organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3115-o3116

(E)-1-Methyl-4-[2-(1-naphth­yl)vin­yl]pyridinium 4-chloro­benzene­sulfonate

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 23 October 2009; accepted 11 November 2009; online 18 November 2009)

In the title compound, C18H16N+·C6H4ClO3S, the cation exists in an E configuration with respect to the central C=C bond. The naphthalene ring system is slightly bent, the dihedral angle between the two aromatic rings being 3.71 (14)°. The whole cation is twisted, the dihedral angles between the pyridinium and the two aromatic rings of the naphthalene ring system being 47.44 (14) and 50.81 (14)°. The pyridinium ring and the benzene ring of the anion are inclined to each other at a dihedral angle of 68.21 (13)°. In the crystal structure, the cations and anions are arranged alternately with the cations stacked in an anti-parallel manner along the c axis and the anions linked into chains along the same direction. The cations are linked to the anions by weak C—H⋯O inter­actions, forming a three-dimensional network. The crystal structure is further stabilized by C—H⋯π inter­actions and ππ contacts with centroid–centroid distances of 3.6374 (16) and 3.6733 (17) Å. A short Cl⋯O contact [3.108 (2) Å] is also present.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to NLO materials, see: Amila et al. (2004[Amila, K., Jeewandara, K. M. & de Silva, N. (2004). J. Mol. Struct. THEOCHEM, 686, 131-136.]); Babu et al. (2009[Babu, G. A., Perumal, R., Ramasamy, P. & Natarajan, S. (2009). J. Cryst. Growth, 311, 3461-3465.]); Chandramohan et al. (2008[Chandramohan, A., Bharathikannan, R., Kandavelu, V., Chandrasekaran, J. & Kandhaswamy, M. A. (2008). Spectrochim. Acta A, 71, 755-759.]); Martin et al. (2002[Martin, G., Toussaere, E., Soulier, L. & Zyss, J. (2002). Synth. Met. 127, 49-52.]); Srinivasan et al. (2007[Srinivasan, P., Kanagasekaran, T., Vijayan, N., Bhagavannarayana, G., Gopalakrishnan, R. & Ramasamy, P. (2007). Opt. Mat. 30, 553-564.]); Yildiz et al. (2009[Yildiz, M., Ünver, H., Erdener, D., Kiraz, A. & İskeleli, N. O. (2009). J. Mol. Struct. 919, 227-234.]). For related structures, see: Chantrapromma et al. (2007[Chantrapromma, S., Suwanwong, T. & Fun, H.-K. (2007). Acta Cryst. E63, o821-o823.], 2009[Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009). Acta Cryst. E65, o1144-o1145.]); Fun et al. (2009[Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o2048-o2049.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N+·C6H4ClO3S

  • Mr = 437.93

  • Orthorhombic, P n a 21

  • a = 12.3379 (8) Å

  • b = 21.8466 (16) Å

  • c = 7.5032 (5) Å

  • V = 2022.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 100 K

  • 0.52 × 0.15 × 0.03 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.852, Tmax = 0.990

  • 26247 measured reflections

  • 5881 independent reflections

  • 5018 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.119

  • S = 1.03

  • 5881 reflections

  • 272 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2716 Friedel pairs

  • Flack parameter: 0.01 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O3 0.93 2.51 3.370 (3) 153
C11—H11A⋯O1i 0.93 2.34 3.267 (3) 178
C14—H14A⋯O1i 0.93 2.38 3.260 (3) 158
C15—H15A⋯O2ii 0.93 2.42 3.285 (3) 155
C17—H17A⋯O3iii 0.93 2.43 3.348 (3) 171
C18—H18A⋯O2ii 0.96 2.45 3.372 (4) 160
C20—H20A⋯O1iv 0.93 2.34 3.226 (4) 159
C22—H22A⋯O2v 0.93 2.52 3.277 (3) 139
C1—H1ACg4iii 0.93 2.98 3.682 (3) 133
C3—H3ACg4vi 0.93 2.87 3.651 (3) 142
C6—H6ACg3vii 0.93 2.82 3.593 (3) 141
Symmetry codes: (i) [-x+1, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z; (iv) x, y, z-1; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (vii) [-x+1, -y+1, z+{\script{1\over 2}}]. Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C13–C17, C1–C4/C9/C10, C4–C9 and C19–C24 rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

A variety of compounds have been investigated for their nonlinear optical (NLO) properties due to the important applications of such materials in the domain of opto-electronics and photonics (Amila et al., 2004; Chandramohan et al., 2008; Martin et al., 2002; Srinivasan et al., 2007). During the course of our NLO materials research, we found that styryl and napthalenyl are suitable units to be applied for NLO compounds and we have previously synthesized and reported the crystal structure of the NLO pyridinium salt containing these two units i.e. (E)-1-methyl-4-(2-(naphthalen-1-yl)vinyl)pyridinium 4-bromobenzenesulfonate [compound (I); Chantrapromma et al., 2009]. With the aim to investigate the influence of the anion counter part to NLO properties, the title compound (II) was synthesized by changing the 4-bromobenzenesulfonate anionic counter part in compound (I) to the 4-chlorobenzenesulfonate. The title compound (II) crystallizes in the orthorhombic non-centrosymmetric space group Pna21 [same as compound (I)] therefore it should exhibit second-order nonlinear optical properties according to the literature knowledge (Babu et al., 2009; Yildiz et al., 2009).

Figure 1 shows the asymmetric unit of (II) which consists of a C18H16N+ cation and a C6H4ClO3S- anion. The cation exists in an E configuration with respect to the C11C12 double bond [1.341 (4) Å] and the torsion angle C10–C11–C12–C13 is 179.6 (3)°. The naphthalenyl moiety is slightly bent which can be reflected by the dihedral angle between the two aromatic C1–C4/C9–C10 and C4–C9 rings being 3.68 (14)° [the corresponding value is 5.0 (5)° for major component and 5.7 (10)° for minor component in compound (I) which is a disordered structure; Chantrapromma et al., 2009]. The whole molecule of cation is twisted with dihedral angles between the pyridinium and the two aromatic C1–C4/C9–C10 and C4–C9 rings being 47.44 (14) and 50.81 (14)°, respectively [56.3 (5) and 51.4 (5)° for major component and 52.2 (11) and 53.4 (11)° for minor component in compound (I); Chantrapromma et al., 2009]. The orientation of the ethenyl unit can be described as atom C11 lies on the same plane with naphthalenyl moiety with the rms deviation of 0.028 (3) Å whereas atom C12 lies on the same plane with the pyridinium ring with the rms deviation of 0.017 (3) Å and the torsion angles C8–C9–C10–C11 of -0.5 (4)° and C11–C12–C13–C17 of -11.4 (5)°. The cation and anion are inclined to each other with a dihedral angle of 68.21 (13)° between the pyridinium and C19–C24 rings [the corresponding value is 85.0 (4)° for major component and 71.5 (9)° for minor component in compound (I); Chantrapromma et al., 2009]. The bond lengths in (II) are in normal ranges (Allen et al., 1987) and comparable to the closely related structures (Chantrapromma et al., 2009; Fun et al., 2009).

In the crystal packing (Fig. 2), all O atoms of the sulfonate group are involved in weak C—H···O interactions (Table 1). The cations and anions are alternately arranged with the cations stacked in an antiparallel manner along the c axis and the anions linked together into chains along the same direction. The cations are linked to the anions by weak C—H···O interactions (Table 1) forming a 3D network. The crystal structure is further stabilized by C—H···π interactions (Table 1). π···π interactions with the distances Cg1···Cg2 = 3.6733 (17) Å and Cg1···Cg3 = 3.6374 (16) Å are also observed (symmetry code for both Cg···Cg interactions: 2-x, 1-y,-1/2+z); Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C13–C17, C1–C4/C9–C10, C4–C9 and C19–C24 rings, respectively. A short Cl1···O2 [3.108 (2) Å] contact is also present.

Related literature top

For bond-length data, see: Allen et al. (1987). For background to NLO materials research, see: Amila et al. (2004); Babu et al. (2009); Chandramohan et al. (2008); Martin et al. (2002); Srinivasan et al. (2007); Yildiz et al. (2009). For related structures, see: Chantrapromma et al. (2007,2009); Fun et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C13–C17, C1–C4/C9/C10, C4–C9 and C19–C24 rings, respectively.

Experimental top

(E)-1-Methyl-4-(2-(naphthalen-1-yl)vinyl)pyridinium iodide (compound A)(0.22 g, 0.58 mmol) which was prepared according to the previous method (Fun et al., 2009) was mixed with silver 4-chlorobenzenesulfonate (Chantrapromma et al., 2007) (0.20 g, 0.58 mmol) in methanol (100 ml) and stirred for 0.5 h. The precipitate of silver iodide which formed was filtered and the filtrate was evaporated to give the title compound as a yellow solid. Yellow needle-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from methanol by slow evaporation at room temperature over a few weeks (m.p. 476-477 K).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and CH and 0.96 Å for CH3 atoms. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.80 Å from S1 and the deepest hole is located at 0.66 Å from C11.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the b axis. Weak C—H···O interactions are shown as dashed lines.
(E)-1-Methyl-4-[2-(1-naphthyl)vinyl]pyridinium 4-chlorobenzenesulfonate top
Crystal data top
C18H16N+·C6H4ClO3SDx = 1.438 Mg m3
Mr = 437.93Melting point = 476–477 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5881 reflections
a = 12.3379 (8) Åθ = 2.5–30.0°
b = 21.8466 (16) ŵ = 0.32 mm1
c = 7.5032 (5) ÅT = 100 K
V = 2022.4 (2) Å3Needle, yellow
Z = 40.52 × 0.15 × 0.03 mm
F(000) = 912
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5881 independent reflections
Radiation source: sealed tube5018 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 30.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1717
Tmin = 0.852, Tmax = 0.990k = 2530
26247 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0563P)2 + 1.1415P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5881 reflectionsΔρmax = 0.79 e Å3
272 parametersΔρmin = 0.32 e Å3
1 restraintAbsolute structure: Flack (1983), 2716 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C18H16N+·C6H4ClO3SV = 2022.4 (2) Å3
Mr = 437.93Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.3379 (8) ŵ = 0.32 mm1
b = 21.8466 (16) ÅT = 100 K
c = 7.5032 (5) Å0.52 × 0.15 × 0.03 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5881 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5018 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.990Rint = 0.045
26247 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.119Δρmax = 0.79 e Å3
S = 1.03Δρmin = 0.32 e Å3
5881 reflectionsAbsolute structure: Flack (1983), 2716 Friedel pairs
272 parametersAbsolute structure parameter: 0.01 (6)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.09030 (5)0.23662 (3)0.30957 (10)0.02946 (15)
S10.22593 (4)0.33346 (2)0.90465 (9)0.01933 (12)
O10.15823 (14)0.35562 (10)1.0481 (3)0.0330 (5)
O20.28543 (16)0.27849 (8)0.9519 (3)0.0334 (5)
O30.29257 (15)0.37986 (9)0.8218 (3)0.0345 (5)
N11.27331 (16)0.61843 (10)0.6247 (3)0.0254 (5)
C10.8387 (2)0.39813 (12)0.5753 (4)0.0285 (6)
H1A0.90510.38710.52620.034*
C20.7561 (2)0.35470 (13)0.5858 (4)0.0329 (6)
H2A0.76770.31530.54280.040*
C30.6593 (2)0.36949 (13)0.6579 (4)0.0329 (6)
H3A0.60430.34040.66210.040*
C40.6405 (2)0.42940 (13)0.7278 (4)0.0285 (6)
C50.5414 (2)0.44348 (13)0.8145 (4)0.0331 (6)
H5A0.48720.41400.82090.040*
C60.5245 (2)0.49983 (14)0.8888 (4)0.0346 (6)
H6A0.46060.50790.95020.042*
C70.6038 (2)0.54547 (13)0.8719 (4)0.0347 (7)
H7A0.59090.58420.91910.042*
C80.7004 (2)0.53381 (12)0.7868 (4)0.0307 (6)
H8A0.75170.56470.77530.037*
C90.7219 (2)0.47452 (12)0.7161 (4)0.0254 (5)
C100.8240 (2)0.45755 (12)0.6368 (4)0.0270 (6)
C110.9108 (2)0.50246 (12)0.6253 (4)0.0269 (6)
H11A0.89190.54310.60630.032*
C121.0164 (2)0.48887 (12)0.6404 (4)0.0287 (6)
H12A1.03490.44820.66020.034*
C131.1056 (2)0.53391 (12)0.6279 (4)0.0246 (5)
C141.09004 (19)0.59384 (11)0.5685 (4)0.0237 (5)
H14A1.02170.60600.53000.028*
C151.17418 (19)0.63513 (11)0.5659 (4)0.0226 (5)
H15A1.16280.67460.52360.027*
C161.2913 (2)0.56030 (14)0.6814 (4)0.0295 (6)
H16A1.36020.54920.71950.035*
C171.2101 (2)0.51791 (13)0.6835 (4)0.0262 (5)
H17A1.22430.47820.72200.031*
C181.3610 (2)0.66379 (14)0.6319 (5)0.0351 (7)
H18A1.33640.70160.58100.053*
H18B1.42220.64900.56570.053*
H18C1.38170.67040.75370.053*
C190.15667 (19)0.31883 (11)0.5567 (4)0.0236 (5)
H19A0.21910.34000.52500.028*
C200.0877 (2)0.29687 (11)0.4251 (4)0.0252 (5)
H20A0.10340.30340.30530.030*
C210.0051 (2)0.26499 (11)0.4749 (4)0.0243 (5)
C220.03135 (19)0.25634 (12)0.6525 (4)0.0243 (5)
H22A0.09460.23580.68390.029*
C230.03806 (19)0.27873 (11)0.7836 (4)0.0218 (5)
H23A0.02120.27330.90340.026*
C240.13284 (19)0.30930 (11)0.7354 (3)0.0200 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0291 (3)0.0304 (3)0.0289 (3)0.0041 (2)0.0085 (3)0.0063 (3)
S10.0201 (2)0.0166 (2)0.0212 (3)0.0019 (2)0.0004 (2)0.0021 (2)
O10.0269 (9)0.0453 (11)0.0269 (11)0.0013 (8)0.0008 (8)0.0109 (10)
O20.0385 (11)0.0259 (9)0.0359 (12)0.0103 (8)0.0144 (9)0.0033 (8)
O30.0330 (9)0.0374 (11)0.0330 (11)0.0125 (8)0.0062 (9)0.0090 (10)
N10.0193 (9)0.0272 (11)0.0296 (12)0.0021 (8)0.0001 (9)0.0025 (9)
C10.0293 (12)0.0293 (13)0.0268 (14)0.0079 (10)0.0029 (11)0.0006 (12)
C20.0407 (15)0.0218 (12)0.0362 (17)0.0005 (11)0.0091 (13)0.0015 (12)
C30.0385 (15)0.0263 (13)0.0340 (17)0.0031 (11)0.0076 (13)0.0042 (12)
C40.0308 (12)0.0292 (13)0.0256 (14)0.0020 (11)0.0024 (11)0.0058 (11)
C50.0294 (12)0.0393 (15)0.0305 (15)0.0015 (11)0.0047 (13)0.0090 (14)
C60.0268 (12)0.0488 (16)0.0283 (15)0.0093 (12)0.0010 (13)0.0068 (14)
C70.0346 (13)0.0322 (14)0.0374 (17)0.0130 (11)0.0045 (12)0.0006 (13)
C80.0294 (12)0.0215 (12)0.0413 (17)0.0039 (10)0.0046 (12)0.0033 (12)
C90.0264 (12)0.0246 (12)0.0252 (14)0.0019 (10)0.0000 (11)0.0050 (11)
C100.0265 (12)0.0220 (12)0.0325 (15)0.0011 (10)0.0055 (11)0.0016 (11)
C110.0285 (12)0.0227 (12)0.0297 (15)0.0004 (10)0.0006 (11)0.0013 (11)
C120.0322 (13)0.0228 (13)0.0313 (16)0.0018 (10)0.0036 (12)0.0014 (11)
C130.0248 (11)0.0215 (11)0.0274 (14)0.0027 (9)0.0025 (11)0.0030 (10)
C140.0203 (10)0.0222 (11)0.0285 (14)0.0013 (9)0.0043 (10)0.0010 (11)
C150.0226 (11)0.0215 (11)0.0239 (13)0.0011 (9)0.0037 (10)0.0019 (10)
C160.0255 (12)0.0361 (15)0.0268 (14)0.0087 (11)0.0039 (11)0.0023 (12)
C170.0303 (13)0.0250 (12)0.0233 (13)0.0046 (10)0.0035 (11)0.0021 (10)
C180.0219 (12)0.0359 (15)0.0475 (19)0.0072 (11)0.0005 (12)0.0064 (14)
C190.0233 (11)0.0217 (11)0.0256 (13)0.0005 (9)0.0004 (10)0.0017 (10)
C200.0305 (12)0.0242 (12)0.0210 (13)0.0039 (9)0.0011 (11)0.0013 (11)
C210.0243 (11)0.0210 (11)0.0277 (14)0.0038 (9)0.0066 (10)0.0020 (10)
C220.0204 (11)0.0245 (12)0.0280 (14)0.0005 (9)0.0020 (10)0.0013 (11)
C230.0215 (10)0.0212 (11)0.0226 (14)0.0026 (9)0.0005 (10)0.0003 (10)
C240.0206 (10)0.0182 (11)0.0211 (12)0.0024 (9)0.0007 (9)0.0021 (9)
Geometric parameters (Å, º) top
Cl1—C211.740 (3)C10—C111.455 (4)
S1—O11.446 (2)C11—C121.341 (4)
S1—O31.446 (2)C11—H11A0.9300
S1—O21.4514 (18)C12—C131.480 (4)
S1—C241.792 (3)C12—H12A0.9300
N1—C151.350 (3)C13—C141.396 (4)
N1—C161.358 (4)C13—C171.400 (4)
N1—C181.468 (3)C14—C151.375 (3)
C1—C101.389 (4)C14—H14A0.9300
C1—C21.395 (4)C15—H15A0.9300
C1—H1A0.9300C16—C171.364 (4)
C2—C31.351 (4)C16—H16A0.9300
C2—H2A0.9300C17—H17A0.9300
C3—C41.429 (4)C18—H18A0.9600
C3—H3A0.9300C18—H18B0.9600
C4—C91.410 (4)C18—H18C0.9600
C4—C51.419 (4)C19—C241.388 (4)
C5—C61.367 (4)C19—C201.389 (4)
C5—H5A0.9300C19—H19A0.9300
C6—C71.402 (4)C20—C211.392 (4)
C6—H6A0.9300C20—H20A0.9300
C7—C81.376 (4)C21—C221.384 (4)
C7—H7A0.9300C22—C231.393 (4)
C8—C91.425 (4)C22—H22A0.9300
C8—H8A0.9300C23—C241.395 (3)
C9—C101.441 (4)C23—H23A0.9300
O1—S1—O3114.45 (13)C11—C12—C13124.8 (2)
O1—S1—O2112.79 (13)C11—C12—H12A117.6
O3—S1—O2113.43 (12)C13—C12—H12A117.6
O1—S1—C24104.83 (11)C14—C13—C17117.1 (2)
O3—S1—C24105.43 (12)C14—C13—C12122.8 (2)
O2—S1—C24104.70 (11)C17—C13—C12120.0 (2)
C15—N1—C16120.2 (2)C15—C14—C13121.0 (2)
C15—N1—C18119.8 (2)C15—C14—H14A119.5
C16—N1—C18120.0 (2)C13—C14—H14A119.5
C10—C1—C2121.4 (3)N1—C15—C14120.1 (2)
C10—C1—H1A119.3N1—C15—H15A119.9
C2—C1—H1A119.3C14—C15—H15A119.9
C3—C2—C1120.4 (3)N1—C16—C17121.2 (2)
C3—C2—H2A119.8N1—C16—H16A119.4
C1—C2—H2A119.8C17—C16—H16A119.4
C2—C3—C4120.6 (3)C16—C17—C13120.2 (2)
C2—C3—H3A119.7C16—C17—H17A119.9
C4—C3—H3A119.7C13—C17—H17A119.9
C9—C4—C5119.4 (3)N1—C18—H18A109.5
C9—C4—C3120.2 (3)N1—C18—H18B109.5
C5—C4—C3120.4 (3)H18A—C18—H18B109.5
C6—C5—C4120.9 (3)N1—C18—H18C109.5
C6—C5—H5A119.6H18A—C18—H18C109.5
C4—C5—H5A119.6H18B—C18—H18C109.5
C5—C6—C7119.8 (3)C24—C19—C20120.3 (2)
C5—C6—H6A120.1C24—C19—H19A119.8
C7—C6—H6A120.1C20—C19—H19A119.8
C8—C7—C6120.9 (3)C19—C20—C21119.1 (3)
C8—C7—H7A119.5C19—C20—H20A120.5
C6—C7—H7A119.5C21—C20—H20A120.5
C7—C8—C9120.2 (3)C22—C21—C20121.3 (2)
C7—C8—H8A119.9C22—C21—Cl1119.7 (2)
C9—C8—H8A119.9C20—C21—Cl1119.0 (2)
C4—C9—C8118.6 (2)C21—C22—C23119.2 (2)
C4—C9—C10117.9 (2)C21—C22—H22A120.4
C8—C9—C10123.4 (2)C23—C22—H22A120.4
C1—C10—C9119.4 (2)C22—C23—C24120.0 (3)
C1—C10—C11121.0 (3)C22—C23—H23A120.0
C9—C10—C11119.6 (2)C24—C23—H23A120.0
C12—C11—C10124.1 (2)C19—C24—C23120.0 (2)
C12—C11—H11A118.0C19—C24—S1120.30 (18)
C10—C11—H11A118.0C23—C24—S1119.6 (2)
C10—C1—C2—C30.5 (5)C17—C13—C14—C150.3 (4)
C1—C2—C3—C41.2 (5)C12—C13—C14—C15177.2 (3)
C2—C3—C4—C92.4 (4)C16—N1—C15—C142.0 (4)
C2—C3—C4—C5175.6 (3)C18—N1—C15—C14176.2 (3)
C9—C4—C5—C60.9 (4)C13—C14—C15—N11.3 (4)
C3—C4—C5—C6177.1 (3)C15—N1—C16—C171.1 (4)
C4—C5—C6—C73.1 (5)C18—N1—C16—C17177.1 (3)
C5—C6—C7—C82.2 (5)N1—C16—C17—C130.5 (5)
C6—C7—C8—C90.9 (5)C14—C13—C17—C161.2 (4)
C5—C4—C9—C82.1 (4)C12—C13—C17—C16176.4 (3)
C3—C4—C9—C8179.8 (3)C24—C19—C20—C210.3 (4)
C5—C4—C9—C10176.3 (3)C19—C20—C21—C221.8 (4)
C3—C4—C9—C101.8 (4)C19—C20—C21—Cl1179.12 (19)
C7—C8—C9—C43.0 (4)C20—C21—C22—C231.6 (4)
C7—C8—C9—C10175.3 (3)Cl1—C21—C22—C23179.36 (18)
C2—C1—C10—C91.1 (4)C21—C22—C23—C240.2 (4)
C2—C1—C10—C11180.0 (3)C20—C19—C24—C231.4 (4)
C4—C9—C10—C10.1 (4)C20—C19—C24—S1176.12 (18)
C8—C9—C10—C1178.4 (3)C22—C23—C24—C191.7 (4)
C4—C9—C10—C11178.8 (3)C22—C23—C24—S1175.90 (18)
C8—C9—C10—C110.5 (4)O1—S1—C24—C19142.5 (2)
C1—C10—C11—C1233.3 (4)O3—S1—C24—C1921.3 (2)
C9—C10—C11—C12145.6 (3)O2—S1—C24—C1998.6 (2)
C10—C11—C12—C13179.6 (3)O1—S1—C24—C2340.0 (2)
C11—C12—C13—C1411.4 (5)O3—S1—C24—C23161.1 (2)
C11—C12—C13—C17166.1 (3)O2—S1—C24—C2379.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O30.932.513.370 (3)153
C11—H11A···O1i0.932.343.267 (3)178
C14—H14A···O1i0.932.383.260 (3)158
C15—H15A···O2ii0.932.423.285 (3)155
C17—H17A···O3iii0.932.433.348 (3)171
C18—H18A···O2ii0.962.453.372 (4)160
C20—H20A···O1iv0.932.343.226 (4)159
C22—H22A···O2v0.932.523.277 (3)139
C1—H1A···Cg4iii0.932.983.682 (3)133
C3—H3A···Cg4vi0.932.873.651 (3)142
C6—H6A···Cg3vii0.932.823.593 (3)141
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+3/2, y+1/2, z1/2; (iii) x+1, y, z; (iv) x, y, z1; (v) x1/2, y+1/2, z; (vi) x+1/2, y+1/2, z; (vii) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H16N+·C6H4ClO3S
Mr437.93
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)12.3379 (8), 21.8466 (16), 7.5032 (5)
V3)2022.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.52 × 0.15 × 0.03
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.852, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
26247, 5881, 5018
Rint0.045
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.119, 1.03
No. of reflections5881
No. of parameters272
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.32
Absolute structureFlack (1983), 2716 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O30.932.513.370 (3)153
C11—H11A···O1i0.932.343.267 (3)178
C14—H14A···O1i0.932.383.260 (3)158
C15—H15A···O2ii0.932.423.285 (3)155
C17—H17A···O3iii0.932.433.348 (3)171
C18—H18A···O2ii0.962.453.372 (4)160
C20—H20A···O1iv0.932.343.226 (4)159
C22—H22A···O2v0.932.523.277 (3)139
C1—H1A···Cg4iii0.932.983.682 (3)133
C3—H3A···Cg4vi0.932.873.651 (3)142
C6—H6A···Cg3vii0.932.823.593 (3)141
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+3/2, y+1/2, z1/2; (iii) x+1, y, z; (iv) x, y, z1; (v) x1/2, y+1/2, z; (vi) x+1/2, y+1/2, z; (vii) x+1, y+1, z+1/2.
 

Footnotes

This paper is dedicated to the late His Royal Highness King Chulalongkorn (King Rama V) of Thailand for his numerous reforms to modernize the country on the occasion of Chulalongkorn Day (Piyamaharaj Day) which fell on the 23rd October.

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

KC thanks the Development and Promotion of Science and Technology Talents Project (DPST) for a study grant. Partial financial support from the Graduate School, Prince of Songkla University, is gratefully acknowledged. The authors also thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit, and the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmila, K., Jeewandara, K. M. & de Silva, N. (2004). J. Mol. Struct. THEOCHEM, 686, 131–136.  Google Scholar
First citationBabu, G. A., Perumal, R., Ramasamy, P. & Natarajan, S. (2009). J. Cryst. Growth, 311, 3461–3465.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandramohan, A., Bharathikannan, R., Kandavelu, V., Chandrasekaran, J. & Kandhaswamy, M. A. (2008). Spectrochim. Acta A, 71, 755–759.  CrossRef CAS Google Scholar
First citationChantrapromma, S., Chanawanno, K. & Fun, H.-K. (2009). Acta Cryst. E65, o1144–o1145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Suwanwong, T. & Fun, H.-K. (2007). Acta Cryst. E63, o821–o823.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o2048–o2049.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMartin, G., Toussaere, E., Soulier, L. & Zyss, J. (2002). Synth. Met. 127, 49–52.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, P., Kanagasekaran, T., Vijayan, N., Bhagavannarayana, G., Gopalakrishnan, R. & Ramasamy, P. (2007). Opt. Mat. 30, 553–564.  Web of Science CrossRef CAS Google Scholar
First citationYildiz, M., Ünver, H., Erdener, D., Kiraz, A. & İskeleli, N. O. (2009). J. Mol. Struct. 919, 227–234.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3115-o3116
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds