organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-allyl-4-hydr­­oxy-2H-1,2-benzo­thia­zine-3-carboxyl­ate 1,1-dioxide

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 3 November 2009; accepted 5 November 2009; online 14 November 2009)

In the title compound, C13H13NO5S, the thia­zine ring adopts a distorted half-chair conformation. Intra­molecular O—H⋯O and C—H⋯O hydrogen bonds give rise to two six-membered hydrogen bonded rings. In the crystal, mol­ecules are linked through weak inter­molecular C—H⋯O hydrogen bonds, resulting in a zigzag chain lying along the c axis.

Related literature

For the syntheses of related compounds, see: Braun (1923[Braun, J. (1923). Chem. Ber. 56, 2332-2343.]); Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771-1175.]). For the biological activity of benzothia­zines, see: Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.], 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). For related structures, see: Arshad et al. (2009[Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o2596.]); Fabiola et al. (1998[Fabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001-2003.]); Zia-ur-Rehman et al. (2007[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, o4215-o4216.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO5S

  • Mr = 295.30

  • Orthorhombic, P c a 21

  • a = 12.4289 (10) Å

  • b = 8.3706 (8) Å

  • c = 13.0132 (11) Å

  • V = 1353.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.45 × 0.11 × 0.07 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.893, Tmax = 0.982

  • 8404 measured reflections

  • 2808 independent reflections

  • 1763 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.103

  • S = 1.06

  • 2808 reflections

  • 183 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1046 Friedel pairs

  • Flack parameter: 0.07 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O4 0.82 1.84 2.555 (4) 146
C11—H11A⋯O5 0.97 2.50 3.055 (4) 116
C3—H3A⋯O1i 0.93 2.51 3.406 (6) 163
Symmetry code: (i) [-x-{\script{1\over 2}}, y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Benzothiazine1,1-dioxides are familiar for their different type of biological activities (Zia-ur-Rehman et al., 2006) and have been synthesized continuously since the very first synthesis in 1923 (Braun, 1923). In continuation of our work on he synthesis of various bioactive benzothiazines (Zia-ur-Rehman et al., 2005, 2009), we herein report the crystal structure of the title compound (I), thiazine ring exhibits a distorted half-chair conformation with S1/C1/C6/C7 atoms lying in a plane and N1 showing significant departure from the plane due to its pyramidal geometry projecting the allyl group approximately perpendicular to the ring (Fig. 1). Like previously reported crystal structures of various 1,2-benzothiazine 1,1-dioxide derivatives (Arshad et al., 2009; Fabiola et al., 1998; Zia-ur-Rehman et al., 2007), the enolic hydrogen on O3 is involved in intramolecular hydrogen bonding (Table1). In addition, C11—H11A···O5 hydrogen bond gives rise to another six-membered hydrogen ring in the molecule while C7—C8 bond length [1.338 (5) Å] (very close to normal C—C bond; 1.36 Å) indicates a partial double-bond character indicating the dominance of enolic form in the molecule. The C1—S1 bond distance [1.746 (4) Å] is as expected for typical C(sp2)—S bond (1.751 Å). Each molecule is linked to neighbouring molecules via weak C—H···O=S interactions giving rise to zigzag chains along the c axis (Fig. 2).

Related literature top

For the syntheses of related compounds, see: Braun (1923); Zia-ur-Rehman et al. (2005). For the biological activity of benzothiazines, see: Zia-ur-Rehman et al. (2006, 2009). For related structures, see: Arshad et al. (2009); Fabiola et al. (1998); Zia-ur-Rehman et al. (2007).

Experimental top

Allyl iodide (5.04 g, 30.0 mmol) was added drop wise to the mixture of methyl 4-hydroxy-2H-1,2-benzothiazine-3-carboxylate-1,1-dioxide (3.83 g, 15.0 mmol), anhydrous potassium carbonate (1.68 g, 30.0 mmol) and dimethylformamide (20 ml) in a round bottom flask. Contents were stirred at room temperature for 7 h under nitrogen atmosphere and poured over ice cooled water (300 ml) resulting in an immediate formation of a white solid, which was filtered and washed with cold water. Single crystals were obtained by re-crystallization from a methanol solution

Refinement top

All hydrogen atoms were positions geometrically and treated as riding on their parent atoms. The following distances were used: methyl C—H = 0.96 Å, methylene C—H = 0.97 Å, aromatic C—H = 0.93 Å and hydroxyl O—H = 0.82 Å. Uiso(H) was set to 1.2Ueq of the parent atoms or 1.5Ueq for methyl and hydroxyl groups. Large thermal displacement parameters for the terminal carbon atoms (C12 and C13) are observed but the disorder produce was not resolved.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the crystal packing showing O—H···O and C—H···O hydrogen-bonded interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
Methyl 2-allyl-4-hydroxy-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide top
Crystal data top
C13H13NO5SF(000) = 616
Mr = 295.30Dx = 1.449 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1619 reflections
a = 12.4289 (10) Åθ = 3.1–21.7°
b = 8.3706 (8) ŵ = 0.26 mm1
c = 13.0132 (11) ÅT = 296 K
V = 1353.9 (2) Å3Needle, colourless
Z = 40.45 × 0.11 × 0.07 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2808 independent reflections
Radiation source: fine-focus sealed tube1763 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.893, Tmax = 0.982k = 1110
8404 measured reflectionsl = 179
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.1044P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2808 reflectionsΔρmax = 0.18 e Å3
183 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 1046 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (11)
Crystal data top
C13H13NO5SV = 1353.9 (2) Å3
Mr = 295.30Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 12.4289 (10) ŵ = 0.26 mm1
b = 8.3706 (8) ÅT = 296 K
c = 13.0132 (11) Å0.45 × 0.11 × 0.07 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2808 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1763 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.982Rint = 0.044
8404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.103Δρmax = 0.18 e Å3
S = 1.06Δρmin = 0.23 e Å3
2808 reflectionsAbsolute structure: Flack (1983), 1046 Friedel pairs
183 parametersAbsolute structure parameter: 0.07 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.11229 (6)0.28643 (12)0.49624 (9)0.0550 (3)
O10.12270 (18)0.1530 (4)0.5634 (3)0.0733 (9)
O20.19486 (15)0.4041 (3)0.4937 (3)0.0714 (8)
O30.18469 (19)0.0795 (3)0.4129 (2)0.0669 (9)
H3O0.23030.09630.45710.100*
O40.26461 (18)0.2122 (3)0.5724 (2)0.0658 (8)
O50.16238 (19)0.3843 (3)0.6600 (2)0.0612 (7)
N10.0004 (2)0.3754 (3)0.5229 (2)0.0490 (9)
C10.0885 (3)0.2109 (4)0.3733 (3)0.0487 (10)
C20.1708 (3)0.1997 (5)0.3013 (4)0.0647 (12)
H20.23960.23600.31680.078*
C30.1488 (4)0.1344 (5)0.2074 (4)0.0737 (13)
H3A0.20340.12470.15900.088*
C40.0462 (4)0.0828 (5)0.1837 (4)0.0721 (12)
H40.03190.04060.11910.087*
C50.0348 (3)0.0935 (5)0.2553 (3)0.0602 (12)
H50.10320.05640.23910.072*
C60.0156 (3)0.1588 (4)0.3509 (3)0.0468 (9)
C70.1002 (3)0.1766 (4)0.4281 (3)0.0467 (9)
C80.0945 (2)0.2785 (4)0.5071 (4)0.0450 (9)
C90.1819 (3)0.2889 (4)0.5819 (3)0.0502 (9)
C100.2475 (4)0.3995 (6)0.7344 (4)0.0867 (14)
H10A0.30700.45550.70420.130*
H10B0.27060.29510.75570.130*
H10C0.22180.45790.79300.130*
C110.0106 (3)0.5495 (4)0.5090 (3)0.0595 (10)
H11A0.06950.58780.55130.071*
H11B0.05480.60040.53310.071*
C120.0304 (4)0.5986 (7)0.4006 (5)0.1008 (19)
H120.07320.52710.36420.121*
C130.0036 (6)0.7061 (11)0.3530 (7)0.161 (3)
H13A0.03950.78450.38260.194*
H13B0.02490.71540.28480.194*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0376 (4)0.0683 (6)0.0593 (6)0.0050 (4)0.0069 (5)0.0078 (7)
O10.0553 (15)0.088 (2)0.076 (2)0.0060 (14)0.0169 (15)0.0296 (19)
O20.0418 (12)0.0919 (19)0.080 (2)0.0220 (12)0.0017 (16)0.0075 (19)
O30.0477 (15)0.0674 (19)0.086 (3)0.0147 (14)0.0021 (13)0.0186 (15)
O40.0474 (14)0.0682 (17)0.082 (2)0.0146 (13)0.0103 (13)0.0130 (18)
O50.0537 (14)0.0741 (19)0.0557 (19)0.0121 (13)0.0078 (13)0.0097 (16)
N10.0439 (14)0.0501 (18)0.053 (3)0.0077 (13)0.0021 (12)0.0005 (16)
C10.046 (2)0.037 (2)0.064 (3)0.0039 (16)0.0024 (18)0.006 (2)
C20.055 (2)0.055 (3)0.084 (4)0.005 (2)0.012 (2)0.001 (3)
C30.074 (3)0.072 (3)0.075 (4)0.001 (2)0.025 (2)0.010 (3)
C40.092 (3)0.064 (3)0.060 (3)0.005 (2)0.011 (3)0.016 (2)
C50.057 (2)0.052 (3)0.072 (4)0.0030 (18)0.001 (2)0.013 (2)
C60.0473 (19)0.039 (2)0.054 (3)0.0024 (15)0.0026 (18)0.0014 (19)
C70.0384 (18)0.043 (2)0.059 (3)0.0018 (15)0.0066 (18)0.0058 (19)
C80.0376 (15)0.0445 (19)0.053 (3)0.0037 (15)0.005 (2)0.001 (2)
C90.048 (2)0.046 (2)0.057 (3)0.0034 (18)0.0015 (19)0.005 (2)
C100.077 (2)0.113 (4)0.070 (3)0.024 (3)0.031 (2)0.027 (3)
C110.061 (2)0.050 (2)0.068 (3)0.0065 (17)0.002 (2)0.001 (2)
C120.093 (4)0.070 (4)0.139 (6)0.008 (3)0.010 (3)0.036 (4)
C130.211 (9)0.131 (7)0.142 (7)0.031 (6)0.035 (6)0.050 (5)
Geometric parameters (Å, º) top
S1—O21.423 (2)C4—C51.375 (5)
S1—O11.424 (3)C4—H40.9300
S1—N11.625 (3)C5—C61.380 (5)
S1—C11.746 (4)C5—H50.9300
O3—C71.343 (4)C6—C71.462 (5)
O3—H3O0.8200C7—C81.338 (5)
O4—C91.218 (4)C8—C91.461 (5)
O5—C91.315 (4)C10—H10A0.9600
O5—C101.440 (5)C10—H10B0.9600
N1—C81.438 (4)C10—H10C0.9600
N1—C111.473 (4)C11—C121.490 (7)
C1—C21.390 (5)C11—H11A0.9700
C1—C61.396 (5)C11—H11B0.9700
C2—C31.366 (6)C12—C131.142 (8)
C2—H20.9300C12—H120.9300
C3—C41.380 (6)C13—H13A0.9300
C3—H3A0.9300C13—H13B0.9300
O2—S1—O1119.46 (17)C1—C6—C7119.4 (3)
O2—S1—N1108.03 (15)C8—C7—O3122.7 (3)
O1—S1—N1107.87 (16)C8—C7—C6123.7 (3)
O2—S1—C1110.57 (18)O3—C7—C6113.5 (3)
O1—S1—C1107.1 (2)C7—C8—N1120.8 (3)
N1—S1—C1102.48 (15)C7—C8—C9120.7 (3)
C7—O3—H3O109.5N1—C8—C9118.4 (3)
C9—O5—C10116.0 (3)O4—C9—O5123.6 (3)
C8—N1—C11118.1 (3)O4—C9—C8121.9 (4)
C8—N1—S1114.3 (2)O5—C9—C8114.4 (3)
C11—N1—S1120.1 (2)O5—C10—H10A109.5
C2—C1—C6121.4 (4)O5—C10—H10B109.5
C2—C1—S1121.2 (3)H10A—C10—H10B109.5
C6—C1—S1117.5 (3)O5—C10—H10C109.5
C3—C2—C1118.8 (4)H10A—C10—H10C109.5
C3—C2—H2120.6H10B—C10—H10C109.5
C1—C2—H2120.6N1—C11—C12113.8 (4)
C2—C3—C4120.7 (4)N1—C11—H11A108.8
C2—C3—H3A119.7C12—C11—H11A108.8
C4—C3—H3A119.7N1—C11—H11B108.8
C5—C4—C3120.3 (4)C12—C11—H11B108.8
C5—C4—H4119.9H11A—C11—H11B107.7
C3—C4—H4119.9C13—C12—C11133.1 (7)
C4—C5—C6120.7 (4)C13—C12—H12113.5
C4—C5—H5119.7C11—C12—H12113.5
C6—C5—H5119.7C12—C13—H13A120.0
C5—C6—C1118.1 (3)C12—C13—H13B120.0
C5—C6—C7122.4 (3)H13A—C13—H13B120.0
O2—S1—N1—C8167.6 (2)S1—C1—C6—C72.9 (5)
O1—S1—N1—C862.0 (3)C5—C6—C7—C8159.4 (4)
C1—S1—N1—C850.8 (3)C1—C6—C7—C819.9 (6)
O2—S1—N1—C1118.4 (4)C5—C6—C7—O321.1 (5)
O1—S1—N1—C11148.8 (3)C1—C6—C7—O3159.6 (3)
C1—S1—N1—C1198.4 (3)O3—C7—C8—N1177.3 (3)
O2—S1—C1—C231.7 (4)C6—C7—C8—N12.2 (6)
O1—S1—C1—C2100.0 (3)O3—C7—C8—C90.0 (6)
N1—S1—C1—C2146.6 (3)C6—C7—C8—C9179.5 (3)
O2—S1—C1—C6149.8 (3)C11—N1—C8—C7112.6 (4)
O1—S1—C1—C678.6 (3)S1—N1—C8—C737.3 (4)
N1—S1—C1—C634.8 (3)C11—N1—C8—C970.1 (4)
C6—C1—C2—C30.8 (6)S1—N1—C8—C9140.1 (3)
S1—C1—C2—C3177.7 (3)C10—O5—C9—O42.4 (5)
C1—C2—C3—C41.0 (6)C10—O5—C9—C8179.0 (3)
C2—C3—C4—C51.3 (7)C7—C8—C9—O43.8 (6)
C3—C4—C5—C61.3 (6)N1—C8—C9—O4178.8 (3)
C4—C5—C6—C11.1 (6)C7—C8—C9—O5174.8 (3)
C4—C5—C6—C7178.2 (4)N1—C8—C9—O52.6 (5)
C2—C1—C6—C50.8 (6)C8—N1—C11—C1268.0 (4)
S1—C1—C6—C5177.7 (3)S1—N1—C11—C1280.1 (4)
C2—C1—C6—C7178.5 (3)N1—C11—C12—C13144.7 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.821.842.555 (4)146
C11—H11A···O50.972.503.055 (4)116
C3—H3A···O1i0.932.513.406 (6)163
Symmetry code: (i) x1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC13H13NO5S
Mr295.30
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)12.4289 (10), 8.3706 (8), 13.0132 (11)
V3)1353.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.45 × 0.11 × 0.07
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.893, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
8404, 2808, 1763
Rint0.044
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.103, 1.06
No. of reflections2808
No. of parameters183
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.23
Absolute structureFlack (1983), 1046 Friedel pairs
Absolute structure parameter0.07 (11)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.821.842.555 (4)146
C11—H11A···O50.972.503.055 (4)116
C3—H3A···O1i0.932.513.406 (6)163
Symmetry code: (i) x1/2, y, z1/2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission for a grant to purchase the diffractometer and PCSIR laboratories complex, Lahore for providing necessary chemicals and laboratory facilities.

References

First citationArshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o2596.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBraun, J. (1923). Chem. Ber. 56, 2332–2343.  CrossRef Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001–2003.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1175.  CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, o4215–o4216.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds