metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-2′-carboxyl­atobi­phenyl-2-carboxylic acid-κ2O2:O2′)bis­­[(2,2′-bi­pyridine-κ2N,N′)(2′-carboxyl­ato­bi­phenyl-2-carboxylic acid-κO2′)zinc(II)]

aSchool of Chemistry and Life Science, Maoming University, Maoming 525000, People's Republic of China
*Correspondence e-mail: anz_md@163.com

(Received 6 October 2009; accepted 29 October 2009; online 4 November 2009)

In the dimeric title compound, [Zn2(C14H9O4)4(C10H8N2)2], the ZnII ions are penta­coordinated by one 2,2′-bipyridyl ligand and by three O atoms from three 2′-carboxyl­atobiphenyl-2-carboxylic acid ligands. Two of the 2′-carboxyl­atobiphenyl-2-carboxylic acid ligands act as bridging ligands and, together with two zinc(II) cations, produce an 18-membered ring system. The remaining 2′-carboxyl­atobiphenyl-2-carboxylic acid ligands work as monodentate ligands. The crystal packing diagram is consolidated by O—H⋯O hydrogen bonds.

Related literature

For related structures of metal-organic frameworks incorporating zinc or lanthanides and dicarboxylic acids, see: Wan & Zhang (2003[Wan, Y. H. & Zhang, L. P. (2003). J. Mol. Struct. 658, 253-260.]); Vodak et al. (2001[Vodak, D. T., Braun, M. E., Kim, J., Eddaoudi, M. & Yaghi, O. M. (2001). Chem. Commun. pp. 2534-2535.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C14H9O4)4(C10H8N2)2]

  • Mr = 1407.96

  • Triclinic, [P \overline 1]

  • a = 10.8745 (4) Å

  • b = 11.6465 (4) Å

  • c = 14.0223 (5) Å

  • α = 103.094 (1)°

  • β = 112.773 (1)°

  • γ = 92.680 (1)°

  • V = 1576.9 (1) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.906, Tmax = 0.936

  • 10807 measured reflections

  • 5332 independent reflections

  • 4820 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.098

  • S = 1.00

  • 5332 reflections

  • 444 parameters

  • H-atom parameters not refined

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O2i 0.82 1.85 2.6545 (19) 167
O7—H7⋯O6 0.82 1.74 2.551 (2) 170
Symmetry code: (i) -x+2, -y+2, -z+1.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Aromatic dicarboxylic acids are widely used in the construction of coordination polymers due to their capability of acting as bridging and chelating ligands in various coordination modes (Wan & Zhang, 2003). The preparation of metal aromatic carboxylates under hydrothermal conditions has also been reported (Vodak et al.2001).

In the present paper, we describe the synthesis and structural characterization of the title compound.

As shown in figure 1, the ZnII ions are pentacoordinated by one 2,2'-bipyridyl ligand and by three oxygen atoms from three 2'-carboxylatobiphenyl-2-carboxylic acid ligands. Two of the 2'-carboxylatobiphenyl-2-carboxylic acid ligands act as bridging ligands and together with two zinc(II) cations produce an 18 membered ring system. The Zn···Zn distance measures to 6.701 Å. The remaining 2'-carboxylatobiphenyl-2-carboxylic acid ligands work as monodentate ligands. The crystal packing diagram is consolidated by O—H···O hydrogen bonds. (Table 1, Figure 2).

Related literature top

For related structures of metal-organic frameworks incorporating zinc or lanthanides and dicarboxylic acids, see: Wan & Zhang, (2003); Vodak et al. (2001).

Experimental top

A mixture of Zn(CH3COO)2 × 2 H2O (0.25 mmol), biphenyl-2,2'-dicarboxylic acid (0.2 mmol), 2,2'-bipyridyl (0.2 mmol), sodium hydroxide(0.5 mmol) and water (12 ml) was stirred for 30 min under air. The mixture was then transferred to a 25 ml Teflon-lined autoclave and was kept at 443 K for 72 h. Colorless prisms of the title compound were obtained from the reaction mixture after cooling to room temperature.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93Å for aromatic C-H functions and 0.82 Å for hydroxyl groups. Hydrogens were refined using a riding model with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing the atomic numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of the title compound.
Bis(µ-2'-carboxylatobiphenyl-2-carboxylic acid-κ2O2:O2')bis[(2,2'-bipyridine- κ2N,N')(2'-carboxylatobiphenyl-2-carboxylic acid-κO2')zinc(II)] top
Crystal data top
[Zn2(C14H9O4)4(C10H8N2)2]Z = 1
Mr = 1407.96F(000) = 724
Triclinic, P1Dx = 1.483 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.8745 (4) ÅCell parameters from 6287 reflections
b = 11.6465 (4) Åθ = 2.5–28.2°
c = 14.0223 (5) ŵ = 0.84 mm1
α = 103.094 (1)°T = 293 K
β = 112.773 (1)°Block, translucent
γ = 92.680 (1)°0.12 × 0.10 × 0.08 mm
V = 1576.9 (1) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5332 independent reflections
Radiation source: fine-focus sealed tube4820 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.906, Tmax = 0.936k = 1313
10807 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters not refined
S = 1.00 w = 1/[σ2(Fo2) + (0.08P)2]
where P = (Fo2 + 2Fc2)/3
5332 reflections(Δ/σ)max = 0.001
444 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Zn2(C14H9O4)4(C10H8N2)2]γ = 92.680 (1)°
Mr = 1407.96V = 1576.9 (1) Å3
Triclinic, P1Z = 1
a = 10.8745 (4) ÅMo Kα radiation
b = 11.6465 (4) ŵ = 0.84 mm1
c = 14.0223 (5) ÅT = 293 K
α = 103.094 (1)°0.12 × 0.10 × 0.08 mm
β = 112.773 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5332 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4820 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.936Rint = 0.014
10807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.098H-atom parameters not refined
S = 1.00Δρmax = 0.29 e Å3
5332 reflectionsΔρmin = 0.25 e Å3
444 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.852166 (18)0.917078 (17)0.648679 (15)0.03426 (10)
C11.04604 (17)0.86670 (15)0.35850 (14)0.0326 (4)
C20.95130 (17)0.75294 (15)0.32443 (13)0.0320 (4)
C30.82737 (18)0.73778 (17)0.23642 (14)0.0370 (4)
H30.80650.79900.20290.044*
C40.7356 (2)0.63560 (18)0.19791 (15)0.0436 (5)
H40.65470.62740.13860.052*
C50.7648 (2)0.54537 (18)0.24809 (16)0.0464 (5)
H50.70270.47630.22370.056*
C60.8865 (2)0.55764 (17)0.33480 (16)0.0421 (4)
H60.90540.49580.36770.050*
C70.98164 (18)0.65955 (15)0.37432 (14)0.0333 (4)
C81.11438 (18)0.65573 (16)0.46245 (16)0.0381 (4)
C91.1866 (2)0.56587 (19)0.43731 (19)0.0512 (5)
H91.15170.51440.36860.061*
C101.3082 (2)0.5520 (2)0.5122 (2)0.0639 (7)
H101.35380.49100.49400.077*
C111.3621 (2)0.6283 (2)0.6136 (2)0.0630 (7)
H111.44520.62000.66360.076*
C121.2928 (2)0.7173 (2)0.64123 (18)0.0500 (5)
H121.32920.76840.71010.060*
C131.16833 (18)0.73104 (17)0.56643 (15)0.0388 (4)
C141.09428 (18)0.82548 (17)0.60017 (14)0.0369 (4)
C150.66830 (19)0.74974 (17)0.43258 (15)0.0418 (4)
H150.74710.73380.42420.050*
C160.5473 (2)0.68971 (19)0.35408 (16)0.0478 (5)
H160.54430.63380.29390.057*
C170.4306 (2)0.71328 (19)0.36542 (16)0.0475 (5)
H170.34740.67330.31310.057*
C180.43798 (18)0.79707 (18)0.45546 (15)0.0410 (4)
H180.35980.81470.46410.049*
C190.56275 (17)0.85434 (15)0.53254 (14)0.0319 (4)
C200.57917 (18)0.94393 (15)0.63252 (14)0.0327 (4)
C210.4710 (2)0.97965 (18)0.65380 (16)0.0421 (4)
H210.38310.94950.60420.050*
C220.4958 (2)1.0608 (2)0.74987 (18)0.0533 (5)
H220.42451.08580.76610.064*
C230.6265 (2)1.1043 (2)0.82138 (19)0.0578 (6)
H230.64501.15830.88700.069*
C240.7292 (2)1.06703 (19)0.79452 (16)0.0498 (5)
H240.81781.09760.84250.060*
C250.89081 (19)0.77209 (16)0.79160 (14)0.0363 (4)
C260.97304 (19)0.72768 (16)0.88630 (14)0.0359 (4)
C271.0903 (2)0.68258 (19)0.88947 (16)0.0470 (5)
H271.12070.68670.83660.056*
C281.1621 (2)0.63166 (19)0.97031 (17)0.0501 (5)
H281.23910.59970.97070.060*
C291.1194 (2)0.62845 (18)1.05020 (16)0.0480 (5)
H291.16790.59481.10500.058*
C301.00411 (19)0.67535 (17)1.04919 (14)0.0406 (4)
H300.97640.67331.10390.049*
C310.92915 (18)0.72541 (15)0.96747 (13)0.0332 (4)
C320.81105 (19)0.78099 (16)0.97435 (13)0.0364 (4)
C330.8325 (2)0.90124 (19)1.02957 (16)0.0503 (5)
H330.91650.94671.05340.060*
C340.7298 (3)0.9532 (2)1.04906 (19)0.0693 (8)
H340.74471.03381.08440.083*
C350.6045 (3)0.8859 (3)1.0162 (2)0.0732 (8)
H350.53680.92061.03160.088*
C360.5812 (3)0.7675 (2)0.9608 (2)0.0614 (6)
H360.49740.72230.93830.074*
C370.6829 (2)0.71558 (19)0.93839 (16)0.0447 (5)
C380.64762 (19)0.58724 (19)0.87503 (17)0.0460 (5)
N10.67766 (14)0.83087 (13)0.52131 (11)0.0339 (3)
N20.70656 (15)0.98810 (13)0.70158 (12)0.0356 (3)
O11.15618 (13)0.88852 (13)0.43496 (12)0.0513 (4)
O21.00560 (12)0.94223 (11)0.30197 (10)0.0394 (3)
O30.97207 (13)0.81690 (13)0.56208 (10)0.0435 (3)
O41.17363 (13)0.91838 (13)0.67693 (12)0.0498 (4)
H4A1.12820.96970.68830.075*
O50.95305 (13)0.84733 (13)0.76743 (11)0.0459 (3)
O60.76884 (14)0.73196 (13)0.74187 (11)0.0496 (4)
O70.68307 (16)0.55831 (13)0.79382 (12)0.0510 (4)
H70.70800.61910.78200.076*
O80.58752 (17)0.51275 (17)0.89517 (14)0.0684 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02564 (15)0.03895 (15)0.03585 (15)0.00024 (10)0.00903 (10)0.01293 (10)
C10.0297 (9)0.0355 (9)0.0371 (9)0.0049 (7)0.0174 (8)0.0115 (7)
C20.0310 (9)0.0354 (9)0.0337 (9)0.0048 (7)0.0176 (7)0.0093 (7)
C30.0361 (10)0.0421 (10)0.0343 (9)0.0021 (8)0.0152 (8)0.0120 (8)
C40.0379 (11)0.0529 (12)0.0340 (10)0.0039 (9)0.0124 (8)0.0066 (8)
C50.0459 (12)0.0391 (10)0.0493 (11)0.0092 (9)0.0220 (10)0.0012 (9)
C60.0480 (11)0.0333 (10)0.0487 (11)0.0038 (9)0.0234 (9)0.0118 (8)
C70.0355 (9)0.0315 (9)0.0379 (9)0.0046 (7)0.0201 (8)0.0094 (7)
C80.0354 (10)0.0377 (10)0.0510 (11)0.0093 (8)0.0209 (9)0.0235 (8)
C90.0534 (13)0.0434 (11)0.0707 (14)0.0173 (10)0.0340 (11)0.0238 (10)
C100.0569 (14)0.0620 (14)0.097 (2)0.0334 (13)0.0414 (14)0.0428 (15)
C110.0408 (12)0.0788 (17)0.0857 (18)0.0242 (12)0.0231 (12)0.0542 (15)
C120.0348 (11)0.0653 (14)0.0557 (12)0.0089 (10)0.0144 (9)0.0343 (11)
C130.0305 (10)0.0461 (11)0.0480 (11)0.0069 (8)0.0166 (8)0.0268 (9)
C140.0309 (10)0.0471 (11)0.0340 (9)0.0030 (8)0.0121 (8)0.0159 (8)
C150.0359 (10)0.0464 (11)0.0423 (10)0.0064 (8)0.0185 (8)0.0058 (8)
C160.0420 (11)0.0499 (12)0.0430 (11)0.0009 (9)0.0164 (9)0.0003 (9)
C170.0334 (10)0.0535 (12)0.0421 (11)0.0071 (9)0.0087 (8)0.0024 (9)
C180.0276 (9)0.0482 (11)0.0453 (11)0.0006 (8)0.0154 (8)0.0087 (9)
C190.0283 (9)0.0342 (9)0.0351 (9)0.0016 (7)0.0132 (7)0.0129 (7)
C200.0317 (9)0.0318 (9)0.0381 (9)0.0006 (7)0.0158 (8)0.0140 (7)
C210.0346 (10)0.0453 (11)0.0465 (11)0.0007 (8)0.0191 (8)0.0091 (9)
C220.0507 (13)0.0569 (13)0.0563 (13)0.0041 (10)0.0320 (11)0.0049 (10)
C230.0617 (14)0.0565 (13)0.0489 (12)0.0003 (11)0.0277 (11)0.0053 (10)
C240.0448 (12)0.0495 (12)0.0429 (11)0.0019 (10)0.0119 (9)0.0019 (9)
C250.0442 (11)0.0356 (9)0.0334 (9)0.0102 (8)0.0186 (8)0.0115 (7)
C260.0391 (10)0.0312 (9)0.0361 (9)0.0043 (8)0.0133 (8)0.0105 (7)
C270.0465 (12)0.0519 (12)0.0475 (11)0.0127 (10)0.0222 (10)0.0163 (9)
C280.0425 (12)0.0478 (12)0.0552 (13)0.0157 (10)0.0137 (10)0.0143 (10)
C290.0479 (12)0.0449 (11)0.0414 (11)0.0107 (10)0.0053 (9)0.0158 (9)
C300.0441 (11)0.0400 (10)0.0317 (9)0.0043 (9)0.0092 (8)0.0100 (8)
C310.0348 (10)0.0286 (8)0.0290 (8)0.0001 (7)0.0073 (7)0.0053 (7)
C320.0430 (11)0.0382 (10)0.0270 (9)0.0089 (8)0.0113 (8)0.0116 (7)
C330.0672 (14)0.0443 (11)0.0362 (10)0.0150 (10)0.0174 (10)0.0101 (8)
C340.109 (2)0.0605 (15)0.0535 (14)0.0457 (16)0.0412 (15)0.0235 (12)
C350.085 (2)0.092 (2)0.0759 (17)0.0533 (18)0.0524 (16)0.0417 (16)
C360.0525 (14)0.0817 (17)0.0691 (15)0.0294 (13)0.0319 (12)0.0390 (13)
C370.0417 (11)0.0555 (12)0.0406 (10)0.0136 (10)0.0142 (9)0.0230 (9)
C380.0310 (10)0.0513 (12)0.0474 (11)0.0012 (9)0.0042 (8)0.0201 (9)
N10.0287 (8)0.0384 (8)0.0361 (8)0.0033 (6)0.0136 (6)0.0124 (6)
N20.0317 (8)0.0346 (8)0.0380 (8)0.0005 (6)0.0123 (6)0.0094 (6)
O10.0352 (8)0.0526 (8)0.0558 (9)0.0070 (6)0.0030 (7)0.0260 (7)
O20.0342 (7)0.0366 (7)0.0483 (8)0.0024 (5)0.0130 (6)0.0203 (6)
O30.0279 (7)0.0572 (8)0.0404 (7)0.0044 (6)0.0132 (6)0.0052 (6)
O40.0307 (7)0.0553 (9)0.0516 (8)0.0009 (6)0.0108 (6)0.0038 (7)
O50.0429 (8)0.0544 (8)0.0501 (8)0.0091 (7)0.0206 (6)0.0289 (7)
O60.0453 (9)0.0557 (9)0.0412 (7)0.0014 (7)0.0069 (6)0.0218 (7)
O70.0520 (9)0.0432 (8)0.0482 (8)0.0056 (7)0.0126 (7)0.0108 (6)
O80.0558 (10)0.0727 (11)0.0721 (11)0.0142 (9)0.0195 (8)0.0273 (9)
Geometric parameters (Å, º) top
Zn1—O51.9795 (12)C19—C201.487 (2)
Zn1—O2i1.9941 (13)C20—N21.338 (2)
Zn1—N12.0456 (15)C20—C211.381 (3)
Zn1—N22.1203 (15)C21—C221.378 (3)
Zn1—O32.2940 (13)C21—H210.9300
C1—O11.226 (2)C22—C231.372 (3)
C1—O21.295 (2)C22—H220.9300
C1—C21.500 (3)C23—C241.369 (3)
C2—C71.407 (2)C23—H230.9300
C2—C31.401 (2)C24—N21.339 (3)
C3—C41.373 (3)C24—H240.9300
C3—H30.9300C25—O61.242 (2)
C4—C51.376 (3)C25—O51.264 (2)
C4—H40.9300C25—C261.505 (2)
C5—C61.382 (3)C26—C271.390 (3)
C5—H50.9300C26—C311.399 (3)
C6—C71.389 (3)C27—C281.382 (3)
C6—H60.9300C27—H270.9300
C7—C81.504 (2)C28—C291.376 (3)
C8—C131.396 (3)C28—H280.9300
C8—C91.400 (3)C29—C301.387 (3)
C9—C101.378 (3)C29—H290.9300
C9—H90.9300C30—C311.393 (2)
C10—C111.374 (4)C30—H300.9300
C10—H100.9300C31—C321.491 (3)
C11—C121.382 (3)C32—C371.400 (3)
C11—H110.9300C32—C331.398 (3)
C12—C131.398 (3)C33—C341.383 (3)
C12—H120.9300C33—H330.9300
C13—C141.491 (3)C34—C351.391 (4)
C14—O31.215 (2)C34—H340.9300
C14—O41.319 (2)C35—C361.378 (4)
C15—N11.346 (2)C35—H350.9300
C15—C161.370 (3)C36—C371.390 (3)
C15—H150.9300C36—H360.9300
C16—C171.371 (3)C37—C381.500 (3)
C16—H160.9300C38—O81.208 (3)
C17—C181.382 (3)C38—O71.318 (3)
C17—H170.9300O2—Zn1i1.9941 (13)
C18—C191.381 (3)O4—H4A0.8200
C18—H180.9300O7—H70.8200
C19—N11.351 (2)
O5—Zn1—O2i94.20 (5)N2—C20—C19115.57 (15)
O5—Zn1—N1123.40 (6)C21—C20—C19122.76 (16)
O2i—Zn1—N1141.68 (6)C22—C21—C20118.79 (19)
O5—Zn1—N2100.24 (6)C22—C21—H21120.6
O2i—Zn1—N2102.90 (6)C20—C21—H21120.6
N1—Zn1—N279.34 (6)C23—C22—C21119.44 (19)
O5—Zn1—O385.49 (5)C23—C22—H22120.3
O2i—Zn1—O386.73 (5)C21—C22—H22120.3
N1—Zn1—O388.97 (5)C24—C23—C22118.9 (2)
N2—Zn1—O3168.28 (5)C24—C23—H23120.6
O1—C1—O2120.88 (17)C22—C23—H23120.6
O1—C1—C2122.88 (16)N2—C24—C23122.3 (2)
O2—C1—C2116.24 (15)N2—C24—H24118.9
C7—C2—C3118.33 (17)C23—C24—H24118.9
C7—C2—C1123.57 (16)O6—C25—O5124.57 (17)
C3—C2—C1118.08 (15)O6—C25—C26118.81 (17)
C4—C3—C2122.22 (18)O5—C25—C26116.61 (17)
C4—C3—H3118.9C27—C26—C31119.98 (16)
C2—C3—H3118.9C27—C26—C25119.06 (16)
C3—C4—C5119.23 (18)C31—C26—C25120.87 (16)
C3—C4—H4120.4C26—C27—C28120.69 (19)
C5—C4—H4120.4C26—C27—H27119.7
C6—C5—C4119.80 (19)C28—C27—H27119.7
C6—C5—H5120.1C29—C28—C27119.74 (18)
C4—C5—H5120.1C29—C28—H28120.1
C5—C6—C7121.99 (18)C27—C28—H28120.1
C5—C6—H6119.0C28—C29—C30120.14 (18)
C7—C6—H6119.0C28—C29—H29119.9
C6—C7—C2118.41 (17)C30—C29—H29119.9
C6—C7—C8116.00 (16)C31—C30—C29120.97 (18)
C2—C7—C8125.39 (16)C31—C30—H30119.5
C13—C8—C9118.14 (18)C29—C30—H30119.5
C13—C8—C7125.70 (16)C30—C31—C26118.45 (17)
C9—C8—C7116.13 (18)C30—C31—C32118.44 (16)
C10—C9—C8121.4 (2)C26—C31—C32123.00 (15)
C10—C9—H9119.3C37—C32—C33118.25 (19)
C8—C9—H9119.3C37—C32—C31122.99 (16)
C11—C10—C9120.1 (2)C33—C32—C31118.39 (18)
C11—C10—H10119.9C34—C33—C32120.6 (2)
C9—C10—H10119.9C34—C33—H33119.7
C10—C11—C12119.9 (2)C32—C33—H33119.7
C10—C11—H11120.0C33—C34—C35120.5 (2)
C12—C11—H11120.0C33—C34—H34119.8
C13—C12—C11120.5 (2)C35—C34—H34119.8
C13—C12—H12119.8C34—C35—C36119.8 (2)
C11—C12—H12119.8C34—C35—H35120.1
C8—C13—C12119.93 (18)C36—C35—H35120.1
C8—C13—C14121.07 (16)C37—C36—C35120.0 (3)
C12—C13—C14118.99 (18)C37—C36—H36120.0
O3—C14—O4122.94 (17)C35—C36—H36120.0
O3—C14—C13123.24 (18)C32—C37—C36120.9 (2)
O4—C14—C13113.81 (15)C32—C37—C38122.62 (17)
N1—C15—C16122.57 (17)C36—C37—C38116.5 (2)
N1—C15—H15118.7O8—C38—O7120.5 (2)
C16—C15—H15118.7O8—C38—C37122.5 (2)
C15—C16—C17119.07 (18)O7—C38—C37117.02 (18)
C15—C16—H16120.5C15—N1—C19118.43 (16)
C17—C16—H16120.5C15—N1—Zn1126.19 (12)
C16—C17—C18119.23 (18)C19—N1—Zn1115.26 (12)
C16—C17—H17120.4C20—N2—C24118.92 (16)
C18—C17—H17120.4C20—N2—Zn1113.63 (11)
C19—C18—C17119.30 (17)C24—N2—Zn1127.42 (14)
C19—C18—H18120.4C1—O2—Zn1i111.14 (11)
C17—C18—H18120.3C14—O3—Zn1123.99 (12)
N1—C19—C18121.39 (16)C14—O4—H4A109.5
N1—C19—C20116.12 (15)C25—O5—Zn1119.66 (12)
C18—C19—C20122.49 (16)C38—O7—H7109.5
N2—C20—C21121.67 (17)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2i0.821.852.6545 (19)167
O7—H7···O60.821.742.551 (2)170
Symmetry code: (i) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Zn2(C14H9O4)4(C10H8N2)2]
Mr1407.96
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.8745 (4), 11.6465 (4), 14.0223 (5)
α, β, γ (°)103.094 (1), 112.773 (1), 92.680 (1)
V3)1576.9 (1)
Z1
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.906, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
10807, 5332, 4820
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.098, 1.00
No. of reflections5332
No. of parameters444
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.29, 0.25

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2i0.821.852.6545 (19)167.3
O7—H7···O60.821.742.551 (2)170.4
Symmetry code: (i) x+2, y+2, z+1.
 

Acknowledgements

The author acknowledges financial support from the Program for Talent Introduction in Guangdong Higher Education Institutions and the Scientific Research Start-up Funds of Talent Introduction in Maoming University.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVodak, D. T., Braun, M. E., Kim, J., Eddaoudi, M. & Yaghi, O. M. (2001). Chem. Commun. pp. 2534–2535.  Web of Science CSD CrossRef Google Scholar
First citationWan, Y. H. & Zhang, L. P. (2003). J. Mol. Struct. 658, 253–260.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds