metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1678-m1679

Bis(4-amino­benzene­sulfonato-κO)bis­­(propane-1,3-di­amine-κ2N,N′)copper(II) dihydrate

aSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou, Jiangsu 221116, People's Republic of China, and bKey Laboratory of Pesticides & Chemical Biology, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
*Correspondence e-mail: lxl@fjirsm.ac.cn

(Received 5 November 2009; accepted 20 November 2009; online 25 November 2009)

In the title compound, [Cu(C3H10N2)2(C6H6NO3S)2]·2H2O, the CuII atom lies on an inversion center and is hexa­coordinated by four N atoms from two 1,3-diamino­propane ligands and two O atoms from two 4-amino­benzene­sulfonate ligands in a trans arrangement, displaying a distorted and axially elongated octa­hedral coordination geometry, with the O atoms at the axial positions. A three-dimensional network is formed in the crystal structure through O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds.

Related literature

For general background to crystal engineering based on metal and organic building blocks, see: Evans & Lin (2002[Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511-522.]); Li et al. (2003[Li, X. L., Chen, J. T., Niu, D. Z., Sheng, J. T. & Zhang, D. P. (2003). Chin. J. Struct. Chem. 22, 415-418.], 2004[Li, X. L., Tong, M. L., Niu, D. Z. & Chen, J. T. (2004). Chin. J. Chem. 22, 64-68.]). For related structures, see: Kim & Lee (2002[Kim, C.-H. & Lee, S.-G. (2002). Acta Cryst. C58, m421-m423.]); Sundberg et al. (2001[Sundberg, M. R., Kivekäs, R., Huovilainen, R. & Uggla, R. (2001). Inorg. Chim. Acta, 324, 212-217.]); Sundberg & Sillanpää (1993[Sundberg, M. R. & Sillanpää, R. (1993). Acta Chem. Scand. 47, 1173-1178.]); Sundberg & Uggla (1997[Sundberg, M. R. & Uggla, R. (1997). Inorg. Chim. Acta, 254, 259-265.]); Wang et al. (2002[Wang, Y., Feng, L., Li, Y., Hu, C., Wang, E., Hu, N. & Jia, H. (2002). Inorg. Chem. 41, 6351-6357.]). For the synthesis, see: Gunderman et al. (1996[Gunderman, B. J., Squattrito, P. J. & Dubey, S. N. (1996). Acta Cryst. C52, 1131-1134.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C3H10N2)2(C6H6NO3S)2]·2H2O

  • Mr = 592.19

  • Monoclinic, P 21 /c

  • a = 9.5171 (1) Å

  • b = 10.3875 (4) Å

  • c = 13.1646 (5) Å

  • β = 101.256 (2)°

  • V = 1276.40 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 293 K

  • 0.48 × 0.20 × 0.18 mm

Data collection
  • Siemens SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.627, Tmax = 0.830

  • 3629 measured reflections

  • 2230 independent reflections

  • 1889 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.132

  • S = 1.09

  • 2230 reflections

  • 161 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Cu—N1 2.038 (3)
Cu—N2 2.029 (3)
Cu—O1 2.589 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2 0.85 1.90 2.651 (5) 146
O1W—H1WB⋯O3i 0.85 2.16 2.969 (8) 160
N1—H1A⋯N3ii 0.90 2.46 3.250 (5) 147
N1—H1B⋯O3iii 0.90 2.39 3.243 (4) 158
N2—H2A⋯O3iv 0.90 2.42 3.183 (4) 143
N2—H2B⋯O1Wv 0.90 2.13 3.025 (5) 177
N3—H3D⋯O1Wvi 0.86 2.69 3.337 (6) 133
N3—H3C⋯O1vii 0.86 2.46 3.248 (5) 153
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) x-1, y, z; (vii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Crystal engineering based on metal and organic building blocks has been rapidly developed in recent years owing to their novel and diverse topologies and potential applications in catalysis and host–guest chemistry (Evans & Lin, 2002). Covalent bonds and hydrogen bonds have been demonstrated to be two important interactions in constructing metal-containing supramolecular frameworks, and they have brought forth a great variety of novel frameworks with fascinating structural motifs (Li et al., 2003, 2004). 1,3-Diaminopropane (tn) ligand behaves as a strong chelatator in its metal complexes due to the formation of a stable six-membered ring. At the same time, it is a good H-bond donor due to the existence of amino groups (Sundberg et al., 2001). The crystal egineering of tn and carboxylate ligands has been studied in detail (Sundberg et al., 2001), but supramolecular chemistry of tn and 4-aminobenzenesulfonate (4-ABS) ligand is still not explored to that extent (Wang et al., 2002). 4-ABS can act as a bridging or a terminal ligand in its metal complexes. On the other hand, studies on the coordination and supramolecular chemistry of 4-ABS have showed that it is a good H-bond acceptor and can form strong H-bonds due to its three O atoms and one N atom (Kim & Lee, 2002; Wang et al., 2002). In view of their excellent coordination capability and good H-bond donor or acceptor nature, we employed tn and 4-ABS as mixed organic building blocks to construct supramolecular networks in an expectation that these ligands may generate hydrogen bonding and/or covalent interactions with transition metal ions in the assembly process. Herein, we report the synthesis and structure of the title compound.

As shown in Fig. 1, the CuII atom lies on an inversion center and is octahedrally coordinated by four N atoms from two tn ligands and two O atoms from two 4-ABS ligands in a trans arrangement. The coordination polyhedron of the CuII ion can be described as axially elongated octahedral, with the O atoms at the axial positions. The tn ligand shows chelating coordination behavior and displays a chair conformation in the equatorial direction. This kind of coordination mode was also found in the similar complexes (Sundberg et al., 2001; Sundberg & Sillanpää, 1993; Sundberg & Uggla, 1997). The axial Cu—O distance is 2.589 (3) Å, indicating a weak coordination. The equatorial Cu—N1 and Cu—N2 bond lengths are 2.038 (3) and 2.029 (3) Å, respectively, which are much shorter than the axial Cu—O distance and very similar to those in the previously reported trans-bis(4-methylbenzenesulfonato)bis(1,3-diaminopropane)copper(II) (Sundberg & Sillanpää, 1993). The tn molecule forms a six-membered chelate ring with asymmetric Cu—N1—C1 and Cu—N2—C3 angles of 122.7 (2) and 119.9 (2)°. A plausible explanation for the deviations described above may be attributed to the asymmetric hydrogen bonding with respect to the chelate ring. The complex molecules are linked into a two-dimensional layer through hydrogen bonds between the uncoordinated water, the sulfonate group and the amino groups of the tn ligand. The layers are further connected into a three-dimensional network through hydrogen bonds between the amino groups and the sulfonate groups of neighboring 4-ABS ligands (Fig. 2).

Related literature top

For general background to crystal engineering based on metal and organic building blocks, see: Evans & Lin (2002); Li et al. (2003, 2004). For related structures, see: Kim & Lee (2002); Sundberg et al. (2001); Sundberg & Sillanpää (1993); Sundberg & Uggla (1997); Wang et al. (2002). For the synthesis, see: Gunderman et al. (1996).

Experimental top

Diaquabis(4-aminobenzenesulfonato)copper(II) dihydrate was synthesized according to the literature (Gunderman et al., 1996). 1,3-Diaminopropane (0.35 g, 4.72 mmol) in 10 ml water was dropped slowly into the stirred diaquabis(4-aminobenzenesulfonato)copper(II) dihydrate (1.12 g, 2.33 mmol) solution in 20 ml water. The mixed solution was kept stirring at room temperature for 30 min. After filtration, the filtrate was left to evaporate in air. After a few days, blue crystals of the title compound suitable for X-ray study were obtained (yield 0.70 g, 51%).

Refinement top

H atoms bonded to C atoms or N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.97 (CH2) Å and N—H = 0.90 and 0.86 Å and with Uiso(H) = 1.2Ueq(C,N). Water H atoms were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and with Uiso(H) =1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines denote hydrogen bonds. [Symmetry code: (i) 1 - x, -y, 1 - z.]
[Figure 2] Fig. 2. The packing diagram of the title compound viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) are omitted for clarity.
Bis(4-aminobenzenesulfonato-κO)bis(propane-1,3-diamine- κ2N,N')copper(II) dihydrate top
Crystal data top
[Cu(C3H10N2)2(C6H6NO3S)2]·2H2OF(000) = 622
Mr = 592.19Dx = 1.541 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2312 reflections
a = 9.5171 (1) Åθ = 2.2–25.1°
b = 10.3875 (4) ŵ = 1.07 mm1
c = 13.1646 (5) ÅT = 293 K
β = 101.256 (2)°Prism, blue
V = 1276.40 (7) Å30.48 × 0.20 × 0.18 mm
Z = 2
Data collection top
Siemens SMART 1000 CCD
diffractometer
2230 independent reflections
Radiation source: fine-focus sealed tube1889 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 911
Tmin = 0.627, Tmax = 0.830k = 712
3629 measured reflectionsl = 1510
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0669P)2 + 1.3129P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2230 reflectionsΔρmax = 0.48 e Å3
161 parametersΔρmin = 0.41 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.054 (4)
Crystal data top
[Cu(C3H10N2)2(C6H6NO3S)2]·2H2OV = 1276.40 (7) Å3
Mr = 592.19Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.5171 (1) ŵ = 1.07 mm1
b = 10.3875 (4) ÅT = 293 K
c = 13.1646 (5) Å0.48 × 0.20 × 0.18 mm
β = 101.256 (2)°
Data collection top
Siemens SMART 1000 CCD
diffractometer
2230 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1889 reflections with I > 2σ(I)
Tmin = 0.627, Tmax = 0.830Rint = 0.024
3629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0483 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.09Δρmax = 0.48 e Å3
2230 reflectionsΔρmin = 0.41 e Å3
161 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.50000.00000.50000.0387 (3)
N10.3723 (3)0.1305 (3)0.5539 (2)0.0470 (7)
H1A0.37880.20430.51930.056*
H1B0.41250.14570.62050.056*
N20.3801 (3)0.1490 (3)0.5351 (2)0.0457 (7)
H2A0.41710.17310.60050.055*
H2B0.39290.21530.49380.055*
C10.2183 (4)0.1079 (4)0.5506 (3)0.0565 (10)
H1C0.18200.17420.59050.068*
H1D0.16690.11430.47960.068*
C20.1902 (4)0.0226 (4)0.5934 (3)0.0537 (10)
H2C0.09020.02770.59900.064*
H2D0.24760.03140.66250.064*
C30.2240 (4)0.1327 (4)0.5273 (3)0.0519 (9)
H3A0.17940.11690.45570.062*
H3B0.18400.21160.54910.062*
O1W0.5872 (4)0.1325 (5)0.1104 (5)0.147 (2)
H1WA0.51150.08760.09340.221*
H1WB0.57000.18400.15630.221*
S0.31964 (10)0.04586 (13)0.21957 (7)0.0585 (4)
O10.3474 (3)0.0243 (3)0.3153 (3)0.0735 (10)
O20.3401 (4)0.0303 (6)0.1333 (3)0.156 (3)
O30.4010 (3)0.1646 (4)0.2294 (3)0.0936 (13)
C110.1360 (4)0.0876 (4)0.1932 (2)0.0435 (8)
C120.0384 (4)0.0061 (4)0.1338 (3)0.0488 (9)
H12A0.07020.06750.10500.059*
C130.1068 (4)0.0337 (4)0.1168 (3)0.0527 (10)
H13A0.17170.02200.07700.063*
C140.1565 (4)0.1431 (4)0.1584 (3)0.0483 (9)
C150.0568 (4)0.2261 (4)0.2159 (3)0.0523 (9)
H15A0.08800.30160.24240.063*
C160.0875 (4)0.1982 (4)0.2342 (3)0.0493 (9)
H16A0.15250.25380.27410.059*
N30.3017 (3)0.1723 (4)0.1411 (3)0.0680 (10)
H3D0.36270.12190.10390.082*
H3C0.33050.24070.16760.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0294 (4)0.0433 (4)0.0434 (4)0.0037 (2)0.0068 (2)0.0027 (2)
N10.0377 (16)0.0488 (17)0.0541 (18)0.0005 (13)0.0079 (13)0.0047 (14)
N20.0406 (16)0.0493 (17)0.0478 (17)0.0061 (13)0.0103 (13)0.0016 (14)
C10.0385 (19)0.064 (2)0.069 (3)0.0065 (18)0.0147 (18)0.005 (2)
C20.039 (2)0.076 (3)0.049 (2)0.0008 (18)0.0162 (17)0.0048 (19)
C30.0358 (19)0.068 (3)0.051 (2)0.0141 (17)0.0058 (16)0.0058 (19)
O1W0.061 (2)0.130 (4)0.254 (6)0.018 (2)0.038 (3)0.109 (4)
S0.0392 (5)0.0932 (8)0.0388 (5)0.0172 (5)0.0031 (4)0.0027 (5)
O10.0558 (18)0.081 (2)0.070 (2)0.0005 (15)0.0221 (15)0.0234 (16)
O20.067 (3)0.294 (7)0.091 (3)0.084 (3)0.025 (2)0.090 (4)
O30.0430 (16)0.125 (3)0.109 (3)0.0080 (18)0.0046 (17)0.051 (2)
C110.0385 (18)0.057 (2)0.0331 (17)0.0085 (16)0.0022 (13)0.0113 (15)
C120.049 (2)0.051 (2)0.042 (2)0.0118 (16)0.0005 (16)0.0030 (16)
C130.044 (2)0.053 (2)0.056 (2)0.0013 (17)0.0026 (17)0.0072 (18)
C140.0387 (19)0.058 (2)0.048 (2)0.0050 (17)0.0075 (15)0.0182 (17)
C150.054 (2)0.052 (2)0.052 (2)0.0129 (18)0.0123 (17)0.0032 (18)
C160.050 (2)0.055 (2)0.0408 (19)0.0000 (17)0.0035 (15)0.0011 (16)
N30.0404 (18)0.075 (2)0.087 (3)0.0107 (17)0.0085 (17)0.012 (2)
Geometric parameters (Å, º) top
Cu—N12.038 (3)O1W—H1WB0.85
Cu—N22.029 (3)S—O21.428 (4)
Cu—O12.589 (3)S—O11.435 (3)
N1—C11.476 (4)S—O31.448 (4)
N1—H1A0.9000S—C111.768 (3)
N1—H1B0.9000C11—C121.381 (5)
N2—C31.479 (4)C11—C161.386 (5)
N2—H2A0.9000C12—C131.386 (6)
N2—H2B0.9000C12—H12A0.9300
C1—C21.512 (5)C13—C141.384 (6)
C1—H1C0.9700C13—H13A0.9300
C1—H1D0.9700C14—N31.389 (5)
C2—C31.509 (6)C14—C151.391 (6)
C2—H2C0.9700C15—C161.378 (5)
C2—H2D0.9700C15—H15A0.9300
C3—H3A0.9700C16—H16A0.9300
C3—H3B0.9700N3—H3D0.8600
O1W—H1WA0.85N3—H3C0.8600
N2—Cu—N2i180.0C1—C2—H2D109.0
N2—Cu—N191.61 (13)H2C—C2—H2D107.8
N2i—Cu—N188.40 (13)N2—C3—C2111.8 (3)
N2—Cu—N1i88.40 (13)N2—C3—H3A109.3
N2i—Cu—N1i91.60 (13)C2—C3—H3A109.3
N1—Cu—N1i180.0N2—C3—H3B109.3
N2—Cu—O1i87.08 (11)C2—C3—H3B109.3
N2i—Cu—O1i92.92 (11)H3A—C3—H3B107.9
N1—Cu—O1i90.08 (11)H1WA—O1W—H1WB105.1
N1i—Cu—O1i89.92 (11)O2—S—O1112.8 (3)
N2—Cu—O192.92 (11)O2—S—O3112.9 (3)
N2i—Cu—O187.08 (12)O1—S—O3110.5 (2)
N1—Cu—O189.92 (11)O2—S—C11105.22 (19)
N1i—Cu—O190.08 (11)O1—S—C11107.59 (18)
O1i—Cu—O1180.0O3—S—C11107.44 (19)
C1—N1—Cu122.7 (2)S—O1—Cu138.47 (19)
C1—N1—H1A106.7C12—C11—C16119.4 (3)
Cu—N1—H1A106.7C12—C11—S119.4 (3)
C1—N1—H1B106.7C16—C11—S121.2 (3)
Cu—N1—H1B106.7C11—C12—C13120.2 (4)
H1A—N1—H1B106.6C11—C12—H12A119.9
C3—N2—Cu119.9 (2)C13—C12—H12A119.9
C3—N2—H2A107.3C14—C13—C12120.8 (4)
Cu—N2—H2A107.3C14—C13—H13A119.6
C3—N2—H2B107.3C12—C13—H13A119.6
Cu—N2—H2B107.3C13—C14—N3121.3 (4)
H2A—N2—H2B106.9C13—C14—C15118.3 (3)
N1—C1—C2112.3 (3)N3—C14—C15120.3 (4)
N1—C1—H1C109.1C16—C15—C14121.0 (4)
C2—C1—H1C109.1C16—C15—H15A119.5
N1—C1—H1D109.1C14—C15—H15A119.5
C2—C1—H1D109.1C15—C16—C11120.1 (4)
H1C—C1—H1D107.9C15—C16—H16A119.9
C3—C2—C1113.1 (3)C11—C16—H16A119.9
C3—C2—H2C109.0C14—N3—H3D120.0
C1—C2—H2C109.0C14—N3—H3C120.0
C3—C2—H2D109.0H3D—N3—H3C120.0
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O20.851.902.651 (5)146
O1W—H1WB···O3ii0.852.162.969 (8)160
N1—H1A···N3iii0.902.463.250 (5)147
N1—H1B···O3i0.902.393.243 (4)158
N2—H2A···O3iv0.902.423.183 (4)143
N2—H2B···O1Wv0.902.133.025 (5)177
N3—H3D···O1Wvi0.862.693.337 (6)133
N3—H3C···O1vii0.862.463.248 (5)153
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x1, y, z; (vii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C3H10N2)2(C6H6NO3S)2]·2H2O
Mr592.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.5171 (1), 10.3875 (4), 13.1646 (5)
β (°) 101.256 (2)
V3)1276.40 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.48 × 0.20 × 0.18
Data collection
DiffractometerSiemens SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.627, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
3629, 2230, 1889
Rint0.024
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.132, 1.09
No. of reflections2230
No. of parameters161
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.41

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu—N12.038 (3)Cu—O12.589 (3)
Cu—N22.029 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O20.851.902.651 (5)146
O1W—H1WB···O3i0.852.162.969 (8)160
N1—H1A···N3ii0.902.463.250 (5)147
N1—H1B···O3iii0.902.393.243 (4)158
N2—H2A···O3iv0.902.423.183 (4)143
N2—H2B···O1Wv0.902.133.025 (5)177
N3—H3D···O1Wvi0.862.693.337 (6)133
N3—H3C···O1vii0.862.463.248 (5)153
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x1, y, z; (vii) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the NSFC (grant No. 20801047), the Foundation of Xuzhou Normal University (07XLA07, KY2007039 and XGG2007034) and the `Qing Lan' Project (08QLT001).

References

First citationEvans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGunderman, B. J., Squattrito, P. J. & Dubey, S. N. (1996). Acta Cryst. C52, 1131–1134.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKim, C.-H. & Lee, S.-G. (2002). Acta Cryst. C58, m421–m423.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, X. L., Chen, J. T., Niu, D. Z., Sheng, J. T. & Zhang, D. P. (2003). Chin. J. Struct. Chem. 22, 415–418.  CAS Google Scholar
First citationLi, X. L., Tong, M. L., Niu, D. Z. & Chen, J. T. (2004). Chin. J. Chem. 22, 64–68.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSundberg, M. R., Kivekäs, R., Huovilainen, R. & Uggla, R. (2001). Inorg. Chim. Acta, 324, 212–217.  Web of Science CSD CrossRef CAS Google Scholar
First citationSundberg, M. R. & Sillanpää, R. (1993). Acta Chem. Scand. 47, 1173–1178.  CrossRef CAS Web of Science Google Scholar
First citationSundberg, M. R. & Uggla, R. (1997). Inorg. Chim. Acta, 254, 259–265.  CSD CrossRef CAS Web of Science Google Scholar
First citationWang, Y., Feng, L., Li, Y., Hu, C., Wang, E., Hu, N. & Jia, H. (2002). Inorg. Chem. 41, 6351–6357.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1678-m1679
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds