organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzyl-N-cyclo­hexyl­benzene­sulfonamide

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 4 November 2009; accepted 6 November 2009; online 11 November 2009)

In the title compound, C19H23NO2S, the cyclo­hexyl ring exists in a chair form. The dihedral angle between the two terminal phenyl rings is 86.70 (6)°. No significant inter­actions are observed except for a weak intra­molecular C—H⋯O hydrogen bond.

Related literature

For the biological activity of sulfonamides, see: Innocenti et al. (2004[Innocenti, A., Antel, J., Wurl, M., Scozzafava, A. & Supuran, C. T. (2004). Bioorg. Med. Chem. Lett. 14, 5703-5707.]); Ozbek et al. (2007[Ozbek, N., Katirciog˘ lu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105-5109.]); Parari et al. (2008[Parari, M. K., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett. 18, 776-781.]); Ratish et al. (2009[Ratish, G. I., Javed, K., Ahmad, S., Bano, S., Alam, M. S., Pillai, K. K., Singh, S. & Bagchi, V. (2009). Bioorg. Med. Chem. Lett. 19, 255-258.]); Selnam et al. (2001[Selnam, P., Chandramohan, M., Clercq, E. D., Witvrouw, M. & Pannecouque, C. (2001). Eur. J. Pharm. Sci. 14, 313-316.]); For related structures, see: Khan et al. (2009[Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.]); Zia-ur-Rehman et al. (2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]) Gowda et al. (2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.],b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.],c[Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.]). For bond length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H23NO2S

  • Mr = 329.44

  • Orthorhombic, P 21 21 21

  • a = 9.1996 (5) Å

  • b = 11.0406 (5) Å

  • c = 17.1897 (9) Å

  • V = 1745.94 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.39 × 0.34 × 0.28 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.928, Tmax = 0.948

  • 10897 measured reflections

  • 4306 independent reflections

  • 3507 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.03

  • 4306 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1853 Friedel pairs

  • Flack parameter: 0.03 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O2 0.98 2.34 2.874 (2) 113

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and local programs.

Supporting information


Comment top

Sulfonamides are familiar as biologically active compounds and possess anti-microbial (Ozbek et al., 2007; Parari et al., 2008), anti-inflamatory (Ratish et al., 2009), anti HIV (Selnam et al., 2001) and carbonic anhydrase inhibiton activity (Innocenti et al., 2004). In the present paper, the structure of N-cyclohexyl-N-propyl benzene sulfonamide has been determined as part of a research program involving the synthesis of various sulfur containing heterocycles (Zia-ur-Rehman et al., 2009; Khan et al., 2009).

In the molecule of (I) (Fig. 1), bond lengths and bond angles are almost similar to those in the related molecules (Gowda et al., 2007a,b,c) and are within normal ranges (Allen et al., 1987). The benzene rings are essentially planar while cyclohexane ring is in the chair form. The dihedral angles between the phenyl (C1–C6) & benzyl ring (C14–C19), the phenyl (C1–C6) ring & the mean plane of cyclohexyl ring (C7–C12), and the benzyl (C14–C19) ring & the mean plane cyclohexyl ring (C7–C12) are 86.70 (6), 42.43 (8) and 55.47 (8)°, respectively, while the r.m.s. deviation for the phenyl (C1–C6), benzyl (C14–C19) and cyclohexyl (C7–C12) rings are 0.0021, 0.0036 and 0.2365 Å, respectively. An intramolecular C—H···O hydrogen bond gives rise to a five-membered hydrogen bonded ring (Table 1).

Related literature top

For the biological activity of sulfonamides, see: Innocenti et al. (2004); Ozbek et al. (2007); Parari et al. (2008); Ratish et al. (2009); Selnam et al. (2001); For related structures, see: Khan et al. (2009); Zia-ur-Rehman et al. (2009) Gowda et al. (2007a,b,c). For bond length data, see: Allen et al. (1987).

Experimental top

A mixture of N-cyclohexylbenzene sulfonamide (1 g, 0.43 mmol), sodium hydride (0.21 g, 0.88 mmol) and N, N-dimethylformamide (10 ml) was stirred at room temperature for half an hour followed by addition of benzyl chloride (0.114 g, 0.90 mmol). Stirring was continued further for a period of three hours and the contents were poured over crushed ice. Precipitated product was isolated, washed and crystallized from methanol-water mixture (50:50).

Refinement top

All H atoms were identified in a difference map and then were treated as riding (C—H = 0.93 or 0.97 Å), with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 50% probability level.
N-Benzyl-N-cyclohexylbenzenesulfonamide top
Crystal data top
C19H23NO2SF(000) = 704
Mr = 329.44Dx = 1.253 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3979 reflections
a = 9.1996 (5) Åθ = 2.3–21.8°
b = 11.0406 (5) ŵ = 0.20 mm1
c = 17.1897 (9) ÅT = 296 K
V = 1745.94 (15) Å3Blocks, colourless
Z = 40.39 × 0.34 × 0.28 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4306 independent reflections
Radiation source: fine-focus sealed tube3507 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.928, Tmax = 0.948k = 1114
10897 measured reflectionsl = 2217
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.049P)2 + 0.1094P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4306 reflectionsΔρmax = 0.24 e Å3
208 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983), 1853 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (7)
Crystal data top
C19H23NO2SV = 1745.94 (15) Å3
Mr = 329.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.1996 (5) ŵ = 0.20 mm1
b = 11.0406 (5) ÅT = 296 K
c = 17.1897 (9) Å0.39 × 0.34 × 0.28 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4306 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3507 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.948Rint = 0.023
10897 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.24 e Å3
S = 1.03Δρmin = 0.24 e Å3
4306 reflectionsAbsolute structure: Flack (1983), 1853 Friedel pairs
208 parametersAbsolute structure parameter: 0.03 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3444 (2)0.27298 (15)0.91369 (9)0.0423 (4)
C20.4528 (2)0.2866 (2)0.96899 (11)0.0596 (5)
H20.53020.23250.97090.072*
C30.4447 (3)0.3813 (2)1.02106 (13)0.0737 (7)
H30.51700.39101.05830.088*
C40.3305 (3)0.4615 (2)1.01838 (13)0.0720 (7)
H40.32520.52501.05390.086*
C50.2244 (3)0.4475 (2)0.96314 (14)0.0676 (6)
H50.14780.50230.96110.081*
C60.2295 (2)0.3532 (2)0.91061 (11)0.0542 (5)
H60.15660.34380.87360.065*
C70.61067 (18)0.20568 (15)0.77713 (10)0.0396 (4)
H70.63610.16200.82490.048*
C80.6733 (2)0.33204 (18)0.78485 (14)0.0587 (5)
H8A0.62850.37320.82860.070*
H8B0.65280.37820.73810.070*
C90.8375 (2)0.3243 (2)0.79731 (14)0.0647 (6)
H9A0.87770.40540.80020.078*
H9B0.85720.28380.84630.078*
C100.9099 (2)0.2560 (2)0.73209 (13)0.0653 (6)
H10A0.89850.30080.68390.078*
H10B1.01310.24890.74280.078*
C110.8458 (2)0.1321 (2)0.72278 (14)0.0717 (6)
H11A0.86660.08450.76890.086*
H11B0.89080.09220.67870.086*
C120.6807 (2)0.13740 (19)0.71029 (12)0.0574 (5)
H12A0.65930.17800.66160.069*
H12B0.64160.05590.70770.069*
C130.3750 (2)0.28365 (15)0.71472 (9)0.0407 (4)
H13A0.43190.35710.70880.049*
H13B0.28110.30640.73580.049*
C140.35265 (19)0.22767 (13)0.63549 (9)0.0385 (3)
C150.2610 (2)0.12964 (17)0.62532 (12)0.0556 (5)
H150.21410.09620.66810.067*
C160.2385 (3)0.0808 (2)0.55228 (14)0.0647 (6)
H160.17600.01530.54630.078*
C170.3074 (3)0.1283 (2)0.48873 (12)0.0646 (6)
H170.29170.09550.43960.077*
C180.4001 (3)0.2249 (2)0.49795 (12)0.0668 (6)
H180.44840.25680.45510.080*
C190.4216 (2)0.27463 (17)0.57071 (11)0.0535 (5)
H190.48330.34070.57620.064*
N10.44909 (16)0.20318 (12)0.77103 (8)0.0402 (3)
O10.21214 (15)0.12969 (13)0.81853 (8)0.0590 (4)
O20.43915 (17)0.05891 (11)0.88027 (8)0.0592 (4)
S10.35656 (5)0.15399 (4)0.84502 (2)0.04355 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0453 (9)0.0462 (9)0.0352 (8)0.0024 (8)0.0063 (8)0.0056 (7)
C20.0564 (12)0.0720 (13)0.0504 (11)0.0075 (11)0.0061 (10)0.0019 (10)
C30.0780 (16)0.0892 (17)0.0539 (12)0.0098 (14)0.0089 (12)0.0100 (12)
C40.0928 (19)0.0669 (13)0.0564 (12)0.0073 (14)0.0093 (14)0.0126 (11)
C50.0761 (15)0.0617 (13)0.0651 (14)0.0124 (12)0.0139 (12)0.0008 (11)
C60.0508 (11)0.0621 (11)0.0495 (10)0.0073 (10)0.0009 (8)0.0008 (10)
C70.0378 (9)0.0447 (9)0.0364 (8)0.0043 (7)0.0017 (7)0.0039 (7)
C80.0437 (11)0.0513 (10)0.0812 (14)0.0000 (9)0.0033 (10)0.0147 (10)
C90.0432 (11)0.0695 (13)0.0815 (14)0.0033 (10)0.0042 (10)0.0146 (12)
C100.0351 (10)0.0957 (17)0.0651 (13)0.0074 (11)0.0003 (9)0.0016 (13)
C110.0513 (12)0.0869 (16)0.0768 (14)0.0229 (13)0.0006 (11)0.0247 (13)
C120.0501 (11)0.0611 (11)0.0610 (12)0.0101 (9)0.0006 (9)0.0166 (10)
C130.0418 (9)0.0388 (8)0.0416 (9)0.0036 (7)0.0034 (7)0.0009 (7)
C140.0357 (8)0.0376 (7)0.0423 (8)0.0045 (7)0.0080 (7)0.0032 (6)
C150.0549 (11)0.0551 (11)0.0570 (11)0.0136 (10)0.0014 (9)0.0008 (9)
C160.0671 (14)0.0558 (11)0.0712 (14)0.0153 (11)0.0111 (11)0.0097 (11)
C170.0855 (16)0.0613 (12)0.0469 (11)0.0000 (11)0.0204 (11)0.0056 (10)
C180.0957 (18)0.0657 (14)0.0390 (10)0.0094 (13)0.0041 (10)0.0078 (10)
C190.0662 (13)0.0471 (10)0.0472 (11)0.0115 (10)0.0069 (9)0.0067 (9)
N10.0387 (8)0.0455 (8)0.0365 (7)0.0043 (6)0.0002 (6)0.0043 (6)
O10.0469 (7)0.0690 (9)0.0610 (8)0.0151 (7)0.0052 (6)0.0039 (7)
O20.0711 (9)0.0436 (7)0.0629 (8)0.0059 (7)0.0071 (7)0.0168 (6)
S10.0449 (2)0.0415 (2)0.0442 (2)0.0025 (2)0.0035 (2)0.00529 (19)
Geometric parameters (Å, º) top
C1—C61.380 (3)C10—H10B0.9700
C1—C21.386 (3)C11—C121.535 (3)
C1—S11.7696 (18)C11—H11A0.9700
C2—C31.378 (3)C11—H11B0.9700
C2—H20.9300C12—H12A0.9700
C3—C41.375 (3)C12—H12B0.9700
C3—H30.9300C13—N11.480 (2)
C4—C51.370 (3)C13—C141.510 (2)
C4—H40.9300C13—H13A0.9700
C5—C61.379 (3)C13—H13B0.9700
C5—H50.9300C14—C191.382 (2)
C6—H60.9300C14—C151.383 (2)
C7—N11.490 (2)C15—C161.382 (3)
C7—C81.515 (3)C15—H150.9300
C7—C121.518 (2)C16—C171.368 (3)
C7—H70.9800C16—H160.9300
C8—C91.528 (3)C17—C181.374 (3)
C8—H8A0.9700C17—H170.9300
C8—H8B0.9700C18—C191.380 (3)
C9—C101.506 (3)C18—H180.9300
C9—H9A0.9700C19—H190.9300
C9—H9B0.9700N1—S11.6240 (14)
C10—C111.498 (3)O1—S11.4299 (14)
C10—H10A0.9700O2—S11.4305 (14)
C6—C1—C2120.51 (18)C12—C11—H11A109.3
C6—C1—S1119.94 (14)C10—C11—H11B109.3
C2—C1—S1119.54 (15)C12—C11—H11B109.3
C3—C2—C1119.3 (2)H11A—C11—H11B107.9
C3—C2—H2120.4C7—C12—C11109.44 (16)
C1—C2—H2120.4C7—C12—H12A109.8
C4—C3—C2120.6 (2)C11—C12—H12A109.8
C4—C3—H3119.7C7—C12—H12B109.8
C2—C3—H3119.7C11—C12—H12B109.8
C5—C4—C3119.6 (2)H12A—C12—H12B108.2
C5—C4—H4120.2N1—C13—C14114.01 (13)
C3—C4—H4120.2N1—C13—H13A108.7
C4—C5—C6121.0 (2)C14—C13—H13A108.7
C4—C5—H5119.5N1—C13—H13B108.7
C6—C5—H5119.5C14—C13—H13B108.7
C5—C6—C1119.05 (19)H13A—C13—H13B107.6
C5—C6—H6120.5C19—C14—C15118.11 (16)
C1—C6—H6120.5C19—C14—C13120.72 (15)
N1—C7—C8113.74 (14)C15—C14—C13121.17 (16)
N1—C7—C12111.15 (15)C16—C15—C14120.77 (19)
C8—C7—C12111.24 (15)C16—C15—H15119.6
N1—C7—H7106.8C14—C15—H15119.6
C8—C7—H7106.8C17—C16—C15120.4 (2)
C12—C7—H7106.8C17—C16—H16119.8
C7—C8—C9109.69 (17)C15—C16—H16119.8
C7—C8—H8A109.7C16—C17—C18119.5 (2)
C9—C8—H8A109.7C16—C17—H17120.2
C7—C8—H8B109.7C18—C17—H17120.2
C9—C8—H8B109.7C17—C18—C19120.1 (2)
H8A—C8—H8B108.2C17—C18—H18119.9
C10—C9—C8111.14 (18)C19—C18—H18119.9
C10—C9—H9A109.4C18—C19—C14121.02 (18)
C8—C9—H9A109.4C18—C19—H19119.5
C10—C9—H9B109.4C14—C19—H19119.5
C8—C9—H9B109.4C13—N1—C7119.61 (14)
H9A—C9—H9B108.0C13—N1—S1118.13 (12)
C11—C10—C9111.26 (19)C7—N1—S1118.29 (11)
C11—C10—H10A109.4O1—S1—O2119.39 (9)
C9—C10—H10A109.4O1—S1—N1107.48 (8)
C11—C10—H10B109.4O2—S1—N1107.38 (8)
C9—C10—H10B109.4O1—S1—C1107.04 (9)
H10A—C10—H10B108.0O2—S1—C1107.20 (8)
C10—C11—C12111.71 (18)N1—S1—C1107.90 (7)
C10—C11—H11A109.3
C6—C1—C2—C30.1 (3)C16—C17—C18—C191.0 (4)
S1—C1—C2—C3178.36 (17)C17—C18—C19—C141.0 (3)
C1—C2—C3—C40.0 (3)C15—C14—C19—C180.2 (3)
C2—C3—C4—C50.4 (4)C13—C14—C19—C18179.12 (19)
C3—C4—C5—C60.7 (4)C14—C13—N1—C790.42 (18)
C4—C5—C6—C10.6 (3)C14—C13—N1—S1112.35 (15)
C2—C1—C6—C50.3 (3)C8—C7—N1—C1349.3 (2)
S1—C1—C6—C5178.03 (16)C12—C7—N1—C1377.18 (18)
N1—C7—C8—C9175.43 (16)C8—C7—N1—S1107.91 (16)
C12—C7—C8—C958.1 (2)C12—C7—N1—S1125.63 (14)
C7—C8—C9—C1056.9 (2)C13—N1—S1—O137.74 (14)
C8—C9—C10—C1156.2 (3)C7—N1—S1—O1164.73 (12)
C9—C10—C11—C1255.8 (3)C13—N1—S1—O2167.36 (12)
N1—C7—C12—C11174.82 (17)C7—N1—S1—O235.11 (15)
C8—C7—C12—C1157.3 (2)C13—N1—S1—C177.38 (14)
C10—C11—C12—C756.0 (3)C7—N1—S1—C180.15 (14)
N1—C13—C14—C19115.08 (18)C6—C1—S1—O125.17 (17)
N1—C13—C14—C1566.1 (2)C2—C1—S1—O1156.51 (15)
C19—C14—C15—C160.5 (3)C6—C1—S1—O2154.38 (14)
C13—C14—C15—C16178.40 (19)C2—C1—S1—O227.30 (17)
C14—C15—C16—C170.5 (3)C6—C1—S1—N190.25 (16)
C15—C16—C17—C180.3 (4)C2—C1—S1—N188.07 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O20.982.342.874 (2)113

Experimental details

Crystal data
Chemical formulaC19H23NO2S
Mr329.44
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)9.1996 (5), 11.0406 (5), 17.1897 (9)
V3)1745.94 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.39 × 0.34 × 0.28
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.928, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
10897, 4306, 3507
Rint0.023
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.03
No. of reflections4306
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.24
Absolute structureFlack (1983), 1853 Friedel pairs
Absolute structure parameter0.03 (7)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O20.982.342.874 (2)113
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for the financial support to purchase the diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationInnocenti, A., Antel, J., Wurl, M., Scozzafava, A. & Supuran, C. T. (2004). Bioorg. Med. Chem. Lett. 14, 5703–5707.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOzbek, N., Katirciog˘ lu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105–5109.  Web of Science CrossRef PubMed Google Scholar
First citationParari, M. K., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett. 18, 776–781.  PubMed Google Scholar
First citationRatish, G. I., Javed, K., Ahmad, S., Bano, S., Alam, M. S., Pillai, K. K., Singh, S. & Bagchi, V. (2009). Bioorg. Med. Chem. Lett. 19, 255–258.  Web of Science PubMed Google Scholar
First citationSelnam, P., Chandramohan, M., Clercq, E. D., Witvrouw, M. & Pannecouque, C. (2001). Eur. J. Pharm. Sci. 14, 313–316.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds