metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[3-(2-carb­oxy­ethen­yl)pyridinium-1-acetato]di­chloridozinc(II)

aShanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, People's Republic of China
*Correspondence e-mail: eqgao@chem.ecnu.edu.cn

(Received 28 October 2009; accepted 12 November 2009; online 18 November 2009)

In the title complex, [ZnCl2(C10H9NO4)2], the ZnII ion lies on a twofold rotation axis and is four-coordinated by two carboxyl­ate O atoms from two 3-(2-carboxy­ethen­yl)pyridinium-1-acetate ligands in a monodentate mode and two Cl atoms in a distorted tetra­hedral geometry. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into a double-chain structure extending parallel to [101].

Related literature

For general background to hydrogen bonds, see: Beatty (2003[Beatty, A. M. (2003). Coord. Chem. Rev. 246, 131-143.]); Liu et al. (2008[Liu, N., Wang, Y.-Q., Gao, E.-Q., Chen, Z.-X. & Weng, L.-H. (2008). CrystEngComm, 10, 915-922.]); Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). For related structures, see: Mao et al. (1999[Mao, J.-G., Zhang, H.-J., Ni, J.-Z., Wang, S.-B. & Mark, T. C. W. (1999). Polyhedron, 18, 1519-1525.]); Sun et al. (2009[Sun, W.-W., Tian, C.-Y., Jing, X.-H., Wang, Y.-Q. & Gao, E.-Q. (2009). Chem. Commun. pp. 4741-4743.]); Wu et al. (2006[Wu, A.-Q., Li, Y., Zheng, F.-K., Guo, G.-C. & Huang, J.-S. (2006). Cryst. Growth Des. 6, 444-450.]); Zhang et al. (2002[Zhang, X., Guo, G.-G., Zheng, F.-K., Zhou, G.-W., Mao, J.-G., Dong, Z.-C., Huang, J.-S. & Mark, T. C. W. (2002). J. Chem. Soc. Dalton Trans. pp. 1344-1349.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C10H9NO4)2]

  • Mr = 550.63

  • Monoclinic, C 2/c

  • a = 16.6247 (6) Å

  • b = 7.1973 (3) Å

  • c = 18.8873 (7) Å

  • β = 108.685 (1)°

  • V = 2140.81 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 296 K

  • 0.12 × 0.12 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.845, Tmax = 0.893

  • 27422 measured reflections

  • 2450 independent reflections

  • 2309 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.077

  • S = 1.06

  • 2450 reflections

  • 154 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 1.9983 (13)
Zn1—Cl1 2.2566 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O2i 0.97 (4) 1.60 (4) 2.560 (2) 169 (3)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As we know, hydrogen bond is the most important of all directional intermolecular interactions. It is operative in determining molecular conformation, molecular aggregation, and the function of a vast number of chemical systems ranging from inorganic to biological (Beatty, 2003; Liu et al., 2008; Steiner, 2002). In this paper, we report the coordination and hydrogen-bond structure of the title complex derived from a zwitterionic dicarboxylic ligand, 1-carboxymethylpyridinium-3-acrylic acid. Zwitterionic dicarboxylic acids as ligands have received less attention in coordination chemistry than the common dicarboxylic acids, although an increasing number of coordination compounds with such ligands have been reported in recent years (Mao et al., 1999; Wu et al., 2006; Zhang et al., 2002).

The molecular structure is shown in Fig. 1. The ZnII ion, lying on a twofold rotation axis, is coordinated by two Cl atoms and the two zwitterionic ligands through carboxylate O atoms, with a distorted tetrahedral coordination geometry. The Zn—Cl and Zn—O distances lie in the usual range for a tetrahedral ZnII center (Table 1). The zwitterionic ligand is neutral with an anionic N-acetate group in a monodentate coordination mode and a cationic pyridinium ring. The acrylic group remains protonated and uncoordinated. This is in contrast with the only previous coordination compound with this ligand, [Ni3(C10H8NO4)2(N3)4(H2O)2].5H2O (Sun et al., 2009), in which both carboxylate groups are deprotonated and coordinated in a bidentate bridging mode, giving an extended coordination network. As shown in Fig. 2, the mononuclear complex molecules in the title compound are associated into a one-dimensional chain along the [101] direction through intermolecular O—H···O hydrogen bonds (Table 2). The hydrogen bond involves the acrylic hydroxyl group (O4—H4B) from one molecule and the uncoordinated acetate O atom (O2) from another molecule.

Related literature top

For general background to hydrogen bonds, see: Beatty (2003); Liu et al. (2008); Steiner (2002). For related structures, see: Mao et al. (1999); Sun et al. (2009); Wu et al. (2006); Zhang et al. (2002).

Experimental top

The zwitterionic ligand was synthesized from ethyl pyridine-3-acrylate and ethyl bromoacetate according to the procedure for similar compounds (Mao et al., 1999). A mixture of the ligand (0.021 g, 0.10 mmol), ZnCl2 (0.014 g, 0.10 mmol), NaN3 (0.026 g, 0.40 mmol), ethanol (1.0 ml) and H2O (2.0 ml) was sealed in a Teflon-lined autoclave and heated at 343 K for 3 d, then cooled to room temperature at a rate of 5 K h-1, giving a pale yellow solution. Slow evaporation of the solution at room temperature for several days afforded colorless block crystals of the title compound (yield 46%). Analysis, calculated for C20H18Cl2N2O8Zn: C 27.22, H 3.43, N 22.22%; found: C 27.11, H 3.82, N 22.50%. FT—IR (KBr, cm-1): 3530m, 3348br, 2084vs, 2059vs, 1630vs, 1582 s, 1505m, 1461w, 1388vs, 1307m, 985m.

Refinement top

H atoms attached to C atoms were placed at calculated positions and refined as riding atoms, with C—H = 0.93 (CH) and 0.97 (CH2) Å and with Uiso(H) = 1.2Ueq(C). The carboxylic H atom (H4B) was located from a difference Fourier map and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x, y, -z + 1/2.]
[Figure 2] Fig. 2. One-dimensional chain structure connected through intermolecular O—H···O hydrogen bonds (dashed lines). [Symmetry code: (ii) x - 1/2, -y + 3/2, z - 1/2.]
Bis[3-(2-carboxyethenyl)pyridinium-1-acetato]dichloridozinc(II) top
Crystal data top
[ZnCl2(C10H9NO4)2]F(000) = 1120
Mr = 550.63Dx = 1.708 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9202 reflections
a = 16.6247 (6) Åθ = 2.3–26.0°
b = 7.1973 (3) ŵ = 1.45 mm1
c = 18.8873 (7) ÅT = 296 K
β = 108.685 (1)°Block, colorless
V = 2140.81 (14) Å30.12 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2450 independent reflections
Radiation source: fine-focus sealed tube2309 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2120
Tmin = 0.845, Tmax = 0.893k = 98
27422 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0424P)2 + 2.553P]
where P = (Fo2 + 2Fc2)/3
2450 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[ZnCl2(C10H9NO4)2]V = 2140.81 (14) Å3
Mr = 550.63Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.6247 (6) ŵ = 1.45 mm1
b = 7.1973 (3) ÅT = 296 K
c = 18.8873 (7) Å0.12 × 0.12 × 0.08 mm
β = 108.685 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2450 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2309 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.893Rint = 0.019
27422 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.50 e Å3
2450 reflectionsΔρmin = 0.24 e Å3
154 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.21438 (4)0.25000.02879 (10)
C10.10900 (11)0.5110 (3)0.25776 (10)0.0324 (4)
C20.14353 (12)0.6811 (3)0.22916 (10)0.0360 (4)
H2A0.11390.79040.23790.043*
H2B0.20320.69530.25760.043*
C30.20158 (11)0.6192 (3)0.12864 (11)0.0370 (4)
H3A0.25250.58830.16490.044*
C40.19519 (13)0.6114 (3)0.05458 (12)0.0432 (4)
H4A0.24130.57340.04050.052*
C50.12009 (13)0.6600 (3)0.00115 (11)0.0395 (4)
H5A0.11550.65630.04920.047*
C60.06027 (11)0.7173 (2)0.09822 (10)0.0318 (4)
H6A0.01460.75110.11370.038*
C70.05107 (12)0.7146 (2)0.02242 (10)0.0323 (4)
C80.02829 (13)0.7712 (3)0.03508 (10)0.0371 (4)
H8A0.02730.77840.08400.044*
C90.10021 (13)0.8126 (3)0.02414 (11)0.0401 (4)
H9A0.10450.80610.02370.048*
C100.17521 (12)0.8700 (3)0.08844 (10)0.0380 (4)
N10.13464 (9)0.6713 (2)0.14914 (8)0.0290 (3)
O10.06462 (9)0.39902 (19)0.21043 (7)0.0371 (3)
O20.12548 (10)0.5002 (2)0.32652 (7)0.0509 (4)
O30.17174 (10)0.9091 (3)0.14938 (9)0.0574 (4)
O40.24415 (10)0.8769 (3)0.07066 (9)0.0592 (5)
H4B0.290 (2)0.919 (5)0.1137 (19)0.091 (11)*
Cl10.07978 (3)0.02552 (6)0.34083 (2)0.03619 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03138 (16)0.03059 (16)0.02483 (15)0.0000.00960 (11)0.000
C10.0285 (8)0.0387 (9)0.0288 (8)0.0027 (7)0.0075 (6)0.0018 (7)
C20.0417 (9)0.0378 (9)0.0263 (8)0.0084 (8)0.0076 (7)0.0012 (7)
C30.0288 (8)0.0389 (9)0.0422 (9)0.0025 (7)0.0099 (7)0.0063 (8)
C40.0391 (10)0.0484 (11)0.0485 (11)0.0031 (8)0.0231 (8)0.0044 (9)
C50.0492 (11)0.0384 (9)0.0343 (9)0.0016 (8)0.0183 (8)0.0024 (8)
C60.0289 (8)0.0313 (8)0.0345 (9)0.0009 (6)0.0090 (7)0.0001 (7)
C70.0356 (9)0.0271 (8)0.0308 (8)0.0020 (6)0.0059 (7)0.0030 (6)
C80.0411 (10)0.0382 (9)0.0283 (8)0.0014 (8)0.0060 (7)0.0027 (7)
C90.0447 (10)0.0434 (10)0.0292 (9)0.0027 (8)0.0077 (8)0.0009 (8)
C100.0422 (10)0.0332 (9)0.0329 (9)0.0023 (7)0.0040 (7)0.0018 (7)
N10.0304 (7)0.0282 (6)0.0268 (7)0.0021 (5)0.0069 (5)0.0026 (5)
O10.0436 (7)0.0394 (7)0.0300 (6)0.0126 (6)0.0142 (5)0.0051 (5)
O20.0545 (9)0.0663 (10)0.0266 (6)0.0263 (8)0.0056 (6)0.0030 (6)
O30.0447 (8)0.0801 (12)0.0441 (8)0.0034 (8)0.0094 (7)0.0092 (8)
O40.0445 (8)0.0929 (14)0.0360 (8)0.0210 (9)0.0070 (6)0.0123 (8)
Cl10.0369 (2)0.0387 (2)0.0321 (2)0.00658 (17)0.00991 (17)0.00704 (16)
Geometric parameters (Å, º) top
Zn1—O11.9983 (13)C5—C71.388 (3)
Zn1—Cl12.2566 (4)C5—H5A0.9300
C1—O21.241 (2)C6—N11.342 (2)
C1—O11.253 (2)C6—C71.390 (3)
C1—C21.522 (3)C6—H6A0.9300
C2—N11.472 (2)C7—C81.473 (2)
C2—H2A0.9700C8—C91.311 (3)
C2—H2B0.9700C8—H8A0.9300
C3—N11.343 (2)C9—C101.493 (3)
C3—C41.370 (3)C9—H9A0.9300
C3—H3A0.9300C10—O31.204 (3)
C4—C51.376 (3)C10—O41.294 (3)
C4—H4A0.9300O4—H4B0.97 (4)
O1i—Zn1—O196.63 (8)C4—C5—H5A120.0
O1i—Zn1—Cl1i115.43 (4)C7—C5—H5A120.0
O1—Zn1—Cl1i111.82 (4)N1—C6—C7120.43 (17)
O1i—Zn1—Cl1111.82 (4)N1—C6—H6A119.8
O1—Zn1—Cl1115.43 (4)C7—C6—H6A119.8
Cl1i—Zn1—Cl1105.92 (3)C5—C7—C6118.26 (17)
O2—C1—O1126.04 (17)C5—C7—C8119.55 (17)
O2—C1—C2116.10 (16)C6—C7—C8122.18 (17)
O1—C1—C2117.82 (15)C9—C8—C7126.40 (18)
N1—C2—C1113.62 (15)C9—C8—H8A116.8
N1—C2—H2A108.8C7—C8—H8A116.8
C1—C2—H2A108.8C8—C9—C10120.04 (18)
N1—C2—H2B108.8C8—C9—H9A120.0
C1—C2—H2B108.8C10—C9—H9A120.0
H2A—C2—H2B107.7O3—C10—O4123.81 (18)
N1—C3—C4120.36 (17)O3—C10—C9123.98 (19)
N1—C3—H3A119.8O4—C10—C9112.19 (17)
C4—C3—H3A119.8C6—N1—C3121.35 (16)
C3—C4—C5119.60 (18)C6—N1—C2119.36 (15)
C3—C4—H4A120.2C3—N1—C2119.28 (15)
C5—C4—H4A120.2C1—O1—Zn1115.16 (11)
C4—C5—C7119.98 (18)C10—O4—H4B109 (2)
O2—C1—C2—N1170.27 (17)C8—C9—C10—O4169.7 (2)
O1—C1—C2—N112.1 (2)C7—C6—N1—C31.0 (3)
N1—C3—C4—C51.0 (3)C7—C6—N1—C2178.06 (16)
C3—C4—C5—C70.7 (3)C4—C3—N1—C60.2 (3)
C4—C5—C7—C60.4 (3)C4—C3—N1—C2179.18 (18)
C4—C5—C7—C8178.33 (19)C1—C2—N1—C682.1 (2)
N1—C6—C7—C51.2 (3)C1—C2—N1—C398.9 (2)
N1—C6—C7—C8177.45 (16)O2—C1—O1—Zn111.0 (3)
C5—C7—C8—C9174.5 (2)C2—C1—O1—Zn1166.35 (13)
C6—C7—C8—C96.8 (3)O1i—Zn1—O1—C157.77 (12)
C7—C8—C9—C10179.31 (18)Cl1i—Zn1—O1—C1178.59 (12)
C8—C9—C10—O311.8 (3)Cl1—Zn1—O1—C160.24 (14)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O2ii0.97 (4)1.60 (4)2.560 (2)169 (3)
Symmetry code: (ii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C10H9NO4)2]
Mr550.63
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)16.6247 (6), 7.1973 (3), 18.8873 (7)
β (°) 108.685 (1)
V3)2140.81 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.12 × 0.12 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.845, 0.893
No. of measured, independent and
observed [I > 2σ(I)] reflections
27422, 2450, 2309
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.077, 1.06
No. of reflections2450
No. of parameters154
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O11.9983 (13)Zn1—Cl12.2566 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O2i0.97 (4)1.60 (4)2.560 (2)169 (3)
Symmetry code: (i) x1/2, y+3/2, z1/2.
 

Acknowledgements

We are grateful for financial support from the NSFC (grant No. 20771038) and the Shanghai Leading Academic Discipline Project (B409).

References

First citationBeatty, A. M. (2003). Coord. Chem. Rev. 246, 131–143.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, N., Wang, Y.-Q., Gao, E.-Q., Chen, Z.-X. & Weng, L.-H. (2008). CrystEngComm, 10, 915–922.  Web of Science CSD CrossRef CAS Google Scholar
First citationMao, J.-G., Zhang, H.-J., Ni, J.-Z., Wang, S.-B. & Mark, T. C. W. (1999). Polyhedron, 18, 1519–1525.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationSun, W.-W., Tian, C.-Y., Jing, X.-H., Wang, Y.-Q. & Gao, E.-Q. (2009). Chem. Commun. pp. 4741–4743.  Web of Science CSD CrossRef Google Scholar
First citationWu, A.-Q., Li, Y., Zheng, F.-K., Guo, G.-C. & Huang, J.-S. (2006). Cryst. Growth Des. 6, 444–450.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X., Guo, G.-G., Zheng, F.-K., Zhou, G.-W., Mao, J.-G., Dong, Z.-C., Huang, J.-S. & Mark, T. C. W. (2002). J. Chem. Soc. Dalton Trans. pp. 1344–1349.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds