metal-organic compounds
Bis(2-ethoxycarbonylethyl-κ2C1,O)(2-thioxo-1,3-dithiole-4,5-dithiolato-κ2S4,S5)tin(IV)
aDepartamento de Quimica, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil, bCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com
In the title compound, [Sn(C5H9O2)2(C3S5)], the immediate environment around the Sn centre is defined by two S and two C atoms that define an approximately tetrahedral geometry. The close approach of the pendant carbonyl O atoms [Sn—O = 2.577 (3) and 2.573 (3) Å] increases the to six. Supramolecular chains are formed along the a axis in the owing to the presence of C—H⋯O contacts.
Related literature
For original industrial interest in functionally substituted-alkyl-tin compounds, see: Lanigen & Weinberg (1976). For studies concerning the coordination chemistry of functionally substituted-alkyl-tin compounds, see: Harrison et al. (1979); Balasubramanian et al. (1997); Milne et al. (2005); Tian et al. (2005); de Lima et al. (2009). For related structures of functionally substituted-alkyl-tin compounds, see: Buchanan et al. (1996); Howie & Wardell, (2001). For the synthesis, see: Hutton & Oakes (1976); Valade et al. (1985).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809048971/im2162sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809048971/im2162Isup2.hkl
Solutions of Cl2Sn(CH2CH2CO2Et)2 (0.75 g, 2 mmol) (Hutton & Oakes, 1976) in acetone (20 ml) and [NEt4]2[Zn(dmit)2] (0.70 g, 1 mmol) (Valade et al., 1985) in acetone (20 ml) were mixed and the reaction mixture was maintained at room temperature. After 1 h, the reaction mixture was filtered and the filtrate evaporated to leave a solid residue, which after washing with water, was crystallized from acetone to give the title compound as a red-coloured crystalline solid, m.pt. 394–396 K. 1H NMR (CDCl3) δ: 1.25 [t, 3H, J(1H-1H) = 7.2 Hz, Me), 1.93 (t, 2H, J(1H-1H) = 7.2 Hz, J(119Sn-1H) = 84.2 Hz), CH2Sn), 2.96 (t, 2H, J(1H-1H) = 7.2 Hz, J(119Sn-1H) = 137.6 Hz, CH2CH2Sn), 4.20 (q, 2H, J(1H-1H) = 7.2 Hz, OCH2) p.p.m. 13C NMR (CDCl3, 62.9 MHz) δ: 13.9 (CH3), 22.8 [J(119Sn-13C) = 580 Hz, CH2Sn], 28.5 [J(119Sn-13C) = 46 Hz, CH2CH2Sn), 63.6 (OCH2), 129.8 (CC), 181.3 (CO), 210.6 (C S) p.p.m. 119Sn (CD2Cl2, 93.3 MHz) δ: 84.2 p.p.m. IR (KBr): 1680 (νCO), 1437 (νCC), 1031 (νCS), 890 (νC-S), 465 (νC-S) cm-1.
All H atoms were geometrically placed (C–H = 0.98–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). Indications for disorder was found in the O2-ethyl group. Multiple sites could not be resolved, however. The O2—C7 and C7—C8 bond distances were refined with the distance restraints of 1.460 ± 0.005 Å and 1.500 ± 0.005 Å, respectively. Further, their anisotropic displacement parameters were constrained to be isotropic with the ISOR command in SHELXL97 (Sheldrick, 2008). The structure was refined as a racemic twin precluding the determination of the absolute structure.
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).[Sn(C5H9O2)2(C3S5)] | F(000) = 1032 |
Mr = 517.26 | Dx = 1.776 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: P 2c -2n | Cell parameters from 16139 reflections |
a = 12.1224 (2) Å | θ = 2.9–27.5° |
b = 13.3825 (2) Å | µ = 1.87 mm−1 |
c = 11.9228 (2) Å | T = 120 K |
V = 1934.21 (5) Å3 | Block, orange |
Z = 4 | 0.25 × 0.10 × 0.08 mm |
Bruker–Nonius 95mm CCD camera on κ-goniostat diffractometer | 3895 independent reflections |
Radiation source: Bruker-Nonius FR591 rotating anode | 3457 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.056 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ϕ and ω scans | h = −15→14 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −17→17 |
Tmin = 0.025, Tmax = 0.052 | l = −13→15 |
14014 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.064 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0188P)2 + 0.7375P] where P = (Fo2 + 2Fc2)/3 |
3895 reflections | (Δ/σ)max = 0.002 |
211 parameters | Δρmax = 0.64 e Å−3 |
15 restraints | Δρmin = −0.48 e Å−3 |
[Sn(C5H9O2)2(C3S5)] | V = 1934.21 (5) Å3 |
Mr = 517.26 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 12.1224 (2) Å | µ = 1.87 mm−1 |
b = 13.3825 (2) Å | T = 120 K |
c = 11.9228 (2) Å | 0.25 × 0.10 × 0.08 mm |
Bruker–Nonius 95mm CCD camera on κ-goniostat diffractometer | 3895 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 3457 reflections with I > 2σ(I) |
Tmin = 0.025, Tmax = 0.052 | Rint = 0.056 |
14014 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 15 restraints |
wR(F2) = 0.064 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.64 e Å−3 |
3895 reflections | Δρmin = −0.48 e Å−3 |
211 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn | 0.529829 (17) | 0.337064 (17) | 0.45100 (3) | 0.02754 (8) | |
S1 | 0.53453 (8) | 0.51943 (8) | 0.41409 (10) | 0.0335 (3) | |
S2 | 0.73501 (8) | 0.33979 (7) | 0.46792 (12) | 0.0345 (3) | |
S3 | 0.88592 (8) | 0.51390 (8) | 0.48204 (9) | 0.0346 (3) | |
S4 | 0.72095 (7) | 0.66289 (7) | 0.43844 (12) | 0.0321 (2) | |
S5 | 0.94961 (10) | 0.72872 (9) | 0.49178 (10) | 0.0453 (3) | |
O1 | 0.5826 (3) | 0.1584 (2) | 0.5112 (3) | 0.0379 (7) | |
O2 | 0.6277 (3) | 0.0814 (3) | 0.6703 (3) | 0.0573 (10) | |
O3 | 0.3343 (2) | 0.3912 (2) | 0.3931 (2) | 0.0309 (6) | |
O4 | 0.2446 (2) | 0.4120 (2) | 0.2305 (2) | 0.0360 (7) | |
C1 | 0.6756 (3) | 0.5390 (3) | 0.4401 (4) | 0.0295 (9) | |
C2 | 0.7527 (3) | 0.4689 (3) | 0.4608 (5) | 0.0307 (8) | |
C3 | 0.8572 (3) | 0.6406 (3) | 0.4716 (4) | 0.0313 (10) | |
C4 | 0.4687 (4) | 0.3126 (4) | 0.6175 (4) | 0.0356 (11) | |
H4A | 0.4635 | 0.3773 | 0.6572 | 0.043* | |
H4B | 0.3938 | 0.2834 | 0.6134 | 0.043* | |
C5 | 0.5442 (4) | 0.2423 (4) | 0.6830 (4) | 0.0417 (11) | |
H5A | 0.6080 | 0.2807 | 0.7119 | 0.050* | |
H5B | 0.5033 | 0.2154 | 0.7483 | 0.050* | |
C6 | 0.5855 (4) | 0.1571 (3) | 0.6132 (4) | 0.0412 (11) | |
C7 | 0.6762 (6) | 0.0013 (4) | 0.6013 (5) | 0.0691 (19) | |
H7A | 0.7202 | 0.0313 | 0.5399 | 0.083* | |
H7B | 0.6164 | −0.0389 | 0.5671 | 0.083* | |
C8 | 0.7474 (5) | −0.0643 (6) | 0.6694 (5) | 0.086 (2) | |
H8A | 0.8081 | −0.0250 | 0.7012 | 0.129* | |
H8B | 0.7776 | −0.1175 | 0.6220 | 0.129* | |
H8C | 0.7040 | −0.0939 | 0.7302 | 0.129* | |
C9 | 0.4905 (3) | 0.2620 (3) | 0.2973 (3) | 0.0314 (10) | |
H9A | 0.5593 | 0.2486 | 0.2552 | 0.038* | |
H9B | 0.4553 | 0.1970 | 0.3145 | 0.038* | |
C10 | 0.4131 (4) | 0.3238 (3) | 0.2247 (4) | 0.0367 (10) | |
H10A | 0.4569 | 0.3730 | 0.1817 | 0.044* | |
H10B | 0.3758 | 0.2792 | 0.1704 | 0.044* | |
C11 | 0.3272 (3) | 0.3782 (3) | 0.2923 (4) | 0.0301 (9) | |
C12 | 0.1619 (4) | 0.4726 (4) | 0.2870 (4) | 0.0392 (11) | |
H12A | 0.1468 | 0.4441 | 0.3621 | 0.047* | |
H12B | 0.0924 | 0.4710 | 0.2434 | 0.047* | |
C13 | 0.1992 (4) | 0.5781 (3) | 0.2994 (4) | 0.0445 (11) | |
H13A | 0.2706 | 0.5796 | 0.3379 | 0.067* | |
H13B | 0.1448 | 0.6156 | 0.3433 | 0.067* | |
H13C | 0.2068 | 0.6086 | 0.2250 | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn | 0.02877 (12) | 0.02691 (13) | 0.02694 (13) | −0.00144 (10) | 0.00049 (14) | −0.00137 (15) |
S1 | 0.0284 (5) | 0.0272 (5) | 0.0451 (7) | 0.0013 (4) | −0.0039 (4) | 0.0017 (4) |
S2 | 0.0292 (4) | 0.0272 (5) | 0.0472 (9) | 0.0016 (4) | −0.0027 (5) | 0.0020 (6) |
S3 | 0.0289 (4) | 0.0381 (5) | 0.0368 (7) | −0.0026 (4) | −0.0014 (4) | −0.0022 (5) |
S4 | 0.0363 (4) | 0.0271 (4) | 0.0330 (7) | −0.0037 (4) | 0.0001 (5) | −0.0019 (5) |
S5 | 0.0491 (6) | 0.0502 (7) | 0.0367 (6) | −0.0208 (6) | 0.0015 (5) | −0.0058 (6) |
O1 | 0.0438 (18) | 0.0333 (16) | 0.0365 (19) | 0.0018 (13) | −0.0047 (14) | −0.0023 (13) |
O2 | 0.075 (3) | 0.049 (2) | 0.048 (2) | 0.0012 (18) | −0.0188 (18) | 0.0071 (18) |
O3 | 0.0315 (13) | 0.0359 (16) | 0.0254 (16) | 0.0003 (13) | −0.0035 (12) | −0.0002 (13) |
O4 | 0.0329 (15) | 0.0445 (19) | 0.0306 (18) | 0.0062 (14) | −0.0022 (13) | −0.0018 (15) |
C1 | 0.0323 (17) | 0.0266 (17) | 0.030 (2) | −0.0050 (15) | −0.003 (2) | 0.001 (2) |
C2 | 0.0297 (16) | 0.0280 (18) | 0.034 (2) | −0.0046 (14) | −0.002 (2) | −0.009 (2) |
C3 | 0.0352 (18) | 0.038 (2) | 0.021 (3) | −0.0066 (16) | 0.0031 (17) | 0.0026 (19) |
C4 | 0.039 (3) | 0.035 (3) | 0.032 (3) | −0.0048 (19) | 0.0015 (18) | −0.004 (2) |
C5 | 0.051 (3) | 0.047 (3) | 0.027 (2) | −0.010 (2) | −0.001 (2) | 0.004 (2) |
C6 | 0.042 (3) | 0.039 (3) | 0.043 (3) | −0.014 (2) | −0.005 (2) | 0.008 (2) |
C7 | 0.092 (5) | 0.051 (4) | 0.065 (4) | 0.018 (3) | −0.031 (4) | −0.016 (3) |
C8 | 0.069 (4) | 0.121 (7) | 0.069 (5) | 0.021 (4) | −0.012 (3) | −0.022 (4) |
C9 | 0.034 (2) | 0.031 (2) | 0.029 (2) | 0.0001 (19) | 0.0013 (18) | −0.002 (2) |
C10 | 0.036 (2) | 0.046 (3) | 0.028 (2) | 0.006 (2) | −0.003 (2) | −0.003 (2) |
C11 | 0.031 (2) | 0.027 (2) | 0.032 (3) | 0.0007 (18) | −0.0012 (18) | 0.0004 (18) |
C12 | 0.032 (2) | 0.048 (3) | 0.038 (3) | 0.007 (2) | 0.0047 (19) | −0.002 (2) |
C13 | 0.044 (3) | 0.038 (3) | 0.051 (3) | 0.005 (2) | 0.001 (2) | 0.006 (2) |
Sn—C4 | 2.144 (5) | C4—H4B | 0.9900 |
Sn—C9 | 2.144 (4) | C5—C6 | 1.498 (7) |
Sn—S1 | 2.4805 (11) | C5—H5A | 0.9900 |
Sn—S2 | 2.4958 (9) | C5—H5B | 0.9900 |
Sn—O3 | 2.573 (3) | C7—C8 | 1.475 (4) |
Sn—O1 | 2.577 (3) | C7—H7A | 0.9900 |
S1—C1 | 1.758 (4) | C7—H7B | 0.9900 |
S2—C2 | 1.743 (4) | C8—H8A | 0.9800 |
S3—C3 | 1.735 (4) | C8—H8B | 0.9800 |
S3—C2 | 1.742 (3) | C8—H8C | 0.9800 |
S4—C3 | 1.724 (4) | C9—C10 | 1.520 (6) |
S4—C1 | 1.746 (4) | C9—H9A | 0.9900 |
S5—C3 | 1.644 (4) | C9—H9B | 0.9900 |
O1—C6 | 1.217 (5) | C10—C11 | 1.505 (6) |
O2—C6 | 1.324 (6) | C10—H10A | 0.9900 |
O2—C7 | 1.474 (4) | C10—H10B | 0.9900 |
O3—C11 | 1.217 (5) | C12—C13 | 1.490 (6) |
O4—C11 | 1.323 (5) | C12—H12A | 0.9900 |
O4—C12 | 1.454 (5) | C12—H12B | 0.9900 |
C1—C2 | 1.348 (5) | C13—H13A | 0.9800 |
C4—C5 | 1.527 (6) | C13—H13B | 0.9800 |
C4—H4A | 0.9900 | C13—H13C | 0.9800 |
C4—Sn—C9 | 130.01 (17) | H5A—C5—H5B | 107.8 |
C4—Sn—S1 | 108.82 (14) | O1—C6—O2 | 122.4 (5) |
C9—Sn—S1 | 108.33 (12) | O1—C6—C5 | 122.3 (4) |
C4—Sn—S2 | 105.78 (12) | O2—C6—C5 | 115.2 (4) |
C9—Sn—S2 | 107.32 (11) | O2—C7—C8 | 111.0 (5) |
S1—Sn—S2 | 88.68 (3) | O2—C7—H7A | 109.4 |
C4—Sn—O3 | 88.46 (13) | C8—C7—H7A | 109.4 |
C9—Sn—O3 | 72.38 (13) | O2—C7—H7B | 109.4 |
S1—Sn—O3 | 72.34 (7) | C8—C7—H7B | 109.4 |
S2—Sn—O3 | 159.35 (7) | H7A—C7—H7B | 108.0 |
C4—Sn—O1 | 71.72 (15) | C7—C8—H8A | 109.5 |
C9—Sn—O1 | 81.87 (14) | C7—C8—H8B | 109.5 |
S1—Sn—O1 | 163.04 (7) | H8A—C8—H8B | 109.5 |
S2—Sn—O1 | 75.14 (7) | C7—C8—H8C | 109.5 |
O3—Sn—O1 | 124.38 (9) | H8A—C8—H8C | 109.5 |
C1—S1—Sn | 97.92 (13) | H8B—C8—H8C | 109.5 |
C2—S2—Sn | 97.66 (11) | C10—C9—Sn | 111.7 (3) |
C3—S3—C2 | 98.14 (18) | C10—C9—H9A | 109.3 |
C3—S4—C1 | 97.73 (18) | Sn—C9—H9A | 109.3 |
C6—O1—Sn | 107.4 (3) | C10—C9—H9B | 109.3 |
C6—O2—C7 | 115.0 (4) | Sn—C9—H9B | 109.3 |
C11—O3—Sn | 106.9 (2) | H9A—C9—H9B | 108.0 |
C11—O4—C12 | 117.1 (3) | C11—C10—C9 | 112.7 (4) |
C2—C1—S4 | 116.4 (3) | C11—C10—H10A | 109.1 |
C2—C1—S1 | 127.1 (3) | C9—C10—H10A | 109.1 |
S4—C1—S1 | 116.5 (2) | C11—C10—H10B | 109.1 |
C1—C2—S3 | 115.4 (3) | C9—C10—H10B | 109.1 |
C1—C2—S2 | 127.9 (3) | H10A—C10—H10B | 107.8 |
S3—C2—S2 | 116.7 (2) | O3—C11—O4 | 123.7 (4) |
S5—C3—S4 | 124.2 (2) | O3—C11—C10 | 123.2 (4) |
S5—C3—S3 | 123.6 (2) | O4—C11—C10 | 113.1 (4) |
S4—C3—S3 | 112.2 (2) | O4—C12—C13 | 111.4 (4) |
C5—C4—Sn | 111.2 (3) | O4—C12—H12A | 109.3 |
C5—C4—H4A | 109.4 | C13—C12—H12A | 109.3 |
Sn—C4—H4A | 109.4 | O4—C12—H12B | 109.3 |
C5—C4—H4B | 109.4 | C13—C12—H12B | 109.3 |
Sn—C4—H4B | 109.4 | H12A—C12—H12B | 108.0 |
H4A—C4—H4B | 108.0 | C12—C13—H13A | 109.5 |
C6—C5—C4 | 112.6 (4) | C12—C13—H13B | 109.5 |
C6—C5—H5A | 109.1 | H13A—C13—H13B | 109.5 |
C4—C5—H5A | 109.1 | C12—C13—H13C | 109.5 |
C6—C5—H5B | 109.1 | H13A—C13—H13C | 109.5 |
C4—C5—H5B | 109.1 | H13B—C13—H13C | 109.5 |
C4—Sn—S1—C1 | 99.3 (2) | Sn—S2—C2—S3 | 174.2 (3) |
C9—Sn—S1—C1 | −114.8 (2) | C1—S4—C3—S5 | −176.2 (3) |
S2—Sn—S1—C1 | −6.96 (17) | C1—S4—C3—S3 | 3.4 (3) |
O3—Sn—S1—C1 | −178.67 (18) | C2—S3—C3—S5 | 176.1 (3) |
O1—Sn—S1—C1 | 10.3 (3) | C2—S3—C3—S4 | −3.5 (3) |
C4—Sn—S2—C2 | −102.3 (2) | C9—Sn—C4—C5 | 94.0 (3) |
C9—Sn—S2—C2 | 115.7 (2) | S1—Sn—C4—C5 | −129.9 (3) |
S1—Sn—S2—C2 | 6.90 (19) | S2—Sn—C4—C5 | −35.8 (3) |
O3—Sn—S2—C2 | 29.8 (3) | O3—Sn—C4—C5 | 159.3 (3) |
O1—Sn—S2—C2 | −168.0 (2) | O1—Sn—C4—C5 | 32.2 (3) |
C4—Sn—O1—C6 | −24.6 (3) | Sn—C4—C5—C6 | −40.7 (5) |
C9—Sn—O1—C6 | −161.6 (3) | Sn—O1—C6—O2 | −168.4 (4) |
S1—Sn—O1—C6 | 70.1 (4) | Sn—O1—C6—C5 | 9.8 (5) |
S2—Sn—O1—C6 | 88.0 (3) | C7—O2—C6—O1 | 3.0 (7) |
O3—Sn—O1—C6 | −99.5 (3) | C7—O2—C6—C5 | −175.4 (5) |
C4—Sn—O3—C11 | −156.3 (3) | C4—C5—C6—O1 | 17.7 (6) |
C9—Sn—O3—C11 | −23.1 (3) | C4—C5—C6—O2 | −163.9 (4) |
S1—Sn—O3—C11 | 93.4 (3) | C6—O2—C7—C8 | 164.1 (5) |
S2—Sn—O3—C11 | 69.3 (4) | C4—Sn—C9—C10 | 102.9 (4) |
O1—Sn—O3—C11 | −89.7 (3) | S1—Sn—C9—C10 | −33.2 (3) |
C3—S4—C1—C2 | −2.0 (4) | S2—Sn—C9—C10 | −127.7 (3) |
C3—S4—C1—S1 | 178.3 (3) | O3—Sn—C9—C10 | 30.6 (3) |
Sn—S1—C1—C2 | 6.4 (5) | O1—Sn—C9—C10 | 160.7 (3) |
Sn—S1—C1—S4 | −173.9 (2) | Sn—C9—C10—C11 | −38.3 (4) |
S4—C1—C2—S3 | −0.2 (5) | Sn—O3—C11—O4 | −169.2 (3) |
S1—C1—C2—S3 | 179.5 (3) | Sn—O3—C11—C10 | 9.5 (5) |
S4—C1—C2—S2 | −179.9 (3) | C12—O4—C11—O3 | 3.7 (6) |
S1—C1—C2—S2 | −0.2 (7) | C12—O4—C11—C10 | −175.2 (4) |
C3—S3—C2—C1 | 2.3 (4) | C9—C10—C11—O3 | 16.6 (6) |
C3—S3—C2—S2 | −178.0 (3) | C9—C10—C11—O4 | −164.6 (4) |
Sn—S2—C2—C1 | −6.1 (5) | C11—O4—C12—C13 | 81.2 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12a···O1i | 0.99 | 2.38 | 3.338 (6) | 164 |
C7—H7a···O3ii | 0.99 | 2.46 | 3.450 (7) | 178 |
Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) x+1/2, −y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Sn(C5H9O2)2(C3S5)] |
Mr | 517.26 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 120 |
a, b, c (Å) | 12.1224 (2), 13.3825 (2), 11.9228 (2) |
V (Å3) | 1934.21 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.87 |
Crystal size (mm) | 0.25 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Bruker–Nonius 95mm CCD camera on κ-goniostat diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.025, 0.052 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14014, 3895, 3457 |
Rint | 0.056 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.064, 1.04 |
No. of reflections | 3895 |
No. of parameters | 211 |
No. of restraints | 15 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.64, −0.48 |
Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12a···O1i | 0.99 | 2.38 | 3.338 (6) | 164 |
C7—H7a···O3ii | 0.99 | 2.46 | 3.450 (7) | 178 |
Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) x+1/2, −y+1/2, z. |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from FAPEMIG (Brazil).
References
Balasubramanian, R., Chohan, Z. H., Doidge-Harrison, S. M. S. V., Howie, R. A. & Wardell, J. L. (1997). Polyhedron, 16, 4283–4295. CSD CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Buchanan, H., Howie, R. A., Khan, A., Spencer, G. M., Wardell, J. L. & Aupers, J. H. (1996). J. Chem. Soc. Dalton Trans. pp. 541–548. CSD CrossRef Web of Science Google Scholar
Harrison, P. G., King, T. J. & Healey, M. A. (1979). J. Organomet. Chem. 182, 17–36. CSD CrossRef CAS Web of Science Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Howie, R. A. & Wardell, J. L. (2001). Acta Cryst. C57, 1041–1043. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Hutton, R. E. & Oakes, V. (1976). Adv. Chem. Ser. 157, 123–133. CrossRef CAS Google Scholar
Lanigen, D. & Weinberg, E. L. (1976). Adv. Chem. Ser. 157, 134-142. Google Scholar
Lima, G. M. de, Milne, B. F., Pereira, R. P., Rocco, A. M., Skakle, J. M., Travis, A. J., Wardell, J. L. & Wardell, S. M. S. V. (2009). J. Mol. Struct. 921, 244–250. Google Scholar
Milne, B. F., Pereira, R. P., Rocco, A. M., Skakle, J. M. S., Travis, A. J., Wardell, J. L. & Wardell, S. M. S. V. (2005). Appl. Organomet. Chem. 19, 363–371. Web of Science CSD CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tian, L. J., Zhang, L. P., Liu, X. C. & Zhou, Z. Y. (2005). Appl. Organomet. Chem. 19, 198–199. Web of Science CSD CrossRef CAS Google Scholar
Valade, L., Legros, J. P., Bousseau, M., Garbaukas, M. & Interrante, L. V. (1985). J. Chem. Soc. Dalton Trans. pp. 783–794. CSD CrossRef Web of Science Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Functionally substituted-alkyl-tin compounds, X3SnCR2CH2CO2R' and X2Sn(CR2CH2CO2R')2 (X = halide, R = H or alkyl; R' = alkyl or aryl), are readily available from reactions first reported in the 1970's (Hutton & Oakes, 1976), starting from R2CCHCOY (Y = R' or OR'), HX and SnX2 (for X3SnCR2CH2COY compounds) or HX and tin (for X2Sn(CR2CH2COY)2 substrates). Original interest with these compounds was primarily concerned with their industrial potential as precursors of PVC stabilizers (Lanigen & Weinberg, 1976) but also with regard to their coordination chemistry. Although the potential for use in PVC stabilization has not been realised commercially, the interest in the coordination chemistry, generally of compounds containing SnCR2CH2COY moieties, has been maintained over the succeeding decades. Particular interest has been paid to coordination modes of the CR2CH2COY ligands (de Lima et al. 2009; Tian et al., 2005; Milne et al., 2005; Harrison et al., 1979). Diester-tin compounds, (MeO2CCH2CH2)2SnX2 (X = halide or thiocyanate) (Balasubramanian et al., 1997; Harrison et al., 1979) and (MeO2CCH2CH2)2Sn(dmit) (dmit = 1,3-dithiole-2-thione-4,5-dithiolato; Buchanan et al., 1996) have been shown to be molecular species with hexa-coordinate tin centres both in the solid-state and in non-coordinating solutions, as a consequence of the (C,O)-chelating ligands. Compounds (MeCOCH2CMe2)SnX2 also contain contain hexa-co-ordinate tin centres (X = Cl or dmit; Howie & Wardell, 2001).
The molecular structure of (I) features a chelating dmit ligand as well as two C-bound CH2CH2CO2Et ligands, each of which coordinates via the α carbon atom. The Sn atom exists within a distorted tetrahedral C2S2 donor set, Fig. 1. Significant distortions from the ideal geometry arise from the close approach of two carbonyl-O atoms [Sn—O = 2.577 (3) and 2.573 (3) Å] thereby increasing the coordination number to six. The expanded geometry is therefore based on a highly distorted octahedron. The dmit ligand forms nearly equivalent Sn–S bond distances of 2.4805 (11) and 2.4958 (9) Å. In many respects, the molecular structure of (I) resembles that of the previously reported methyl ester analogue (Buchanan et al. (1996). The former has crystallographic twofold symmetry which is absent in (I) owing to a misalignment of the ethyl substituents.
In the crystal structure, molecules are connected into a supramolecular chain along the a axis via C–H···O interactions, with each molecule forming two donor and two acceptor contacts, Table 1 and Fig. 2.