metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1602-m1603

Chlorido(di­methyl sulfoxide-κO)tri­phenyl­tin(IV)

aIndian Institute of Technology, Kanpur, India, and bDepartment of Chemical Engineering, Aligarh Muslim University, Aligarh, India
*Correspondence e-mail: skumarchem01@gmail.com

(Received 25 September 2009; accepted 12 November 2009; online 18 November 2009)

In the title compound, [Sn(C6H5)3Cl(C2H6OS)], the SnIV atom is coordinated by three phenyl groups, a chloride ion and a dimethyl sulfoxide mol­ecule in a distorted trigonal-bipyramidal geometry. In the crystal, adjacent mol­ecules are linked through inter­molecular C—H⋯Cl hydrogen bonds, weak C—H⋯π inter­actions and ππ inter­actions [centroid–centroid distance = 3.934 (3) Å. An intra­molecular C—H⋯π inter­action is also observed.

Related literature

For general background to the biological activity and industrial applications of triorganotin(IV) complexes, see: Willem et al. (1997[Willem, R., Bunhdid, A., Mahieu, B., Ghys, L., Biesemans, M., Tiekink, E. R. T., Vos, D. D. & Gielen, M. (1997). J. Organomet. Chem. 531, 151-158.]); Gielen et al. (2000[Gielen, M., Biesemans, M., Vos, D. D. & Willem, R. (2000). J. Inorg. Biochem. 79, 139-145.]); Tian et al. (2005[Tian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem. 99, 1646-1652.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For some unusual examples of [Sn(C6H5)3(C16H10NO3)(C2H6O)] adducts with oxygen-donor ligands, see: Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m489.]); Ng & Kumar Das (1997[Ng, S. W. & Kumar Das, V. G. (1997). Trends Organomet. Chem. 2, 107-115.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3Cl(C2H6OS)]

  • Mr = 463.57

  • Orthorhombic, P 21 21 21

  • a = 10.417 (5) Å

  • b = 13.235 (5) Å

  • c = 14.302 (5) Å

  • V = 1971.8 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 293 K

  • 0.26 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.677, Tmax = 0.712

  • 11203 measured reflections

  • 4052 independent reflections

  • 3877 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.085

  • S = 1.15

  • 4052 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 1.18 e Å−3

  • Δρmin = −0.86 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1732 Friedel pairs

  • Flack parameter: −0.07 (3)

Table 1
Selected bond lengths (Å)

Sn1—Cl1 2.4999 (14)
Sn1—O1 2.311 (3)
Sn1—C1 2.134 (5)
Sn1—C7 2.132 (5)
Sn1—C13 2.131 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20C⋯Cl1i 0.96 2.69 3.610 (6) 161
C20—H20ACg3 0.96 2.94 3.813 (6) 151
C20—H20BCg1ii 0.96 2.61 3.490 (6) 153
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]. Cg1 and Cg3 are the centroids of the C1–C6 and C13–C18 rings, respectively.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Triorganotin(IV) complexes are well known for their biological activities as well as industrial applications (Willem et al., 1997; Gielen et al., 2000; Tian et al., 2005). Owing to wide spread applications of organotin compounds, their synthesis and characterization with O–containing ligands have been a continuing subject in recent years (Lo & Ng, 2009, Ng & Kumar Das, 1997). There are very rare examples of the triorganotin(IV) complexes with solvent molecules (Lo & Ng, 2009), in which solvent molecule acts as a chelator ligand.

The bond lengths and bond angles in the molecules are within normal ranges (Allen et al. 1987). The SnIV atom is coordinated by three phenyl groups, one chloride ion and one solvent molecule (DMSO) in a distorted trigonal biyramidal geometry (Fig. 1). The three phenyl groups are attached in a plane to the Sn atom and seemed like as three pedal of ceiling fan. The one chloride and one solvent molecule are located at axial positions and three phenyl groups are located at equatorial positions. Each phenyl group of the one compound is interacted with another phenyl group of another molecule by a ππ interaction and further interacted by a C—H···π interaction. The neighboring molecules are bound by C—H···Cl, C—H···π (Table 2) and a ππ interaction with a centroid-centroid distance of 3.934 (3) Å (Fig. 2).

Related literature top

For general background to the biological activity and industrial applications of triorganotin(IV) complexes, see: Willem et al. (1997); Gielen et al. (2000); Tian et al. (2005). For bond-length data, see: Allen et al. (1987). For some unusual examples of adducts with orxygen-donor ligands, see: Lo & Ng (2009); Ng & Kumar Das (1997). Cg1 and Cg3 are the centroids of the C1–C6 and C13–C18 rings, respectively.

Experimental top

Triphenyltinchloride (0.385 g, 1 mmol) was dissolved in DMSO (4 ml) and heated until the reactant dissolved completely. The solution was filtered and solvent allowed evaporating slowly. Fine colorless crystal produced after 3 days. Crystals are stable at room temperature. Analysis calc. for C20H21SOClSn: C 51.81, H 4.57, S 6.92. Found: C 51.68, H 4.56, S 6.95.

Refinement top

All of the hydrogen atoms were placed in calculated positions (C–H = 0.93 or 0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The highest residual electron density peak is located 0.87 Å from atom Sn1. The Hooft parameter value is -0.045 (17).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP diagram of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-hydrogen atoms.
[Figure 2] Fig. 2. In the packing diagram, molecules are bounded by weak intermolecular weak hydrogen bonds.
Chlorido(dimethyl sulfoxide-κO)triphenyltin(IV) top
Crystal data top
[Sn(C6H5)3Cl(C2H6OS)]F(000) = 928
Mr = 463.57Dx = 1.562 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 6343 reflections
a = 10.417 (5) Åθ = 2.4–28.3°
b = 13.235 (5) ŵ = 1.54 mm1
c = 14.302 (5) ÅT = 293 K
V = 1971.8 (14) Å3Prism, colorless
Z = 40.26 × 0.24 × 0.22 mm
Data collection top
Bruker SMART CCD
diffractometer
4052 independent reflections
Radiation source: fine-focus sealed tube3877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1312
Tmin = 0.677, Tmax = 0.712k = 1615
11203 measured reflectionsl = 1517
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0344P)2 + 2.3774P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
4052 reflectionsΔρmax = 1.18 e Å3
217 parametersΔρmin = 0.86 e Å3
0 restraintsAbsolute structure: Flack (1983), 1732 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (3)
Crystal data top
[Sn(C6H5)3Cl(C2H6OS)]V = 1971.8 (14) Å3
Mr = 463.57Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.417 (5) ŵ = 1.54 mm1
b = 13.235 (5) ÅT = 293 K
c = 14.302 (5) Å0.26 × 0.24 × 0.22 mm
Data collection top
Bruker SMART CCD
diffractometer
4052 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3877 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 0.712Rint = 0.048
11203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.085Δρmax = 1.18 e Å3
S = 1.15Δρmin = 0.86 e Å3
4052 reflectionsAbsolute structure: Flack (1983), 1732 Friedel pairs
217 parametersAbsolute structure parameter: 0.07 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.65650 (3)0.90124 (2)0.76810 (2)0.01581 (9)
Cl10.70946 (11)1.06792 (8)0.69548 (9)0.0215 (2)
S10.60492 (11)0.71709 (9)0.93706 (8)0.0203 (2)
O10.6043 (3)0.7472 (2)0.8339 (2)0.0212 (7)
C170.5280 (5)1.0132 (4)1.0442 (4)0.0253 (11)
H170.55861.01121.10530.030*
C140.4365 (4)1.0183 (4)0.8606 (4)0.0227 (10)
H140.40601.02030.79950.027*
C31.0216 (5)0.7334 (4)0.7804 (3)0.0295 (12)
H31.04610.66620.77350.035*
C20.8928 (5)0.7602 (4)0.7732 (4)0.0246 (10)
H20.83190.71040.76140.030*
C90.3759 (5)0.7531 (4)0.5849 (4)0.0287 (12)
H90.30230.71440.59390.034*
C180.5971 (5)0.9694 (3)0.9717 (3)0.0211 (10)
H180.67510.93840.98510.025*
C130.5538 (4)0.9702 (3)0.8800 (3)0.0179 (9)
C120.5932 (5)0.8685 (4)0.5590 (3)0.0198 (10)
H120.66610.90780.54970.024*
C80.4438 (4)0.7872 (4)0.6612 (4)0.0227 (10)
H80.41630.77050.72110.027*
C70.5534 (4)0.8467 (3)0.6496 (3)0.0185 (10)
C190.6133 (5)0.5836 (4)0.9315 (4)0.0279 (11)
H19A0.69750.56360.91140.042*
H19B0.55060.55900.88780.042*
H19C0.59630.55570.99220.042*
C100.4154 (5)0.7756 (4)0.4954 (4)0.0256 (11)
H100.36870.75270.44430.031*
C200.4428 (5)0.7303 (4)0.9743 (4)0.0265 (11)
H20A0.42260.80070.98090.040*
H20B0.43160.69691.03330.040*
H20C0.38680.70040.92870.040*
C110.5260 (5)0.8328 (4)0.4823 (4)0.0249 (11)
H110.55470.84700.42210.030*
C41.1127 (5)0.8061 (4)0.7976 (4)0.0310 (12)
H41.19880.78830.80230.037*
C60.9465 (4)0.9331 (4)0.8018 (4)0.0233 (10)
H60.92231.00020.81010.028*
C10.8536 (4)0.8603 (3)0.7833 (3)0.0187 (9)
C160.4115 (5)1.0605 (4)1.0232 (4)0.0262 (11)
H160.36401.09061.07060.031*
C51.0761 (5)0.9062 (5)0.8081 (4)0.0313 (12)
H51.13780.95560.81920.038*
C150.3661 (5)1.0628 (4)0.9314 (4)0.0293 (12)
H150.28841.09420.91790.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01343 (14)0.01702 (14)0.01697 (15)0.00044 (12)0.00008 (12)0.00061 (12)
Cl10.0183 (5)0.0193 (5)0.0268 (6)0.0005 (4)0.0006 (5)0.0046 (4)
S10.0192 (5)0.0212 (6)0.0205 (6)0.0035 (5)0.0025 (5)0.0022 (5)
O10.0262 (16)0.0221 (17)0.0152 (16)0.0020 (14)0.0026 (14)0.0018 (13)
C170.033 (3)0.023 (2)0.020 (3)0.004 (2)0.003 (2)0.001 (2)
C140.018 (2)0.025 (2)0.025 (3)0.002 (2)0.000 (2)0.001 (2)
C30.030 (3)0.039 (3)0.020 (3)0.020 (2)0.000 (2)0.007 (2)
C20.022 (2)0.028 (2)0.025 (2)0.0069 (19)0.004 (2)0.002 (2)
C90.020 (3)0.026 (3)0.040 (3)0.002 (2)0.006 (2)0.006 (2)
C180.021 (2)0.014 (2)0.029 (3)0.0012 (19)0.000 (2)0.001 (2)
C130.018 (2)0.019 (2)0.017 (2)0.0021 (19)0.0027 (19)0.0019 (18)
C120.021 (2)0.023 (2)0.015 (2)0.0004 (19)0.0012 (19)0.0036 (18)
C80.017 (2)0.025 (2)0.026 (3)0.002 (2)0.001 (2)0.000 (2)
C70.016 (2)0.018 (2)0.022 (2)0.0074 (18)0.0002 (19)0.0010 (19)
C190.035 (3)0.020 (3)0.028 (3)0.004 (2)0.004 (2)0.006 (2)
C100.029 (3)0.025 (3)0.024 (3)0.005 (2)0.009 (2)0.008 (2)
C200.027 (3)0.036 (3)0.017 (2)0.007 (2)0.002 (2)0.002 (2)
C110.033 (3)0.022 (2)0.020 (2)0.006 (2)0.003 (2)0.0051 (19)
C40.021 (2)0.052 (3)0.020 (2)0.012 (2)0.001 (2)0.004 (2)
C60.017 (2)0.029 (3)0.024 (2)0.0002 (19)0.001 (2)0.003 (2)
C10.015 (2)0.025 (2)0.016 (2)0.0042 (18)0.001 (2)0.0016 (17)
C160.024 (3)0.029 (3)0.025 (3)0.005 (2)0.005 (2)0.011 (2)
C50.018 (2)0.046 (3)0.029 (3)0.001 (2)0.003 (2)0.010 (3)
C150.017 (3)0.033 (3)0.038 (3)0.002 (2)0.003 (2)0.005 (2)
Geometric parameters (Å, º) top
Sn1—Cl12.4999 (14)C12—C111.384 (7)
Sn1—O12.311 (3)C12—C71.391 (7)
Sn1—C12.134 (5)C12—H120.9300
Sn1—C72.132 (5)C8—C71.397 (7)
Sn1—C132.131 (5)C8—H80.9300
S1—O11.529 (3)C19—H19A0.9600
S1—C191.771 (5)C19—H19B0.9600
S1—C201.779 (5)C19—H19C0.9600
C17—C181.389 (7)C10—C111.391 (7)
C17—C161.399 (8)C10—H100.9300
C17—H170.9300C20—H20A0.9600
C14—C151.382 (7)C20—H20B0.9600
C14—C131.405 (7)C20—H20C0.9600
C14—H140.9300C11—H110.9300
C3—C41.374 (8)C4—C51.387 (8)
C3—C21.391 (7)C4—H40.9300
C3—H30.9300C6—C11.392 (7)
C2—C11.394 (6)C6—C51.398 (7)
C2—H20.9300C6—H60.9300
C9—C101.377 (8)C16—C151.395 (8)
C9—C81.376 (7)C16—H160.9300
C9—H90.9300C5—H50.9300
C18—C131.387 (7)C15—H150.9300
C18—H180.9300
C13—Sn1—C7119.29 (18)C7—C8—H8119.6
C13—Sn1—C1121.03 (17)C12—C7—C8118.1 (4)
C7—Sn1—C1118.63 (17)C12—C7—Sn1121.4 (3)
C13—Sn1—O187.39 (15)C8—C7—Sn1120.6 (4)
C7—Sn1—O184.62 (15)S1—C19—H19A109.5
C1—Sn1—O187.74 (15)S1—C19—H19B109.5
C13—Sn1—Cl192.56 (13)H19A—C19—H19B109.5
C7—Sn1—Cl194.58 (13)S1—C19—H19C109.5
C1—Sn1—Cl193.10 (12)H19A—C19—H19C109.5
O1—Sn1—Cl1179.04 (9)H19B—C19—H19C109.5
O1—S1—C19102.5 (2)C9—C10—C11119.4 (5)
O1—S1—C20105.1 (2)C9—C10—H10120.3
C19—S1—C2099.1 (3)C11—C10—H10120.3
S1—O1—Sn1128.46 (19)S1—C20—H20A109.5
C18—C17—C16118.4 (5)S1—C20—H20B109.5
C18—C17—H17120.8H20A—C20—H20B109.5
C16—C17—H17120.8S1—C20—H20C109.5
C15—C14—C13120.7 (5)H20A—C20—H20C109.5
C15—C14—H14119.7H20B—C20—H20C109.5
C13—C14—H14119.7C12—C11—C10119.8 (5)
C4—C3—C2120.1 (5)C12—C11—H11120.1
C4—C3—H3120.0C10—C11—H11120.1
C2—C3—H3120.0C3—C4—C5119.9 (5)
C3—C2—C1121.2 (5)C3—C4—H4120.1
C3—C2—H2119.4C5—C4—H4120.1
C1—C2—H2119.4C1—C6—C5120.5 (5)
C10—C9—C8120.8 (5)C1—C6—H6119.8
C10—C9—H9119.6C5—C6—H6119.8
C8—C9—H9119.6C6—C1—C2118.3 (4)
C13—C18—C17122.3 (5)C6—C1—Sn1120.8 (3)
C13—C18—H18118.8C2—C1—Sn1120.9 (3)
C17—C18—H18118.8C15—C16—C17120.4 (5)
C18—C13—C14118.2 (4)C15—C16—H16119.8
C18—C13—Sn1122.9 (3)C17—C16—H16119.8
C14—C13—Sn1118.9 (3)C4—C5—C6120.1 (5)
C11—C12—C7121.1 (5)C4—C5—H5119.9
C11—C12—H12119.4C6—C5—H5119.9
C7—C12—H12119.4C14—C15—C16120.0 (5)
C9—C8—C7120.7 (5)C14—C15—H15120.0
C9—C8—H8119.6C16—C15—H15120.0
C19—S1—O1—Sn1159.5 (3)Cl1—Sn1—C7—C1237.2 (4)
C20—S1—O1—Sn197.4 (3)C13—Sn1—C7—C847.5 (4)
C13—Sn1—O1—S141.8 (3)C1—Sn1—C7—C8120.9 (4)
C7—Sn1—O1—S1161.5 (3)O1—Sn1—C7—C836.4 (4)
C1—Sn1—O1—S179.4 (3)Cl1—Sn1—C7—C8143.1 (4)
C4—C3—C2—C10.1 (8)C8—C9—C10—C110.5 (8)
C16—C17—C18—C130.6 (7)C7—C12—C11—C101.2 (7)
C17—C18—C13—C140.7 (7)C9—C10—C11—C121.5 (7)
C17—C18—C13—Sn1178.9 (4)C2—C3—C4—C50.2 (8)
C15—C14—C13—C180.5 (7)C5—C6—C1—C21.4 (7)
C15—C14—C13—Sn1179.1 (4)C5—C6—C1—Sn1177.5 (4)
C7—Sn1—C13—C18152.0 (4)C3—C2—C1—C60.7 (8)
C1—Sn1—C13—C1816.1 (5)C3—C2—C1—Sn1178.2 (4)
O1—Sn1—C13—C1869.7 (4)C13—Sn1—C1—C661.1 (4)
Cl1—Sn1—C13—C18111.3 (4)C7—Sn1—C1—C6130.6 (4)
C7—Sn1—C13—C1427.5 (4)O1—Sn1—C1—C6146.7 (4)
C1—Sn1—C13—C14164.3 (3)Cl1—Sn1—C1—C633.7 (4)
O1—Sn1—C13—C14109.9 (4)C13—Sn1—C1—C2120.0 (4)
Cl1—Sn1—C13—C1469.2 (4)C7—Sn1—C1—C248.2 (4)
C10—C9—C8—C70.9 (8)O1—Sn1—C1—C234.4 (4)
C11—C12—C7—C80.2 (7)Cl1—Sn1—C1—C2145.1 (4)
C11—C12—C7—Sn1179.9 (4)C18—C17—C16—C150.3 (8)
C9—C8—C7—C121.3 (7)C3—C4—C5—C60.5 (8)
C9—C8—C7—Sn1179.0 (4)C1—C6—C5—C41.3 (8)
C13—Sn1—C7—C12132.8 (4)C13—C14—C15—C160.2 (8)
C1—Sn1—C7—C1258.8 (4)C17—C16—C15—C140.2 (8)
O1—Sn1—C7—C12143.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20C···Cl1i0.962.693.610 (6)161
C20—H20A···Cg30.962.943.813 (6)151
C20—H20B···Cg1ii0.962.613.490 (6)153
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3Cl(C2H6OS)]
Mr463.57
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)10.417 (5), 13.235 (5), 14.302 (5)
V3)1971.8 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.26 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.677, 0.712
No. of measured, independent and
observed [I > 2σ(I)] reflections
11203, 4052, 3877
Rint0.048
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.15
No. of reflections4052
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.18, 0.86
Absolute structureFlack (1983), 1732 Friedel pairs
Absolute structure parameter0.07 (3)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Sn1—Cl12.4999 (14)Sn1—C72.132 (5)
Sn1—O12.311 (3)Sn1—C132.131 (5)
Sn1—C12.134 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20C···Cl1i0.962.693.610 (6)161
C20—H20A···Cg30.962.943.813 (6)151
C20—H20B···Cg1ii0.962.613.490 (6)153
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1/2, y+3/2, z+2.
 

Acknowledgements

SMS is grateful to the Council of Science and Technology, UP (CST, UP), India, for providing grants under the Young Scientists Scheme [ref No. CST/SERPD/D-3505.2008].

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGielen, M., Biesemans, M., Vos, D. D. & Willem, R. (2000). J. Inorg. Biochem. 79, 139–145.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m489.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNg, S. W. & Kumar Das, V. G. (1997). Trends Organomet. Chem. 2, 107–115.  CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem. 99, 1646–1652.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWillem, R., Bunhdid, A., Mahieu, B., Ghys, L., Biesemans, M., Tiekink, E. R. T., Vos, D. D. & Gielen, M. (1997). J. Organomet. Chem. 531, 151–158.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1602-m1603
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds