole-5,6-dicarboxylic acid is a good ligand with multifunctional coordination sites providing intriguing architectures and topologies (Gao et al., 2008; Lo et al., 2007; Wei et al., 2008; Yao et al., 2008). Recently, we obtained the title coordination polymer, which was synthesized under hydrothermal conditions.

In the title compound (Fig. 1), two of the benzimidazole-5,6-dicarboxylate ligands are protonated at the imidazole groups. Each GdIII ion is eight-coordinated by six O atoms one N atom from five ligands and one water molecule. The coordination geometry can be described as distorted bicapped trigonal prismatic, with Gd—O distances and O—Gd—O angles ranging from 2.267 (2) to 2.539 (2) Å (Table 1) and 52.14 (7) to 156.82 (8)°, respectively. The benzimidazole-5,6-dicarboxylate ligands acting as bridging ligands link the GdIII centers into a layer parallel to the (0 0 1) plane. O—H···O and N—H···O hydrogen bonds (Table 2) connect the layers into a three-dimensional supramolecular motif (Fig. 2). Within the layer, the ππ stacking interactions between neighboring imidazole and benzene rings [centroid–centroid distances = 3.629 (3), 3.755 (4), 3.656 (3) and 3.606 (3) Å] enhance the stability of the crystal structure.

Related literature top

For related structures, see: Gao et al. (2008); Lo et al. (2007); Wei et al. (2008); Yao et al. (2008).

Experimental top

A mixture of Gd2O3 (0.363 g, 1 mmol), benzimidazole-5,6-dicarboxylic acid (0.206 g, 1 mmol), water (10 ml) in the presence of HClO4 (0.039 g, 0.385 mmol) was stirred vigorously for 30 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml capacity). The autoclave was heated and maintained at 433 K for 3 d, and then cooled to room temperature at 5 K h-1. The colorless block crystals were obtained.

Refinement top

Water H atoms were tentatively located in difference Fourier maps and fixed in refinements, with Uiso(H) = 1.5Ueq(O). One of the H atoms of O2W is disordered over two sites (O4WA and O4WB), each with an occupancy factor of 0.5. H atoms on N atoms were tentatively located in difference Fourier maps and refined with distance restraints of N—H = 0.82 (1) Å and with Uiso(H) = 1.2Ueq(N). H atoms attached to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are shown at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -x, -1/2+y, 1/2-z; (ii) -x, 1/2+y, 1/2-z; (iii) 1-x, -1/2+y, 1/2-z; (iv) 1-x, 1/2+y, 1/2-z.]
[Figure 2] Fig. 2. A view of the three-dimensional supramolecular network. Hydrogen bonds are shown as dashed lines.
Poly[diaquabis(µ3-1H-benzimidazole-5,6-dicarboxylato- κ4N3:O5,O5':O6)bis(µ2- 1H,3H-benzimidazolium-5,6-dicarboxylato- κ3O5,O5':O6)digadolinium(III)] top
Crystal data top
[Gd2(C9H4N2O4)2(C9H5N2O4)2(H2O)2]F(000) = 2264
Mr = 1169.12Dx = 2.198 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7234 reflections
a = 18.7856 (11) Åθ = 2.6–28.2°
b = 12.7745 (7) ŵ = 3.82 mm1
c = 15.4776 (9) ÅT = 296 K
β = 108.010 (1)°Block, colorless
V = 3532.3 (3) Å30.25 × 0.24 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6338 independent reflections
Radiation source: fine-focus sealed tube5929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2122
Tmin = 0.448, Tmax = 0.501k = 1515
24827 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.021P)2 + 3.3986P]
where P = (Fo2 + 2Fc2)/3
6338 reflections(Δ/σ)max = 0.002
595 parametersΔρmax = 0.63 e Å3
13 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Gd2(C9H4N2O4)2(C9H5N2O4)2(H2O)2]V = 3532.3 (3) Å3
Mr = 1169.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.7856 (11) ŵ = 3.82 mm1
b = 12.7745 (7) ÅT = 296 K
c = 15.4776 (9) Å0.25 × 0.24 × 0.21 mm
β = 108.010 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6338 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5929 reflections with I > 2σ(I)
Tmin = 0.448, Tmax = 0.501Rint = 0.027
24827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02013 restraints
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.63 e Å3
6338 reflectionsΔρmin = 0.55 e Å3
595 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Gd10.028568 (8)0.296570 (11)0.225244 (9)0.01343 (5)
Gd20.524307 (8)0.054993 (10)0.209686 (9)0.01317 (5)
N60.10953 (14)0.1586 (2)0.17264 (18)0.0208 (6)
N50.12241 (15)0.0250 (2)0.08627 (19)0.0251 (6)
H5A0.111 (2)0.029 (3)0.056 (2)0.030*
C230.07832 (18)0.0751 (2)0.1265 (2)0.0218 (7)
H230.03020.05290.12220.026*
C250.24026 (17)0.2316 (2)0.1949 (2)0.0220 (7)
H250.23670.28630.23310.026*
C210.25303 (17)0.0637 (2)0.0817 (2)0.0215 (7)
H210.25690.00770.04490.026*
C240.18074 (16)0.1631 (2)0.1607 (2)0.0181 (6)
C220.18850 (17)0.0794 (2)0.1059 (2)0.0197 (6)
C200.31133 (16)0.1340 (2)0.11398 (19)0.0166 (6)
C260.30518 (17)0.2172 (2)0.1711 (2)0.0178 (6)
N30.36219 (16)0.1575 (2)0.4264 (2)0.0312 (7)
H3A0.375 (2)0.212 (3)0.453 (3)0.037*
C130.28840 (17)0.0294 (2)0.3540 (2)0.0199 (7)
N40.35934 (15)0.0200 (2)0.3445 (2)0.0256 (6)
H4A0.372 (2)0.029 (3)0.316 (2)0.031*
C150.29033 (17)0.1190 (2)0.4058 (2)0.0195 (6)
C140.40105 (19)0.0970 (3)0.3890 (2)0.0334 (8)
H140.45110.10730.39340.040*
C270.36712 (17)0.2947 (2)0.2069 (2)0.0207 (7)
C190.38033 (17)0.1168 (2)0.0861 (2)0.0181 (6)
O110.41746 (14)0.30726 (19)0.17120 (17)0.0342 (6)
O100.37957 (14)0.15189 (19)0.01034 (16)0.0338 (6)
C170.16278 (17)0.0978 (2)0.39339 (19)0.0163 (6)
C120.22389 (17)0.0299 (2)0.3229 (2)0.0206 (7)
H120.22300.09120.29020.025*
C160.22774 (17)0.1551 (2)0.4263 (2)0.0199 (7)
H160.22950.21530.46070.024*
C110.16054 (17)0.0050 (2)0.3421 (2)0.0177 (6)
C100.08996 (17)0.0570 (2)0.3073 (2)0.0185 (7)
C180.09517 (16)0.1407 (2)0.41501 (19)0.0161 (6)
O80.05302 (12)0.20217 (15)0.35883 (14)0.0207 (5)
O70.08767 (13)0.11675 (18)0.48980 (14)0.0269 (5)
O50.08938 (12)0.13723 (16)0.25772 (16)0.0266 (5)
O60.03295 (12)0.03134 (16)0.32721 (15)0.0246 (5)
O120.36722 (13)0.3474 (2)0.27665 (18)0.0391 (7)
C360.40339 (17)0.1991 (2)0.1826 (2)0.0185 (6)
C330.20968 (17)0.2999 (2)0.1476 (2)0.0192 (6)
C350.33593 (17)0.2677 (2)0.1548 (2)0.0175 (6)
C340.27150 (17)0.2345 (2)0.1727 (2)0.0200 (7)
H340.26990.17050.20060.024*
O160.40712 (12)0.12307 (16)0.23682 (15)0.0246 (5)
O150.45572 (13)0.21597 (18)0.15068 (17)0.0320 (6)
O90.43302 (13)0.06471 (18)0.13734 (16)0.0294 (5)
N70.14022 (15)0.2953 (2)0.16138 (19)0.0242 (6)
H7A0.127 (2)0.248 (3)0.184 (2)0.029*
C280.40817 (17)0.4085 (2)0.09601 (19)0.0163 (6)
C290.33774 (16)0.3652 (2)0.11096 (19)0.0159 (6)
C320.10256 (17)0.3811 (3)0.1275 (2)0.0233 (7)
H320.05470.39680.12920.028*
O140.41716 (12)0.40122 (17)0.02045 (14)0.0237 (5)
N80.14248 (15)0.4412 (2)0.09098 (19)0.0219 (6)
H8A0.126 (2)0.495 (3)0.066 (2)0.026*
C310.21123 (16)0.3943 (2)0.1031 (2)0.0168 (6)
C300.27505 (17)0.4281 (2)0.0840 (2)0.0192 (6)
H300.27550.49110.05390.023*
C10.13784 (17)0.4457 (2)0.3037 (2)0.0188 (7)
C20.19826 (17)0.5268 (2)0.3348 (2)0.0176 (6)
O20.09162 (12)0.42965 (17)0.34523 (15)0.0249 (5)
O10.13579 (12)0.39355 (17)0.23230 (16)0.0287 (5)
C80.18820 (16)0.6163 (2)0.38430 (19)0.0158 (6)
C70.24484 (17)0.6887 (2)0.4144 (2)0.0185 (6)
H70.23890.74740.44710.022*
C40.32222 (16)0.5828 (2)0.3467 (2)0.0175 (6)
C60.31138 (16)0.6714 (2)0.39437 (19)0.0172 (6)
C30.26477 (16)0.5098 (2)0.3167 (2)0.0193 (7)
H30.27110.45060.28490.023*
N10.39340 (14)0.5868 (2)0.33531 (17)0.0190 (5)
N20.37599 (15)0.7294 (2)0.41004 (18)0.0217 (6)
H2A0.385 (2)0.785 (3)0.437 (2)0.026*
C50.42138 (17)0.6759 (2)0.3735 (2)0.0208 (7)
H50.46850.69990.37520.025*
C90.11320 (17)0.6424 (2)0.3956 (2)0.0165 (6)
O40.10804 (12)0.64817 (17)0.47426 (14)0.0242 (5)
O130.45307 (12)0.45613 (17)0.16304 (14)0.0247 (5)
O30.06077 (11)0.66278 (16)0.32358 (14)0.0203 (5)
O1W0.00880 (13)0.30447 (17)0.06416 (14)0.0264 (5)
H1W0.01840.32420.03310.040*
H2W0.03140.25190.04070.040*
O2W0.51762 (14)0.0852 (2)0.05540 (15)0.0346 (6)
H3W0.55440.10800.03900.052*
H4WA0.48790.13410.04800.052*0.50
H4WB0.50250.03310.02370.052*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.01015 (8)0.01374 (8)0.01696 (8)0.00059 (5)0.00501 (6)0.00056 (5)
Gd20.01062 (8)0.01412 (8)0.01541 (8)0.00007 (5)0.00497 (6)0.00022 (5)
N60.0124 (13)0.0236 (14)0.0276 (14)0.0025 (11)0.0079 (11)0.0044 (11)
N50.0183 (15)0.0242 (14)0.0323 (16)0.0062 (12)0.0071 (12)0.0130 (12)
C230.0146 (16)0.0244 (16)0.0278 (17)0.0023 (13)0.0084 (14)0.0022 (13)
C250.0183 (17)0.0186 (15)0.0294 (17)0.0016 (13)0.0077 (14)0.0101 (13)
C210.0188 (17)0.0214 (16)0.0252 (17)0.0004 (13)0.0080 (14)0.0090 (13)
C240.0115 (15)0.0204 (15)0.0233 (16)0.0007 (12)0.0067 (12)0.0028 (12)
C220.0152 (16)0.0202 (15)0.0232 (16)0.0026 (12)0.0052 (13)0.0044 (13)
C200.0123 (15)0.0210 (15)0.0155 (14)0.0035 (12)0.0029 (12)0.0036 (12)
C260.0141 (16)0.0166 (15)0.0235 (16)0.0007 (12)0.0067 (13)0.0023 (12)
N30.0182 (16)0.0345 (17)0.0425 (18)0.0092 (13)0.0116 (13)0.0153 (14)
C130.0139 (16)0.0242 (16)0.0230 (16)0.0032 (13)0.0077 (13)0.0003 (13)
N40.0163 (15)0.0311 (16)0.0328 (16)0.0008 (12)0.0126 (12)0.0051 (13)
C150.0126 (16)0.0225 (16)0.0221 (16)0.0037 (12)0.0036 (13)0.0016 (13)
C140.0156 (18)0.043 (2)0.044 (2)0.0055 (15)0.0122 (16)0.0085 (17)
C270.0136 (16)0.0185 (15)0.0300 (18)0.0017 (12)0.0068 (14)0.0032 (13)
C190.0158 (16)0.0151 (14)0.0239 (16)0.0016 (12)0.0066 (13)0.0024 (12)
O110.0307 (14)0.0418 (15)0.0373 (14)0.0177 (11)0.0211 (12)0.0165 (11)
O100.0385 (15)0.0404 (14)0.0280 (13)0.0139 (12)0.0184 (11)0.0108 (11)
C170.0162 (16)0.0181 (15)0.0153 (14)0.0015 (12)0.0059 (12)0.0001 (12)
C120.0199 (17)0.0171 (15)0.0272 (17)0.0006 (13)0.0108 (14)0.0045 (13)
C160.0193 (17)0.0188 (15)0.0232 (16)0.0021 (12)0.0090 (13)0.0043 (13)
C110.0144 (16)0.0189 (15)0.0205 (15)0.0001 (12)0.0065 (13)0.0003 (12)
C100.0178 (17)0.0150 (15)0.0227 (16)0.0015 (12)0.0062 (13)0.0010 (12)
C180.0144 (16)0.0163 (14)0.0185 (15)0.0019 (12)0.0062 (12)0.0018 (12)
O80.0202 (12)0.0202 (11)0.0221 (11)0.0063 (9)0.0070 (9)0.0064 (9)
O70.0288 (13)0.0343 (13)0.0225 (12)0.0150 (10)0.0151 (10)0.0088 (10)
O50.0197 (12)0.0208 (11)0.0433 (14)0.0069 (9)0.0155 (11)0.0133 (10)
O60.0162 (12)0.0223 (11)0.0380 (13)0.0038 (9)0.0124 (10)0.0065 (10)
O120.0252 (14)0.0405 (15)0.0588 (17)0.0157 (11)0.0233 (13)0.0302 (13)
C360.0173 (17)0.0195 (15)0.0186 (15)0.0020 (12)0.0054 (13)0.0015 (12)
C330.0130 (16)0.0244 (16)0.0213 (16)0.0017 (12)0.0066 (13)0.0002 (13)
C350.0150 (16)0.0185 (15)0.0189 (15)0.0016 (12)0.0053 (13)0.0006 (12)
C340.0199 (17)0.0160 (15)0.0249 (16)0.0002 (12)0.0083 (14)0.0042 (12)
O160.0219 (12)0.0203 (11)0.0351 (13)0.0064 (9)0.0136 (10)0.0118 (10)
O150.0281 (14)0.0341 (13)0.0422 (15)0.0139 (11)0.0232 (12)0.0182 (11)
O90.0184 (13)0.0341 (13)0.0370 (14)0.0092 (10)0.0106 (11)0.0128 (11)
N70.0180 (15)0.0282 (16)0.0287 (16)0.0006 (12)0.0104 (12)0.0061 (12)
C280.0180 (16)0.0127 (14)0.0181 (15)0.0019 (12)0.0052 (13)0.0002 (12)
C290.0155 (16)0.0190 (15)0.0146 (14)0.0001 (12)0.0069 (12)0.0003 (12)
C320.0122 (16)0.0313 (18)0.0259 (17)0.0018 (13)0.0053 (13)0.0008 (14)
O140.0258 (13)0.0289 (12)0.0184 (11)0.0076 (10)0.0097 (10)0.0039 (9)
N80.0121 (14)0.0244 (15)0.0276 (15)0.0051 (11)0.0039 (12)0.0046 (12)
C310.0120 (15)0.0181 (15)0.0187 (15)0.0029 (12)0.0024 (12)0.0000 (12)
C300.0177 (17)0.0180 (15)0.0216 (16)0.0004 (12)0.0055 (13)0.0032 (12)
C10.0121 (16)0.0158 (15)0.0268 (17)0.0017 (12)0.0033 (13)0.0022 (12)
C20.0141 (16)0.0158 (15)0.0229 (16)0.0003 (12)0.0057 (13)0.0001 (12)
O20.0235 (13)0.0260 (12)0.0282 (12)0.0070 (9)0.0122 (10)0.0035 (10)
O10.0207 (13)0.0270 (12)0.0441 (14)0.0100 (10)0.0186 (11)0.0172 (11)
C80.0141 (16)0.0158 (14)0.0165 (14)0.0027 (12)0.0033 (12)0.0010 (11)
C70.0179 (16)0.0194 (15)0.0186 (15)0.0029 (12)0.0064 (13)0.0032 (12)
C40.0117 (16)0.0212 (15)0.0188 (15)0.0003 (12)0.0035 (12)0.0029 (12)
C60.0144 (16)0.0192 (15)0.0166 (15)0.0001 (12)0.0029 (12)0.0004 (12)
C30.0138 (16)0.0159 (15)0.0276 (17)0.0003 (12)0.0057 (13)0.0060 (12)
N10.0104 (13)0.0228 (13)0.0229 (13)0.0027 (10)0.0038 (11)0.0038 (11)
N20.0166 (14)0.0196 (14)0.0282 (15)0.0033 (11)0.0060 (12)0.0092 (12)
C50.0154 (16)0.0241 (16)0.0240 (16)0.0015 (13)0.0075 (13)0.0015 (13)
C90.0161 (16)0.0110 (14)0.0235 (16)0.0036 (11)0.0077 (13)0.0013 (12)
O40.0261 (13)0.0288 (12)0.0214 (11)0.0088 (10)0.0128 (10)0.0055 (9)
O130.0208 (12)0.0322 (13)0.0224 (12)0.0071 (10)0.0084 (10)0.0112 (10)
O30.0131 (11)0.0248 (11)0.0218 (11)0.0054 (9)0.0038 (9)0.0013 (9)
O1W0.0313 (14)0.0279 (12)0.0216 (12)0.0129 (10)0.0108 (10)0.0001 (9)
O2W0.0307 (14)0.0532 (16)0.0215 (12)0.0001 (12)0.0108 (11)0.0028 (11)
Geometric parameters (Å, º) top
Gd1—O12.338 (2)C16—H160.9300
Gd1—O22.526 (2)C11—C101.495 (4)
Gd1—O3i2.350 (2)C10—O61.247 (4)
Gd1—O5ii2.461 (2)C10—O51.278 (4)
Gd1—O6ii2.499 (2)C18—O71.247 (4)
Gd1—O82.314 (2)C18—O81.255 (3)
Gd1—N62.617 (3)C36—O151.248 (4)
Gd1—O1W2.374 (2)C36—O161.271 (4)
Gd2—O92.312 (2)C36—C351.491 (4)
Gd2—O11iii2.539 (2)C33—C341.385 (4)
Gd2—O12iii2.342 (2)C33—N71.387 (4)
Gd2—O13iv2.267 (2)C33—C311.393 (4)
Gd2—O152.449 (2)C35—C341.388 (4)
Gd2—O162.520 (2)C35—C291.424 (4)
Gd2—N1iii2.612 (3)C34—H340.9300
Gd2—O2W2.384 (2)N7—C321.323 (4)
N6—C231.316 (4)N7—H7A0.77 (4)
N6—C241.407 (4)C28—O141.236 (4)
N5—C231.343 (4)C28—O131.272 (4)
N5—C221.372 (4)C28—C291.516 (4)
N5—H5A0.83 (4)C29—C301.380 (4)
C23—H230.9300C32—N81.316 (4)
C25—C241.389 (4)C32—H320.9300
C25—C261.391 (4)N8—C311.382 (4)
C25—H250.9300N8—H8A0.80 (4)
C21—C201.385 (4)C31—C301.390 (4)
C21—C221.390 (4)C30—H300.9300
C21—H210.9300C1—O21.247 (4)
C24—C221.400 (4)C1—O11.281 (4)
C20—C261.411 (4)C1—C21.502 (4)
C20—C191.504 (4)C2—C31.380 (4)
C26—C271.498 (4)C2—C81.420 (4)
N3—C141.314 (4)C8—C71.378 (4)
N3—C151.378 (4)C8—C91.510 (4)
N3—H3A0.81 (4)C7—C61.396 (4)
C13—C121.383 (4)C7—H70.9300
C13—N41.391 (4)C4—C31.392 (4)
C13—C151.392 (4)C4—C61.400 (4)
N4—C141.313 (4)C4—N11.403 (4)
N4—H4A0.84 (4)C6—N21.378 (4)
C15—C161.387 (4)C3—H30.9300
C14—H140.9300N1—C51.315 (4)
C27—O111.245 (4)N2—C51.345 (4)
C27—O121.270 (4)N2—H2A0.82 (4)
C19—O101.251 (4)C5—H50.9300
C19—O91.251 (4)C9—O41.252 (4)
O11—Gd2iv2.539 (2)C9—O31.266 (4)
C17—C161.378 (4)O1W—H1W0.84
C17—C111.420 (4)O1W—H2W0.82
C17—C181.513 (4)O2W—H3W0.86
C12—C111.386 (4)O2W—H4WA0.82
C12—H120.9300O2W—H4WB0.82
O8—Gd1—O1107.71 (8)N3—C14—H14124.8
O8—Gd1—O3i80.39 (7)O11—C27—O12120.5 (3)
O1—Gd1—O3i156.84 (7)O11—C27—C26122.0 (3)
O8—Gd1—O1W150.83 (7)O12—C27—C26117.5 (3)
O1—Gd1—O1W89.84 (8)O11—C27—Gd2iv64.70 (17)
O3i—Gd1—O1W75.13 (7)O12—C27—Gd2iv55.80 (16)
O8—Gd1—O5ii91.14 (7)C26—C27—Gd2iv173.3 (2)
O1—Gd1—O5ii127.16 (7)O10—C19—O9124.2 (3)
O3i—Gd1—O5ii72.98 (7)O10—C19—C20117.1 (3)
O1W—Gd1—O5ii96.56 (8)O9—C19—C20118.6 (3)
O8—Gd1—O6ii133.85 (7)C27—O11—Gd2iv88.98 (18)
O1—Gd1—O6ii81.62 (8)C16—C17—C11121.3 (3)
O3i—Gd1—O6ii108.82 (7)C16—C17—C18115.8 (3)
O1W—Gd1—O6ii70.40 (8)C11—C17—C18123.0 (3)
O5ii—Gd1—O6ii52.51 (7)C13—C12—C11117.9 (3)
O8—Gd1—O277.02 (7)C13—C12—H12121.1
O1—Gd1—O253.69 (7)C11—C12—H12121.1
O3i—Gd1—O2148.38 (7)C17—C16—C15117.1 (3)
O1W—Gd1—O2131.50 (7)C17—C16—H16121.4
O5ii—Gd1—O285.58 (8)C15—C16—H16121.4
O6ii—Gd1—O273.23 (7)C12—C11—C17120.6 (3)
O8—Gd1—N687.31 (8)C12—C11—C10118.5 (3)
O1—Gd1—N678.24 (8)C17—C11—C10120.9 (3)
O3i—Gd1—N680.57 (8)O6—C10—O5120.7 (3)
O1W—Gd1—N673.35 (8)O6—C10—C11120.3 (3)
O5ii—Gd1—N6153.38 (8)O5—C10—C11118.9 (3)
O6ii—Gd1—N6138.26 (8)O6—C10—Gd1i61.93 (15)
O2—Gd1—N6119.76 (8)O5—C10—Gd1i60.23 (15)
O8—Gd1—C10ii115.53 (8)C11—C10—Gd1i167.3 (2)
O1—Gd1—C10ii106.09 (8)O7—C18—O8124.7 (3)
O3i—Gd1—C10ii88.80 (8)O7—C18—C17117.4 (3)
O1W—Gd1—C10ii79.89 (8)O8—C18—C17117.8 (3)
O5ii—Gd1—C10ii26.78 (8)C18—O8—Gd1148.6 (2)
O6ii—Gd1—C10ii26.11 (8)C10—O5—Gd1i92.99 (18)
O2—Gd1—C10ii81.39 (8)C10—O6—Gd1i91.96 (17)
N6—Gd1—C10ii152.92 (8)C27—O12—Gd2iv97.54 (19)
O13iv—Gd2—O987.94 (8)O15—C36—O16120.3 (3)
O13iv—Gd2—O12iii107.11 (9)O15—C36—C35119.2 (3)
O9—Gd2—O12iii152.90 (8)O16—C36—C35120.5 (3)
O13iv—Gd2—O2W153.97 (8)C34—C33—N7132.7 (3)
O9—Gd2—O2W79.66 (9)C34—C33—C31121.1 (3)
O12iii—Gd2—O2W77.24 (9)N7—C33—C31106.1 (3)
O13iv—Gd2—O15136.70 (8)C34—C35—C29120.9 (3)
O9—Gd2—O1598.56 (8)C34—C35—C36118.6 (3)
O12iii—Gd2—O1585.94 (9)C29—C35—C36120.6 (3)
O2W—Gd2—O1568.38 (8)C33—C34—C35117.8 (3)
O13iv—Gd2—O1689.20 (7)C33—C34—H34121.1
O9—Gd2—O1675.74 (8)C35—C34—H34121.1
O12iii—Gd2—O16125.56 (8)C36—O16—Gd291.50 (18)
O2W—Gd2—O16109.44 (8)C36—O15—Gd295.47 (18)
O15—Gd2—O1652.14 (7)C19—O9—Gd2168.9 (2)
O13iv—Gd2—O11iii80.34 (8)C32—N7—C33108.5 (3)
O9—Gd2—O11iii153.99 (8)C32—N7—H7A129 (3)
O12iii—Gd2—O11iii52.97 (8)C33—N7—H7A123 (3)
O2W—Gd2—O11iii119.51 (8)O14—C28—O13123.9 (3)
O15—Gd2—O11iii75.38 (9)O14—C28—C29119.9 (3)
O16—Gd2—O11iii80.92 (8)O13—C28—C29116.1 (3)
O13iv—Gd2—N1iii82.99 (8)C30—C29—C35120.7 (3)
O9—Gd2—N1iii79.84 (8)C30—C29—C28116.4 (3)
O12iii—Gd2—N1iii79.83 (8)C35—C29—C28122.8 (3)
O2W—Gd2—N1iii72.39 (8)N8—C32—N7110.4 (3)
O15—Gd2—N1iii140.32 (8)N8—C32—H32124.8
O16—Gd2—N1iii154.59 (7)N7—C32—H32124.8
O11iii—Gd2—N1iii121.11 (8)C32—N8—C31108.8 (3)
O13iv—Gd2—C27iii93.85 (9)C32—N8—H8A122 (3)
O9—Gd2—C27iii178.09 (9)C31—N8—H8A130 (3)
O12iii—Gd2—C27iii26.65 (9)N8—C31—C30131.9 (3)
O2W—Gd2—C27iii98.94 (9)N8—C31—C33106.3 (3)
O15—Gd2—C27iii79.68 (9)C30—C31—C33121.7 (3)
O16—Gd2—C27iii103.62 (8)C29—C30—C31117.8 (3)
O11iii—Gd2—C27iii26.32 (8)C29—C30—H30121.1
N1iii—Gd2—C27iii101.01 (8)C31—C30—H30121.1
C23—N6—C24104.1 (3)O2—C1—O1121.3 (3)
C23—N6—Gd1120.7 (2)O2—C1—C2121.7 (3)
C24—N6—Gd1132.91 (19)O1—C1—C2117.0 (3)
C23—N5—C22107.6 (3)C3—C2—C8121.1 (3)
C23—N5—H5A126 (3)C3—C2—C1117.9 (3)
C22—N5—H5A127 (3)C8—C2—C1121.0 (3)
N6—C23—N5113.7 (3)C1—O2—Gd188.55 (18)
N6—C23—H23123.1C1—O1—Gd196.42 (18)
N5—C23—H23123.1C7—C8—C2120.3 (3)
C24—C25—C26119.0 (3)C7—C8—C9117.6 (3)
C24—C25—H25120.5C2—C8—C9121.6 (3)
C26—C25—H25120.5C8—C7—C6118.0 (3)
C20—C21—C22117.9 (3)C8—C7—H7121.0
C20—C21—H21121.1C6—C7—H7121.0
C22—C21—H21121.1C3—C4—C6119.5 (3)
C25—C24—C22119.3 (3)C3—C4—N1130.8 (3)
C25—C24—N6131.4 (3)C6—C4—N1109.6 (3)
C22—C24—N6109.2 (3)N2—C6—C7132.6 (3)
N5—C22—C21132.2 (3)N2—C6—C4105.3 (3)
N5—C22—C24105.3 (3)C7—C6—C4122.1 (3)
C21—C22—C24122.4 (3)C2—C3—C4118.9 (3)
C21—C20—C26120.4 (3)C2—C3—H3120.5
C21—C20—C19117.2 (3)C4—C3—H3120.5
C26—C20—C19122.3 (3)C5—N1—C4103.9 (2)
C25—C26—C20120.9 (3)C5—N1—Gd2iv122.2 (2)
C25—C26—C27117.3 (3)C4—N1—Gd2iv132.34 (19)
C20—C26—C27121.7 (3)C5—N2—C6106.9 (3)
C14—N3—C15109.0 (3)C5—N2—H2A127 (3)
C14—N3—H3A128 (3)C6—N2—H2A126 (3)
C15—N3—H3A123 (3)N1—C5—N2114.3 (3)
C12—C13—N4132.9 (3)N1—C5—H5122.9
C12—C13—C15121.0 (3)N2—C5—H5122.9
N4—C13—C15106.1 (3)O4—C9—O3124.8 (3)
C14—N4—C13108.4 (3)O4—C9—C8118.8 (3)
C14—N4—H4A127 (3)O3—C9—C8116.3 (3)
C13—N4—H4A124 (3)C28—O13—Gd2iii151.0 (2)
N3—C15—C16131.9 (3)C9—O3—Gd1ii135.77 (18)
N3—C15—C13106.0 (3)H1W—O1W—H2W108
C16—C15—C13122.1 (3)H3W—O2W—H4WA106
N4—C14—N3110.4 (3)H3W—O2W—H4WB105
N4—C14—H14124.8
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O7v0.841.802.629 (3)167
O1W—H2W···O4i0.821.922.670 (3)153
O2W—H3W···O10vi0.861.742.590 (3)172
O2W—H4WA···O150.822.142.716 (5)127
O2W—H4WB···O2Wvi0.821.912.723 (4)170
N2—H2A···O14vii0.82 (4)1.94 (4)2.742 (3)169 (3)
N3—H3A···O10vii0.81 (4)1.94 (4)2.731 (4)166 (4)
N4—H4A···O160.84 (4)1.97 (4)2.801 (4)170 (4)
N5—H5A···O4v0.83 (4)1.96 (4)2.772 (3)165 (4)
N7—H7A···O50.77 (4)2.08 (4)2.845 (3)171 (4)
N8—H8A···O7viii0.80 (4)1.95 (4)2.747 (3)172 (4)
Symmetry codes: (i) x, y1/2, z+1/2; (v) x, y+1/2, z1/2; (vi) x+1, y, z; (vii) x, y+1/2, z+1/2; (viii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Gd2(C9H4N2O4)2(C9H5N2O4)2(H2O)2]
Mr1169.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)18.7856 (11), 12.7745 (7), 15.4776 (9)
β (°) 108.010 (1)
V3)3532.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.82
Crystal size (mm)0.25 × 0.24 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.448, 0.501
No. of measured, independent and
observed [I > 2σ(I)] reflections
24827, 6338, 5929
Rint0.027
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.049, 1.08
No. of reflections6338
No. of parameters595
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.55

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Gd1—O12.338 (2)Gd2—O92.312 (2)
Gd1—O22.526 (2)Gd2—O11iii2.539 (2)
Gd1—O3i2.350 (2)Gd2—O12iii2.342 (2)
Gd1—O5ii2.461 (2)Gd2—O13iv2.267 (2)
Gd1—O6ii2.499 (2)Gd2—O152.449 (2)
Gd1—O82.314 (2)Gd2—O162.520 (2)
Gd1—N62.617 (3)Gd2—N1iii2.612 (3)
Gd1—O1W2.374 (2)Gd2—O2W2.384 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O7v0.841.802.629 (3)167
O1W—H2W···O4i0.821.922.670 (3)153
O2W—H3W···O10vi0.861.742.590 (3)172
O2W—H4WA···O150.822.142.716 (5)127
O2W—H4WB···O2Wvi0.821.912.723 (4)170
N2—H2A···O14vii0.82 (4)1.94 (4)2.742 (3)169 (3)
N3—H3A···O10vii0.81 (4)1.94 (4)2.731 (4)166 (4)
N4—H4A···O160.84 (4)1.97 (4)2.801 (4)170 (4)
N5—H5A···O4v0.83 (4)1.96 (4)2.772 (3)165 (4)
N7—H7A···O50.77 (4)2.08 (4)2.845 (3)171 (4)
N8—H8A···O7viii0.80 (4)1.95 (4)2.747 (3)172 (4)
Symmetry codes: (i) x, y1/2, z+1/2; (v) x, y+1/2, z1/2; (vi) x+1, y, z; (vii) x, y+1/2, z+1/2; (viii) x, y1/2, z1/2.
 

Acknowledgements

The authors acknowledge the Students' Extracurricular Scientific Research Projects of South China Normal University and the Key Laboratory of Electrochemical Technology of Energy Storage and Power Generation in Guangdong Universities for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Y.-Q., Yu, Y.-F. & Wu, K.-C. (2008). Cryst. Growth Des. 8, 2087–2089.  Web of Science CrossRef CAS Google Scholar
First citationYao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2299–2306.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1566-m1567
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds