metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[1,4-bis­­(4-pyridylmeth­yl)piperazine­diium [[tetra­aqua­cobaltate(II)]-μ-pyromellitato-κ2O1:O4] dihydrate]

aDepartment of Chemistry and Physics, King's College, Wilkes-Barre, PA 18711, USA, and bLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

(Received 22 November 2009; accepted 26 November 2009; online 28 November 2009)

In the title compound, {(C16H22N4)[Co(C10H2O8)(H2O)4]·2H2O}n, the octa­hedrally coordinated CoII atom is situated on an inversion center and possesses four aqua ligands. The Co atoms are linked into an anionic coordination polymer chain by bis-monodentate pyromellitate ligands. The chain motifs are connected into a supra­molecular layer by hydrogen bonding mediated by uncoordinated water mol­ecules. Charge balance is provided by doubly protonated bis­(4-pyridylmeth­yl)piperazine units, which are anchored to the coordination polymer chain motifs by N—H⋯O hydrogen bonding.

Related literature

For some divalent cobalt pyromellitate coordination polymers containing dipyridyl ligands, see: Majumder et al. (2006[ Majumder, A., Gramlich, V., Rosair, G. M., Batten, S. R., Masuda, J. D., El Fallah, M. S., Ribas, J., Sutter, J.-P., Desplanches, C. & Mitra, S. (2006). Cryst. Growth Des. 6, 2355-2368.]). For the preparation of bis­(4-pyridylmeth­yl)piperazine, see: Pocic et al. (2005[ Pocic, D., Planeix, J.-M., Kyritsakas, N., Jouaiti, A., Abdelaziz, H. & Wais, M. (2005). CrystEngComm, 7, 624-628.]).

[Scheme 1]

Experimental

Crystal data
  • (C16H22N4)[Co(C10H2O8)(H2O)4]·2H2O

  • Mr = 687.52

  • Triclinic, [P \overline 1]

  • a = 7.278 (2) Å

  • b = 9.752 (3) Å

  • c = 11.257 (3) Å

  • α = 66.733 (3)°

  • β = 75.168 (3)°

  • γ = 83.359 (3)°

  • V = 709.5 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 173 K

  • 0.24 × 0.14 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[ Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.853, Tmax = 0.933

  • 11370 measured reflections

  • 2908 independent reflections

  • 2511 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.153

  • S = 1.05

  • 2908 reflections

  • 226 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.23 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O6i 0.88 (2) 2.38 (3) 2.997 (3) 128 (3)
O1W—H1WB⋯O1i 0.89 (2) 1.88 (2) 2.764 (3) 174 (3)
O5—H5A⋯N1 0.88 (2) 1.87 (2) 2.739 (3) 177 (3)
O5—H5B⋯O4 0.85 (2) 1.87 (2) 2.697 (3) 163 (3)
O6—H6C⋯O1W 0.86 (2) 1.92 (2) 2.753 (3) 165 (3)
O6—H6D⋯O2ii 0.86 (2) 1.81 (2) 2.624 (3) 158 (3)
N2—H2N⋯O3iii 0.91 (2) 1.73 (2) 2.630 (3) 171 (3)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y, -z+1; (iii) -x+1, -y-1, -z+2.

Data collection: APEX2 (Bruker, 2007[ Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[ Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2007[ Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The diverse possible binding modes of the pyromellitate ligand (1,2,4,5-benzenetetracarboxylate) has allowed formation of a wide variety of cobalt-containing coordination polymers, especially in the presence of dipyridyl neutral co-ligands (Majumder et al., 2006). This chemistry was further developed by the synthesis of the title compound, which incorporates the long-spanning hydrogen-bonding capable dipyridyl ligand bis(4-pyridylmethyl)piperazine (bpmp).

The asymmetric unit of the title compound consists of a divalent CoII atom on a crystallographic inversion center, one-half of a pyromellitate tetraanion situated across another crystallographic inversion center, one-half of a (H2bpmp)2+ dication (protonated at each of the two piperazinyl N atoms) sited across another crystallographic inversion center, and one water molecule of crystallization. The local coordination and surrounding supramolecular environment is illustrated in Fig. 1.

Adjacent CoII ions are linked into [Co(H2O)4(pyromellitate)]n2n- anionic one-dimensional coordination polymer motifs, via symmetrically related monodentate carboxylate termini of the pyromellitate ligands. These chain motifs are oriented parallel to the [1 1 0] direction; the Co···Co distance along the chain is 11.474 (3) Å. Two of the pyromellitate carboxylate groups do not ligate to CoII ions. Neighboring chain motifs aggregate into supramolecular layers coincident with the ab planes (Fig. 2), established by hydrogen-bonding patterns between the co-crystallized water molecules, aqua ligands, and ligated pyromellitate carboxylate O atoms (Table 1). In turn, the supramolecular layers stack in an AAA pattern along the c axis, with charge-balancing (H2bpmp)2+ dications situated in the interlamellar regions (Fig. 3), thus forming the three-dimensional crystal structure of the title compound. The closest Co···Co contact distance between neighboring layers is 11.257 (3) Å, which defines the c lattice parameter.

Related literature top

For some divalent cobalt pyromellitate coordination polymers containing dipyridyl ligands, see: Majumder et al. (2006). For the preparation of bis(4-pyridylmethyl)piperazine, see: Pocic et al. (2005).

Experimental top

All starting materials were obtained commercially, except for bpmp, which was prepared by a published procedure (Pocic et al., 2005). A mixture of cobalt nitrate hexahydrate (108 mg, 0.37 mmol), pyromellitic acid (94 mg, 0.37 mmol), bpmp (99 mg, 0.37 mmol) and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr Acid Digestion bomb, which was then heated under autogenous pressure at 393 K for 48 h. After cooling to 293 K, orange blocks of the title compound were obtained along with a white powder.

Refinement top

All H atoms bound to C atoms were placed in calculated positions and refined in riding mode, with C—H = 0.95 and 0.99 Å, and with Uiso(H) = 1.2Ueq(C). The H atoms bound to the water molecule O atoms and to the piperazinyl N atoms were found in a difference Fourier map and refined with restraints of O—H = 0.89 (1) and N—H = 0.92 (1) Å and with Uiso(H) = 1.2Ueq(O,N). The maximum and minimum residual electron density peaks of 1.234 and -0.908 e Å-3 were located 0.98 and 0.68 Å from the Co1 and O1W atoms, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the title compound, showing 50% probability ellipsoids. H atom positions are shown as grey sticks. [Color codes: dark blue Co; light blue N; red O; black C; orange O in uncoordinated water molecule. Symmetry code: (i) -x+2, -y, -z+1.]
[Figure 2] Fig. 2. A view of the supramolecular layer in the title compound. Hydrogen bonding contacts are indicated as dashed bars.
[Figure 3] Fig. 3. Stacking diagram for the title compound, viewed down the a axis. Hydrogen bonding contacts are indicated as dashed bars.
Poly[1,4-bis(4-pyridylmethyl)piperazinediium [[tetraaquacobaltate(II)]-µ-pyromellitato-κ2O1:O4] dihydrate] top
Crystal data top
(C16H22N4)[Co(C10H2O8)(H2O)4]·2H2OZ = 1
Mr = 687.52F(000) = 359
Triclinic, P1Dx = 1.609 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.278 (2) ÅCell parameters from 11370 reflections
b = 9.752 (3) Åθ = 2.0–26.5°
c = 11.257 (3) ŵ = 0.69 mm1
α = 66.733 (3)°T = 173 K
β = 75.168 (3)°Block, pink
γ = 83.359 (3)°0.24 × 0.14 × 0.10 mm
V = 709.5 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2908 independent reflections
Radiation source: fine-focus sealed tube2511 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 26.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.853, Tmax = 0.933k = 1212
11370 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1134P)2]
where P = (Fo2 + 2Fc2)/3
2908 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 1.23 e Å3
10 restraintsΔρmin = 0.91 e Å3
Crystal data top
(C16H22N4)[Co(C10H2O8)(H2O)4]·2H2Oγ = 83.359 (3)°
Mr = 687.52V = 709.5 (3) Å3
Triclinic, P1Z = 1
a = 7.278 (2) ÅMo Kα radiation
b = 9.752 (3) ŵ = 0.69 mm1
c = 11.257 (3) ÅT = 173 K
α = 66.733 (3)°0.24 × 0.14 × 0.10 mm
β = 75.168 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2908 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2511 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.933Rint = 0.058
11370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05010 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.23 e Å3
2908 reflectionsΔρmin = 0.91 e Å3
226 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.00000.50000.0155 (2)
O10.8311 (2)0.19744 (19)0.45730 (18)0.0192 (4)
O1W0.4690 (3)0.1576 (2)0.6340 (2)0.0255 (4)
H1WA0.437 (4)0.070 (3)0.639 (3)0.031*
H1WB0.375 (4)0.178 (4)0.607 (3)0.031*
O20.9191 (3)0.2866 (2)0.58976 (19)0.0235 (4)
O30.3143 (3)0.2159 (2)0.82962 (18)0.0236 (4)
O40.5304 (3)0.1042 (2)0.7189 (2)0.0332 (5)
O50.8431 (3)0.0690 (2)0.69373 (18)0.0183 (4)
H5A0.829 (4)0.163 (2)0.748 (3)0.022*
H5B0.742 (3)0.024 (3)0.718 (3)0.022*
O60.8063 (3)0.0969 (2)0.44473 (18)0.0193 (4)
H6C0.705 (3)0.132 (3)0.504 (3)0.023*
H6D0.876 (4)0.166 (3)0.425 (3)0.023*
N10.7991 (3)0.3648 (3)0.8552 (2)0.0284 (6)
N20.8089 (3)0.9425 (2)1.0284 (2)0.0170 (5)
H2N0.755 (4)1.033 (2)1.080 (3)0.020*
C10.7611 (4)0.4408 (3)0.9870 (3)0.0258 (6)
H10.76350.38911.04260.031*
C20.7185 (4)0.5911 (3)1.0460 (3)0.0224 (6)
H20.69330.64091.13990.027*
C30.7131 (4)0.6683 (3)0.9661 (3)0.0187 (5)
C40.7549 (4)0.5898 (3)0.8292 (3)0.0242 (6)
H40.75440.63840.77090.029*
C50.7970 (4)0.4404 (3)0.7793 (3)0.0275 (6)
H50.82610.38830.68560.033*
C60.6512 (4)0.8286 (3)1.0280 (3)0.0204 (6)
H6A0.58050.84971.12100.024*
H6B0.56190.84070.97980.024*
C70.9515 (4)0.9366 (3)1.1004 (3)0.0192 (5)
H7A0.88640.94311.19120.023*
H7B1.01920.84071.05320.023*
C80.9075 (4)0.9347 (3)0.8919 (3)0.0196 (5)
H8A0.97490.83890.84150.024*
H8B0.81240.93870.84430.024*
C110.8099 (3)0.2813 (3)0.5227 (2)0.0170 (5)
C120.6437 (3)0.3901 (3)0.5118 (2)0.0161 (5)
C130.4741 (4)0.3639 (3)0.6092 (2)0.0172 (5)
C140.6677 (4)0.5255 (3)0.4034 (3)0.0178 (5)
H140.78270.54290.33670.021*
C150.4396 (3)0.2173 (3)0.7278 (3)0.0176 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0153 (3)0.0153 (3)0.0161 (3)0.00250 (18)0.0074 (2)0.0044 (2)
O10.0192 (9)0.0174 (9)0.0221 (9)0.0051 (7)0.0094 (8)0.0073 (8)
O1W0.0222 (10)0.0262 (11)0.0285 (10)0.0026 (8)0.0124 (9)0.0074 (9)
O20.0238 (10)0.0250 (10)0.0270 (10)0.0084 (8)0.0149 (8)0.0123 (8)
O30.0281 (10)0.0165 (9)0.0198 (10)0.0002 (8)0.0011 (8)0.0031 (8)
O40.0277 (11)0.0174 (10)0.0351 (12)0.0074 (8)0.0045 (9)0.0008 (9)
O50.0186 (9)0.0162 (9)0.0184 (9)0.0007 (7)0.0045 (8)0.0049 (7)
O60.0165 (9)0.0201 (10)0.0232 (10)0.0033 (7)0.0082 (8)0.0090 (8)
N10.0265 (13)0.0193 (12)0.0329 (14)0.0013 (9)0.0061 (11)0.0042 (10)
N20.0187 (11)0.0141 (10)0.0169 (10)0.0003 (8)0.0062 (9)0.0033 (8)
C10.0251 (14)0.0242 (14)0.0303 (15)0.0026 (11)0.0081 (12)0.0125 (12)
C20.0236 (14)0.0207 (14)0.0211 (13)0.0019 (11)0.0074 (11)0.0052 (11)
C30.0156 (12)0.0184 (13)0.0207 (13)0.0023 (9)0.0067 (10)0.0051 (10)
C40.0260 (14)0.0226 (14)0.0211 (13)0.0030 (11)0.0072 (11)0.0049 (11)
C50.0297 (15)0.0211 (14)0.0216 (14)0.0035 (11)0.0048 (12)0.0004 (11)
C60.0181 (13)0.0189 (13)0.0212 (13)0.0013 (10)0.0060 (11)0.0040 (10)
C70.0216 (13)0.0195 (13)0.0175 (12)0.0017 (10)0.0089 (10)0.0060 (10)
C80.0204 (13)0.0207 (13)0.0176 (12)0.0027 (10)0.0080 (10)0.0058 (10)
C110.0149 (12)0.0135 (12)0.0155 (12)0.0013 (9)0.0016 (10)0.0002 (9)
C120.0167 (12)0.0132 (12)0.0172 (12)0.0022 (9)0.0070 (10)0.0034 (10)
C130.0178 (12)0.0137 (12)0.0177 (12)0.0020 (9)0.0063 (10)0.0026 (10)
C140.0163 (12)0.0160 (12)0.0179 (12)0.0013 (9)0.0052 (10)0.0027 (10)
C150.0142 (12)0.0165 (12)0.0196 (13)0.0008 (9)0.0063 (10)0.0032 (10)
Geometric parameters (Å, º) top
Co1—O52.0631 (18)C2—H20.9500
Co1—O12.1150 (17)C3—C41.392 (4)
Co1—O62.1184 (18)C3—C61.507 (4)
O1—C111.274 (3)C4—C51.379 (4)
O1W—H1WA0.881 (18)C4—H40.9500
O1W—H1WB0.885 (17)C5—H50.9500
O2—C111.246 (3)C6—H6A0.9900
O3—C151.266 (3)C6—H6B0.9900
O4—C151.244 (3)C7—C8i1.517 (4)
O5—H5A0.875 (17)C7—H7A0.9900
O5—H5B0.852 (17)C7—H7B0.9900
O6—H6C0.857 (17)C8—C7i1.517 (4)
O6—H6D0.863 (17)C8—H8A0.9900
N1—C51.334 (4)C8—H8B0.9900
N1—C11.340 (4)C11—C121.510 (3)
N2—C71.490 (3)C12—C141.391 (3)
N2—C81.495 (3)C12—C131.397 (3)
N2—C61.502 (3)C13—C14ii1.395 (3)
N2—H2N0.906 (18)C13—C151.514 (3)
C1—C21.384 (4)C14—C13ii1.394 (3)
C1—H10.9500C14—H140.9500
C2—C31.393 (4)
O5—Co1—O5iii180.0C5—C4—C3119.0 (3)
O5—Co1—O188.13 (7)C5—C4—H4120.5
O5iii—Co1—O191.87 (7)C3—C4—H4120.5
O5—Co1—O1iii91.87 (7)N1—C5—C4123.7 (3)
O5iii—Co1—O1iii88.13 (7)N1—C5—H5118.2
O1—Co1—O1iii180.000 (1)C4—C5—H5118.2
O5—Co1—O691.72 (7)N2—C6—C3115.3 (2)
O5iii—Co1—O688.28 (7)N2—C6—H6A108.4
O1—Co1—O688.61 (7)C3—C6—H6A108.4
O1iii—Co1—O691.39 (7)N2—C6—H6B108.4
O5—Co1—O6iii88.28 (7)C3—C6—H6B108.4
O5iii—Co1—O6iii91.72 (7)H6A—C6—H6B107.5
O1—Co1—O6iii91.39 (7)N2—C7—C8i109.5 (2)
O1iii—Co1—O6iii88.61 (7)N2—C7—H7A109.8
O6—Co1—O6iii180.000 (1)C8i—C7—H7A109.8
C11—O1—Co1122.61 (16)N2—C7—H7B109.8
H1WA—O1W—H1WB104 (3)C8i—C7—H7B109.8
Co1—O5—H5A123.9 (19)H7A—C7—H7B108.2
Co1—O5—H5B123 (2)N2—C8—C7i110.4 (2)
H5A—O5—H5B105 (2)N2—C8—H8A109.6
Co1—O6—H6C116 (2)C7i—C8—H8A109.6
Co1—O6—H6D102 (2)N2—C8—H8B109.6
H6C—O6—H6D112 (3)C7i—C8—H8B109.6
C5—N1—C1117.3 (2)H8A—C8—H8B108.1
C7—N2—C8109.8 (2)O2—C11—O1125.8 (2)
C7—N2—C6113.4 (2)O2—C11—C12117.0 (2)
C8—N2—C6112.9 (2)O1—C11—C12117.1 (2)
C7—N2—H2N102 (2)C14—C12—C13119.4 (2)
C8—N2—H2N111.8 (19)C14—C12—C11117.6 (2)
C6—N2—H2N106.2 (19)C13—C12—C11122.9 (2)
N1—C1—C2123.1 (3)C14ii—C13—C12119.4 (2)
N1—C1—H1118.5C14ii—C13—C15119.1 (2)
C2—C1—H1118.5C12—C13—C15121.4 (2)
C1—C2—C3119.2 (3)C12—C14—C13ii121.1 (2)
C1—C2—H2120.4C12—C14—H14119.4
C3—C2—H2120.4C13ii—C14—H14119.4
C4—C3—C2117.7 (2)O4—C15—O3123.5 (2)
C4—C3—C6121.9 (2)O4—C15—C13118.8 (2)
C2—C3—C6120.3 (2)O3—C15—C13117.7 (2)
O5—Co1—O1—C1154.13 (19)C7—N2—C8—C7i59.2 (3)
O5iii—Co1—O1—C11125.86 (19)C6—N2—C8—C7i173.3 (2)
O6—Co1—O1—C11145.90 (19)Co1—O1—C11—O221.7 (3)
O6iii—Co1—O1—C1134.10 (19)Co1—O1—C11—C12161.93 (16)
C5—N1—C1—C20.8 (4)O2—C11—C12—C1493.1 (3)
N1—C1—C2—C30.4 (4)O1—C11—C12—C1483.6 (3)
C1—C2—C3—C41.2 (4)O2—C11—C12—C1382.8 (3)
C1—C2—C3—C6174.9 (2)O1—C11—C12—C13100.5 (3)
C2—C3—C4—C50.8 (4)C14—C12—C13—C14ii0.5 (4)
C6—C3—C4—C5175.2 (2)C11—C12—C13—C14ii175.3 (2)
C1—N1—C5—C41.2 (4)C14—C12—C13—C15178.9 (2)
C3—C4—C5—N10.4 (4)C11—C12—C13—C155.3 (4)
C7—N2—C6—C359.1 (3)C13—C12—C14—C13ii0.5 (4)
C8—N2—C6—C366.5 (3)C11—C12—C14—C13ii175.6 (2)
C4—C3—C6—N281.0 (3)C14ii—C13—C15—O4156.2 (3)
C2—C3—C6—N2103.2 (3)C12—C13—C15—O423.2 (4)
C8—N2—C7—C8i58.7 (3)C14ii—C13—C15—O321.5 (4)
C6—N2—C7—C8i174.0 (2)C12—C13—C15—O3159.2 (2)
Symmetry codes: (i) x+2, y2, z+2; (ii) x+1, y+1, z+1; (iii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O6iv0.88 (2)2.38 (3)2.997 (3)128 (3)
O1W—H1WB···O1iv0.89 (2)1.88 (2)2.764 (3)174 (3)
O5—H5A···N10.88 (2)1.87 (2)2.739 (3)177 (3)
O5—H5B···O40.85 (2)1.87 (2)2.697 (3)163 (3)
O6—H6C···O1W0.86 (2)1.92 (2)2.753 (3)165 (3)
O6—H6D···O2iii0.86 (2)1.81 (2)2.624 (3)158 (3)
N2—H2N···O3v0.91 (2)1.73 (2)2.630 (3)171 (3)
Symmetry codes: (iii) x+2, y, z+1; (iv) x+1, y, z+1; (v) x+1, y1, z+2.

Experimental details

Crystal data
Chemical formula(C16H22N4)[Co(C10H2O8)(H2O)4]·2H2O
Mr687.52
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.278 (2), 9.752 (3), 11.257 (3)
α, β, γ (°)66.733 (3), 75.168 (3), 83.359 (3)
V3)709.5 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.24 × 0.14 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.853, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
11370, 2908, 2511
Rint0.058
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.153, 1.05
No. of reflections2908
No. of parameters226
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.23, 0.91

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O6i0.88 (2)2.38 (3)2.997 (3)128 (3)
O1W—H1WB···O1i0.89 (2)1.88 (2)2.764 (3)174 (3)
O5—H5A···N10.88 (2)1.87 (2)2.739 (3)177 (3)
O5—H5B···O40.85 (2)1.87 (2)2.697 (3)163 (3)
O6—H6C···O1W0.86 (2)1.92 (2)2.753 (3)165 (3)
O6—H6D···O2ii0.86 (2)1.81 (2)2.624 (3)158 (3)
N2—H2N···O3iii0.91 (2)1.73 (2)2.630 (3)171 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1; (iii) x+1, y1, z+2.
 

Acknowledgements

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

References

First citation Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citation Majumder, A., Gramlich, V., Rosair, G. M., Batten, S. R., Masuda, J. D., El Fallah, M. S., Ribas, J., Sutter, J.-P., Desplanches, C. & Mitra, S. (2006). Cryst. Growth Des. 6, 2355–2368.  Web of Science CSD CrossRef CAS Google Scholar
First citation Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citation Pocic, D., Planeix, J.-M., Kyritsakas, N., Jouaiti, A., Abdelaziz, H. & Wais, M. (2005). CrystEngComm, 7, 624–628.  Web of Science CSD CrossRef CAS Google Scholar
First citation Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds