metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1546-m1547

(3-Allyl­oxypicolinato-κ2N,O2)bis­­[3,5-di­fluoro-2-(2-pyrid­yl)phenyl-κ2C1,N]iridium(III)

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: ytz823@hotmail.com

(Received 1 November 2009; accepted 4 November 2009; online 11 November 2009)

The title complex, [Ir(C11H6F2N)2(C9H8NO3)], consists of one IrIII ion, two C,N-bidentate 3,5-difluoro-2-(2-pyrid­yl)phenyl (F2ppy) ligands and one N,O-bidentate 3-allyl­oxypicolinate (pic-3-Oall) ligand. The IrIII ion is hexa­coordinated by two C atoms and two N atoms from the F2ppy ligands and one N atom and one carboxyl­ate O atom from the pic-3-Oall ligand, displaying a distorted octa­hedral geometry. In the crystal structure, weak inter­molecular C—H⋯F and C—H⋯O hydrogen bonds link the complex mol­ecules into a three-dimensional supra­molecular structure.

Related literature

For general background to phospho­rescent materials, see: Baldo et al. (1998[Baldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. & Forrest, S. R. (1998). Nature (London), 395, 151-154.], 2000[Baldo, M. A., Thompson, M. E. & Forrest, S. R. (2000). Nature (London), 403, 750-753.]); Liang et al. (2006[Liang, B., Jiang, C. Y., Chen, Z., Zhang, X. J., Shi, H. H. & Cao, Y. (2006). J. Mater. Chem. 16, 1281-1286.]); Thompson (2007[Thompson, M. (2007). MRS Bull. 32, 694-701.]); Tsuboyama et al. (2003[Tsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971-12979.]). For bond lengths in organic compounds, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C11H6F2N)2(C9H8NO3)]

  • Mr = 750.70

  • Monoclinic, C 2/c

  • a = 33.429 (4) Å

  • b = 9.9117 (12) Å

  • c = 16.0265 (19) Å

  • β = 94.107 (2)°

  • V = 5296.5 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.11 mm−1

  • T = 185 K

  • 0.31 × 0.23 × 0.03 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.305, Tmax = 0.862

  • 14169 measured reflections

  • 5087 independent reflections

  • 4364 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.080

  • S = 1.05

  • 5087 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 1.72 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected bond lengths (Å)

Ir1—C7 1.983 (4)
Ir1—C18 2.002 (4)
Ir1—N1 2.045 (3)
Ir1—N2 2.051 (4)
Ir1—N3 2.132 (3)
Ir1—O1 2.135 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯F1i 0.95 2.60 2.997 (6) 106
C28—H28⋯F2ii 0.95 2.55 3.280 (6) 134
C10—H10⋯F3iii 0.95 2.50 3.299 (6) 142
C12—H12⋯F4iv 0.95 2.56 3.130 (6) 119
C26—H26⋯O1v 0.95 2.63 3.519 (5) 155
C14—H14⋯O2vi 0.95 2.54 3.275 (6) 134
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}]; (v) [x, -y, z-{\script{1\over 2}}]; (vi) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Since Forrest and co-workers (Baldo et al., 1998) successfully utilized the phosphorescent material PtOEP to fabricate light-emitting devices, many heavy-metal complexes have been extensively investigated in highly efficient electrophosphorescent organic light-emitting diodes (Baldo et al., 2000; Liang et al., 2006; Thompson, 2007). Among the complexes, the cyclometalated iridium complexes are the most valuable emitting materials due to the results in higher efficiency and brightness (Liang et al., 2006; Tsuboyama et al., 2003). Recently, we synthesized a mixed-ligand iridium complex, [Ir(F2ppy)2(pic-3-Oall)] (F2ppy = 3,5-difluoro-2-(2-pyridyl)phenyl; pic-3-Oall = 3-allyloxypicolinate), which exhibits bright blue light.

The molecular structure of the title complex is shown in Fig. 1. The mononuclear iridium(III) complex has an approximately octahedral coordination geometry. The IrIII ion is hexa-coordinated by two C atoms and two N atoms from two C,N-bidentate F2ppy ligands, which exhibit cis-C,C and trans-N,N chelate dispositions, and one N atom and one carboxylate O atom from one N,O-bidentate pic-3-Oall ligand. All the bond lengths and angles of the molecule are within normal ranges (Allen et al., 1987). For the F2ppy ligands, the Ir—C bonds [1.983 (4) and 2.002 (4) Å] are shorter than the Ir—N bonds [2.045 (4) and 2.051 (4) Å] (Table 1). Due to steric interactions, the difluorophenyl groups are not coplanar with the pyridine groups; the dihedral angles between the substituted phenyl rings and pyridines are 7.60 (1) and 6.05 (3)°, respectively. For the pic-3-Oall ligand, the bond lengths of Ir—N and Ir—O are 2.132 (3) and 2.135 (3) Å, respectively. In the crystal structure, the complex molecules are connected by weak intermolecular C—H···F and C—H···O hydrogen bonds (Table 2 and Fig. 2), forming a three-dimensional supramolecular structure.

Related literature top

For general background to phosphorescent materials, see: Baldo et al. (1998, 2000); Liang et al. (2006); Thompson (2007); Tsuboyama et al. (2003). For bond lengths in organic compounds, see: Allen et al. (1987).

Experimental top

The title complex was prepared as following. First, a cyclometalated IrIII µ-chlorobridged dimer, [(C11H6F2N)2Ir(µ-Cl)]2, was synthesized by reacting IrCl3.nH2O (3.0 mmol) and 2-(2,4-difluorophenyl)pyridine (7.5 mmol). Then, the dimer (0.2 mmol) was reacted with 3-hydroxypicolinic acid (0.44 mmol) in 2-methoxyethanol (25 ml), affording bis[2-(2,4-difluorophenyl)pyridine](3-hydroxypicolinate)iridium(III), which (0.2 mmol) was reacted with 3-bromopropene (0.24 mmol) in the present of anhydrous K2CO3 (1 mmol) to give the title complex. Yellow plate single crystals of the complex were obtained by slow evaporation of the chloroform solution at room temperature.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.99 Å for methylene and 0.95 Å for other H atoms and with Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 0.05 Å from Ir1 and the deepest hole 1.57 Å from C7.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Intermolecular C—H···F and C—H···O hydrogen bonds in the title complex, viewed along the b axis. H atoms not involved in hydrogen bonds have been omitted for clarity. [Colour codes: pale-green F; grey C; red O; white H.]
(3-Allyloxypicolinato-κ2N,O2)bis[3,5-difluoro-2-(2- pyridyl)phenyl-κ2C1,N]iridium(III) top
Crystal data top
[Ir(C11H6F2N)2(C9H8NO3)]F(000) = 2912
Mr = 750.70Dx = 1.883 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7056 reflections
a = 33.429 (4) Åθ = 2.4–25.8°
b = 9.9117 (12) ŵ = 5.11 mm1
c = 16.0265 (19) ÅT = 185 K
β = 94.107 (2)°Plate, yellow
V = 5296.5 (11) Å30.31 × 0.23 × 0.03 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
5087 independent reflections
Radiation source: sealed tube4364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 4036
Tmin = 0.305, Tmax = 0.862k = 1212
14169 measured reflectionsl = 1119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0425P)2]
where P = (Fo2 + 2Fc2)/3
5087 reflections(Δ/σ)max = 0.002
379 parametersΔρmax = 1.72 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Ir(C11H6F2N)2(C9H8NO3)]V = 5296.5 (11) Å3
Mr = 750.70Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.429 (4) ŵ = 5.11 mm1
b = 9.9117 (12) ÅT = 185 K
c = 16.0265 (19) Å0.31 × 0.23 × 0.03 mm
β = 94.107 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5087 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4364 reflections with I > 2σ(I)
Tmin = 0.305, Tmax = 0.862Rint = 0.039
14169 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.05Δρmax = 1.72 e Å3
5087 reflectionsΔρmin = 0.59 e Å3
379 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.365597 (4)0.187358 (14)0.693663 (9)0.03540 (8)
N10.32777 (11)0.0250 (3)0.6890 (2)0.0416 (8)
N20.39933 (11)0.3598 (4)0.7072 (2)0.0426 (8)
N30.38322 (11)0.1393 (3)0.5719 (2)0.0401 (8)
O10.41710 (9)0.0620 (3)0.71739 (17)0.0441 (7)
O20.45390 (11)0.0942 (4)0.6590 (2)0.0706 (10)
O30.45584 (9)0.0840 (3)0.4921 (2)0.0564 (8)
C10.33883 (15)0.1008 (4)0.7107 (3)0.0485 (11)
H10.36630.11860.72590.058*
C20.31159 (19)0.2054 (5)0.7119 (4)0.0617 (14)
H20.32030.29350.72800.074*
C30.2721 (2)0.1808 (5)0.6897 (4)0.0640 (16)
H30.25310.25200.68970.077*
C40.25994 (15)0.0520 (5)0.6672 (3)0.0585 (12)
H40.23240.03420.65210.070*
C50.28811 (13)0.0521 (4)0.6665 (3)0.0441 (10)
C60.28083 (15)0.1936 (4)0.6436 (3)0.0453 (11)
C70.31502 (13)0.2809 (4)0.6563 (3)0.0409 (10)
C80.30985 (14)0.4155 (4)0.6320 (3)0.0503 (11)
H80.33140.47760.64050.060*
C90.27359 (16)0.4575 (5)0.5961 (3)0.0582 (12)
C100.24033 (16)0.3774 (5)0.5840 (3)0.0613 (14)
H100.21560.41050.55920.074*
C110.24501 (13)0.2484 (5)0.6095 (3)0.0536 (12)
C120.41786 (14)0.4204 (4)0.6459 (3)0.0521 (11)
H120.41740.37700.59300.062*
C130.43741 (16)0.5417 (5)0.6554 (4)0.0663 (14)
H130.44940.58240.60970.080*
C140.43921 (18)0.6028 (5)0.7324 (4)0.0722 (16)
H140.45270.68650.74090.087*
C150.42135 (16)0.5422 (5)0.7969 (3)0.0639 (14)
H150.42290.58340.85050.077*
C160.40075 (13)0.4197 (4)0.7843 (3)0.0458 (10)
C170.37829 (14)0.3462 (4)0.8450 (3)0.0446 (10)
C180.35732 (12)0.2308 (4)0.8132 (3)0.0378 (9)
C190.33531 (14)0.1565 (4)0.8687 (3)0.0434 (10)
H190.31990.08080.84920.052*
C200.33618 (17)0.1936 (4)0.9511 (3)0.0525 (13)
C210.35735 (19)0.3014 (5)0.9836 (4)0.0683 (16)
H210.35830.32251.04160.082*
C220.37700 (17)0.3773 (5)0.9289 (3)0.0649 (14)
C230.43021 (13)0.0015 (4)0.6533 (3)0.0446 (10)
C240.41319 (12)0.0496 (4)0.5690 (3)0.0383 (9)
C250.42684 (13)0.0104 (4)0.4908 (3)0.0437 (10)
C260.41040 (14)0.0726 (5)0.4191 (3)0.0542 (12)
H260.42010.05180.36630.065*
C270.38003 (17)0.1647 (5)0.4247 (3)0.0535 (13)
H270.36820.20630.37560.064*
C280.36687 (15)0.1963 (4)0.5008 (3)0.0458 (11)
H280.34570.25980.50400.055*
C290.46854 (15)0.1295 (6)0.4130 (3)0.0619 (13)
H29A0.48320.05680.38580.074*
H29B0.44500.15550.37540.074*
C300.49507 (17)0.2473 (7)0.4297 (5)0.0751 (17)
H300.50470.29110.38240.090*
C310.5065 (2)0.2967 (5)0.5026 (5)0.080 (2)
H31A0.49760.25650.55180.097*
H31B0.52370.37310.50670.097*
F10.27033 (10)0.5876 (3)0.5693 (2)0.0866 (10)
F20.21199 (9)0.1647 (3)0.5980 (2)0.0759 (9)
F30.31653 (10)0.1165 (3)1.00528 (17)0.0748 (9)
F40.39817 (14)0.4857 (3)0.9610 (2)0.1073 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.03972 (12)0.03992 (11)0.02690 (11)0.00128 (6)0.00483 (8)0.00145 (6)
N10.051 (2)0.0460 (19)0.0293 (19)0.0108 (16)0.0137 (16)0.0091 (15)
N20.045 (2)0.0455 (18)0.038 (2)0.0053 (17)0.0091 (17)0.0043 (17)
N30.047 (2)0.0424 (17)0.0316 (19)0.0009 (16)0.0072 (16)0.0010 (16)
O10.0496 (17)0.0548 (16)0.0270 (15)0.0049 (14)0.0033 (13)0.0029 (14)
O20.085 (3)0.074 (2)0.053 (2)0.038 (2)0.0088 (19)0.0119 (18)
O30.0536 (19)0.0692 (19)0.0477 (19)0.0164 (16)0.0118 (16)0.0069 (16)
C10.064 (3)0.049 (2)0.034 (2)0.008 (2)0.009 (2)0.0010 (19)
C20.087 (4)0.055 (3)0.045 (3)0.016 (3)0.013 (3)0.004 (2)
C30.078 (4)0.065 (3)0.051 (3)0.026 (3)0.019 (3)0.009 (2)
C40.053 (3)0.074 (3)0.049 (3)0.019 (3)0.009 (2)0.010 (3)
C50.046 (2)0.058 (2)0.030 (2)0.010 (2)0.0149 (19)0.009 (2)
C60.042 (3)0.061 (3)0.034 (3)0.002 (2)0.008 (2)0.012 (2)
C70.045 (2)0.051 (2)0.028 (2)0.0021 (19)0.0061 (19)0.0085 (18)
C80.050 (3)0.053 (2)0.048 (3)0.005 (2)0.004 (2)0.009 (2)
C90.065 (3)0.055 (3)0.055 (3)0.018 (2)0.004 (3)0.011 (2)
C100.055 (3)0.076 (3)0.052 (3)0.024 (3)0.002 (2)0.016 (3)
C110.040 (3)0.074 (3)0.047 (3)0.003 (2)0.008 (2)0.015 (3)
C120.057 (3)0.057 (3)0.044 (3)0.010 (2)0.015 (2)0.008 (2)
C130.074 (4)0.067 (3)0.060 (3)0.021 (3)0.016 (3)0.013 (3)
C140.082 (4)0.054 (3)0.082 (4)0.025 (3)0.011 (3)0.003 (3)
C150.082 (4)0.052 (3)0.058 (3)0.022 (3)0.010 (3)0.006 (2)
C160.055 (3)0.042 (2)0.040 (2)0.003 (2)0.003 (2)0.0020 (19)
C170.056 (3)0.045 (2)0.034 (2)0.005 (2)0.008 (2)0.0061 (19)
C180.042 (2)0.0404 (19)0.031 (2)0.0027 (18)0.0018 (18)0.0042 (18)
C190.050 (3)0.049 (2)0.032 (2)0.006 (2)0.011 (2)0.0047 (19)
C200.067 (3)0.055 (3)0.038 (3)0.007 (2)0.020 (3)0.003 (2)
C210.089 (4)0.077 (4)0.041 (3)0.016 (3)0.019 (3)0.013 (3)
C220.097 (4)0.055 (3)0.044 (3)0.022 (3)0.012 (3)0.020 (2)
C230.047 (3)0.048 (2)0.040 (3)0.003 (2)0.011 (2)0.002 (2)
C240.042 (2)0.0396 (19)0.034 (2)0.0034 (18)0.0066 (18)0.0004 (18)
C250.041 (2)0.048 (2)0.042 (3)0.0038 (19)0.010 (2)0.005 (2)
C260.057 (3)0.068 (3)0.039 (3)0.006 (2)0.013 (2)0.006 (2)
C270.062 (3)0.071 (3)0.027 (2)0.007 (2)0.000 (2)0.003 (2)
C280.053 (3)0.052 (2)0.033 (2)0.0068 (19)0.004 (2)0.0005 (19)
C290.058 (3)0.077 (3)0.053 (3)0.008 (3)0.015 (3)0.021 (3)
C300.059 (3)0.081 (4)0.087 (5)0.011 (3)0.017 (3)0.022 (4)
C310.071 (4)0.063 (3)0.110 (6)0.009 (3)0.025 (4)0.000 (3)
F10.090 (2)0.0581 (16)0.109 (3)0.0262 (16)0.015 (2)0.0043 (17)
F20.0428 (16)0.101 (2)0.082 (3)0.0054 (15)0.0077 (16)0.0100 (18)
F30.100 (2)0.087 (2)0.0399 (16)0.0301 (18)0.0257 (16)0.0026 (15)
F40.177 (4)0.092 (2)0.055 (2)0.071 (2)0.024 (2)0.0337 (18)
Geometric parameters (Å, º) top
Ir1—C71.983 (4)C12—C131.371 (6)
Ir1—C182.002 (4)C12—H120.9500
Ir1—N12.045 (3)C13—C141.373 (8)
Ir1—N22.051 (4)C13—H130.9500
Ir1—N32.132 (3)C14—C151.368 (7)
Ir1—O12.135 (3)C14—H140.9500
N1—C11.339 (5)C15—C161.404 (6)
N1—C51.375 (6)C15—H150.9500
N2—C121.341 (5)C16—C171.465 (6)
N2—C161.367 (6)C17—C221.384 (6)
N3—C241.343 (5)C17—C181.417 (6)
N3—C281.352 (6)C18—C191.404 (6)
O1—C231.307 (5)C19—C201.369 (7)
O2—C231.212 (5)C19—H190.9500
O3—C251.346 (5)C20—F31.361 (5)
O3—C291.438 (6)C20—C211.365 (7)
C1—C21.381 (7)C21—C221.359 (7)
C1—H10.9500C21—H210.9500
C2—C31.364 (9)C22—F41.367 (5)
C2—H20.9500C23—C241.514 (6)
C3—C41.380 (7)C24—C251.419 (6)
C3—H30.9500C25—C261.383 (6)
C4—C51.398 (6)C26—C271.373 (7)
C4—H40.9500C26—H260.9500
C5—C61.465 (6)C27—C281.362 (7)
C6—C111.391 (7)C27—H270.9500
C6—C71.436 (6)C28—H280.9500
C7—C81.397 (6)C29—C301.479 (8)
C8—C91.369 (7)C29—H29A0.9900
C8—H80.9500C29—H29B0.9900
C9—F11.360 (5)C30—C311.299 (10)
C9—C101.369 (7)C30—H300.9500
C10—C111.349 (8)C31—H31A0.9500
C10—H100.9500C31—H31B0.9500
C11—F21.382 (5)
C7—Ir1—C1890.86 (17)C13—C12—H12118.2
C7—Ir1—N181.10 (16)C12—C13—C14118.5 (5)
C18—Ir1—N194.43 (15)C12—C13—H13120.7
C7—Ir1—N295.32 (15)C14—C13—H13120.7
C18—Ir1—N280.32 (16)C15—C14—C13119.4 (5)
N1—Ir1—N2173.64 (13)C15—C14—H14120.3
C7—Ir1—N396.53 (15)C13—C14—H14120.3
C18—Ir1—N3171.88 (15)C14—C15—C16120.5 (5)
N1—Ir1—N390.06 (13)C14—C15—H15119.7
N2—Ir1—N395.59 (14)C16—C15—H15119.7
C7—Ir1—O1170.11 (14)N2—C16—C15119.3 (4)
C18—Ir1—O196.88 (14)N2—C16—C17113.4 (3)
N1—Ir1—O192.13 (13)C15—C16—C17127.2 (4)
N2—Ir1—O192.06 (13)C22—C17—C18118.7 (4)
N3—Ir1—O176.16 (12)C22—C17—C16126.0 (4)
C1—N1—C5119.6 (4)C18—C17—C16115.2 (4)
C1—N1—Ir1124.4 (3)C19—C18—C17117.6 (4)
C5—N1—Ir1116.0 (3)C19—C18—Ir1127.5 (3)
C12—N2—C16118.7 (4)C17—C18—Ir1114.8 (3)
C12—N2—Ir1125.1 (3)C20—C19—C18119.7 (4)
C16—N2—Ir1116.1 (3)C20—C19—H19120.2
C24—N3—C28120.4 (4)C18—C19—H19120.2
C24—N3—Ir1115.8 (3)F3—C20—C21117.2 (5)
C28—N3—Ir1123.8 (3)F3—C20—C19119.1 (4)
C23—O1—Ir1116.9 (3)C21—C20—C19123.6 (5)
C25—O3—C29117.5 (4)C22—C21—C20116.6 (5)
N1—C1—C2122.2 (5)C22—C21—H21121.7
N1—C1—H1118.9C20—C21—H21121.7
C2—C1—H1118.9C21—C22—F4117.0 (5)
C3—C2—C1119.3 (5)C21—C22—C17123.7 (4)
C3—C2—H2120.4F4—C22—C17119.3 (5)
C1—C2—H2120.4O2—C23—O1124.1 (4)
C2—C3—C4119.7 (5)O2—C23—C24121.4 (4)
C2—C3—H3120.2O1—C23—C24114.5 (4)
C4—C3—H3120.2N3—C24—C25120.0 (4)
C3—C4—C5119.9 (5)N3—C24—C23115.1 (4)
C3—C4—H4120.0C25—C24—C23124.9 (4)
C5—C4—H4120.0O3—C25—C26124.4 (4)
N1—C5—C4119.4 (4)O3—C25—C24117.0 (4)
N1—C5—C6113.1 (4)C26—C25—C24118.6 (4)
C4—C5—C6127.5 (4)C27—C26—C25119.6 (4)
C11—C6—C7118.3 (4)C27—C26—H26120.2
C11—C6—C5126.5 (4)C25—C26—H26120.2
C7—C6—C5115.2 (4)C28—C27—C26120.0 (5)
C8—C7—C6117.0 (4)C28—C27—H27120.0
C8—C7—Ir1128.1 (3)C26—C27—H27120.0
C6—C7—Ir1114.4 (3)N3—C28—C27121.4 (4)
C9—C8—C7119.8 (4)N3—C28—H28119.3
C9—C8—H8120.1C27—C28—H28119.3
C7—C8—H8120.1O3—C29—C30107.4 (5)
F1—C9—C8118.0 (5)O3—C29—H29A110.2
F1—C9—C10117.3 (4)C30—C29—H29A110.2
C8—C9—C10124.6 (5)O3—C29—H29B110.2
C11—C10—C9115.6 (4)C30—C29—H29B110.2
C11—C10—H10122.2H29A—C29—H29B108.5
C9—C10—H10122.2C31—C30—C29126.5 (6)
C10—C11—F2117.0 (4)C31—C30—H30116.7
C10—C11—C6124.6 (5)C29—C30—H30116.7
F2—C11—C6118.4 (5)C30—C31—H31A120.0
N2—C12—C13123.5 (5)C30—C31—H31B120.0
N2—C12—H12118.2H31A—C31—H31B120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F1i0.952.602.997 (6)106
C28—H28···F2ii0.952.553.280 (6)134
C10—H10···F3iii0.952.503.299 (6)142
C12—H12···F4iv0.952.563.130 (6)119
C26—H26···O1v0.952.633.519 (5)155
C14—H14···O2vi0.952.543.275 (6)134
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+3/2; (iv) x, y+1, z1/2; (v) x, y, z1/2; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ir(C11H6F2N)2(C9H8NO3)]
Mr750.70
Crystal system, space groupMonoclinic, C2/c
Temperature (K)185
a, b, c (Å)33.429 (4), 9.9117 (12), 16.0265 (19)
β (°) 94.107 (2)
V3)5296.5 (11)
Z8
Radiation typeMo Kα
µ (mm1)5.11
Crystal size (mm)0.31 × 0.23 × 0.03
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.305, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
14169, 5087, 4364
Rint0.039
(sin θ/λ)max1)0.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.05
No. of reflections5087
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.72, 0.59

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ir1—C71.983 (4)Ir1—N22.051 (4)
Ir1—C182.002 (4)Ir1—N32.132 (3)
Ir1—N12.045 (3)Ir1—O12.135 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F1i0.952.602.997 (6)106
C28—H28···F2ii0.952.553.280 (6)134
C10—H10···F3iii0.952.503.299 (6)142
C12—H12···F4iv0.952.563.130 (6)119
C26—H26···O1v0.952.633.519 (5)155
C14—H14···O2vi0.952.543.275 (6)134
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+3/2; (iv) x, y+1, z1/2; (v) x, y, z1/2; (vi) x, y+1, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Gansu Province (096RJZA086) and the `Qing Lan' Talent Engineering Funds (QL-05–23 A) of Lanzhou Jiaotong University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBaldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. & Forrest, S. R. (1998). Nature (London), 395, 151–154.  CAS Google Scholar
First citationBaldo, M. A., Thompson, M. E. & Forrest, S. R. (2000). Nature (London), 403, 750–753.  PubMed CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiang, B., Jiang, C. Y., Chen, Z., Zhang, X. J., Shi, H. H. & Cao, Y. (2006). J. Mater. Chem. 16, 1281–1286.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThompson, M. (2007). MRS Bull. 32, 694–701.  CrossRef CAS Google Scholar
First citationTsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971–12979.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1546-m1547
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds