organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3152-o3153

N′-[(E)-Benzyl­­idene]-1-ethyl-7-methyl-4-oxo-1,4-di­hydro-1,8-naphthyridine-3-carbohydrazide

aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan, bDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, cDepartment of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey, and dDepartment of Physics, Sakarya University, Sakarya, Turkey
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 6 November 2009; accepted 16 November 2009; online 21 November 2009)

In the title compound, C19H18N4O2, the 1,8-naphthyridine ring system is essentially planar [r.m.s. deviation = 0.011 (3) Å]. The dihedral angle between the naphthyridine ring system and the phenyl ring is 28.95 (7)°. The carbohydrazide H atom is involved in an intra­molecular N—H⋯O hydrogen bond, forming a six-membered hydrogen-bonded ring. In the crystal, the mol­ecules arrange themselves into centrosymmetric dimers by means of inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the synthesis of heterocyclic compounds, see: Chen et al. (2001[Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374-2378.]); Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.], 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). For their biological activity, see: Ferrarini et al. (2000[Ferrarini, P. L., Mori, C., Badawneh, M., Calderone, V., Greco, R., Manera, C., Martinelli, A., Nieri, P. & Saccomanni, G. (2000). Eur. J. Chem. 35, 815-819.]); Hoock et al. (1999[Hoock, C., Reichert, J. & Schmidtke, M. (1999). Molecules, 4, 264-271.]); Nakatani et al. (2001[Nakatani, K., Sando, S., Kumasawa, H., Kikuchi, J. & Saito, I. (2001). J. Am. Chem. Soc. 123, 12650-12657.]); Roma et al. (2000[Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021-1026.]). For related structures, see: Catalano et al. (2000[Catalano, V. J., Kar, H. M. & Bennett, B. L. (2000). Inorg. Chem. 39, 121-127.]); Deeba et al. (2009[Deeba, F., Khan, M. A., Zia-ur-Rehman, M., Çaylak, N. & Şahin, E. (2009). Acta Cryst. E65, o860-o861.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18N4O2

  • Mr = 334.37

  • Triclinic, [P \overline 1]

  • a = 7.1642 (1) Å

  • b = 8.8383 (1) Å

  • c = 14.4560 (2) Å

  • α = 82.624 (6)°

  • β = 85.454 (7)°

  • γ = 68.594 (5)°

  • V = 844.63 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.983, Tmax = 0.991

  • 18153 measured reflections

  • 3446 independent reflections

  • 2105 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.175

  • S = 1.03

  • 3446 reflections

  • 236 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.89 (3) 1.93 (2) 2.674 (3) 140 (2)
C7—H7B⋯O2i 0.97 2.45 3.204 (3) 134
C9—H9⋯O2i 0.93 2.51 3.340 (3) 149
Symmetry code: (i) -x+1, -y-1, -z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/ MSC (2005). CrystalClear. Rigaku/ MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,8-Naphthyridines have been cited in the literature for their medical uses such as antibacterial (Chen et al., 2001), anti-inflammatory (Roma et al., 2000), anti-hypertensive and anti-platelet activities (Ferrarini et al., 2000) agents. Besides few among these have been reported to be excellent fluorescent markers of nucleic acids (Hoock et al., 1999) and probe molecules (Nakatani et al., 2001). In continuation of our work on the synthesis, biological activity and crystal structures of various heterocyclic compounds (Zia-ur-Rehman et al., 2006, 2009), we herein report the synthesis and crystal structure of the title compound (I) (Fig. 1).

The structure of the adjoined pyridine rings comprising of the naphthyridine ring is planar while carbonyl oxygen O1 on C11 is involved in intramolecular hydrogen bonding with N1H, giving rise to a six-membered hydrogen bond ring (Table 1). All bond distances are essentially identical to those found in the literature (Catalano et al., 2000; Deeba et al., 2009). Each molecule forms centrosymmetric dimer through intermolecular C—H···O hydrogen bonds, giving rise the formation of two six-membered hydrogen bond rings per dimer (Fig. 2).

Related literature top

For the synthesis of heterocyclic compounds, see: Chen et al. (2001); Zia-ur-Rehman et al. (2006, 2009). For their biological activity, see: Ferrarini et al. (2000); Hoock et al. (1999); Nakatani et al. (2001); Roma et al. (2000). For related compounds, see: Catalano et al. (2000); Deeba et al. (2009).

Experimental top

A mixture of 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (10.0 mmol, 2.46 g), benzaldehyde (11.0 mmol, 1.17 g), ortho phosphoric acid (2 drops) and ethyl alcohol (20.0 ml) was refluxed for a period of two hours. After completion of the reaction as indicated by TLC, three fourth of the solvent was evaporated and the contents were cooled to room temperature. Crystals obtained were washed with cold ethanol and dried; Yield: 89%.

Refinement top

H atoms were placed in geometrically idealized positions (C—H = 0.93–0.97 Å) and treated as riding, with Uiso(H) = 1.2Ueq(methine and methylene C) or 1.5Ueq(methyl C). The H atoms attached to atoms N1 and C13 were located in a difference Fourier map and refined freely.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) drawing of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the three-dimensional crystal packing showing hydrogen-bonded interactions (dashed lines). [Symmetry code: (i) -x + 1, -y - 1, -z.] H atoms not involved in the hydrogen bonds have been omitted for clarity.
N'-[(E)-Benzylidene]-1-ethyl-7-methyl-4-oxo-1,4-dihydro- 1,8-naphthyridine-3-carbohydrazide top
Crystal data top
C19H18N4O2Z = 2
Mr = 334.37F(000) = 352
Triclinic, P1Dx = 1.315 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1642 (1) ÅCell parameters from 18153 reflections
b = 8.8383 (1) Åθ = 2.5–26.4°
c = 14.4560 (2) ŵ = 0.09 mm1
α = 82.624 (6)°T = 293 K
β = 85.454 (7)°Needles, yellow
γ = 68.594 (5)°0.20 × 0.10 × 0.10 mm
V = 844.63 (4) Å3
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3446 independent reflections
Radiation source: fine-focus sealed tube2105 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(Blessing, 1995)
h = 88
Tmin = 0.983, Tmax = 0.991k = 1111
18153 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0691P)2 + 0.1621P]
where P = (Fo2 + 2Fc2)/3
3446 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C19H18N4O2γ = 68.594 (5)°
Mr = 334.37V = 844.63 (4) Å3
Triclinic, P1Z = 2
a = 7.1642 (1) ÅMo Kα radiation
b = 8.8383 (1) ŵ = 0.09 mm1
c = 14.4560 (2) ÅT = 293 K
α = 82.624 (6)°0.20 × 0.10 × 0.10 mm
β = 85.454 (7)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3446 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2105 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.991Rint = 0.066
18153 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.19 e Å3
3446 reflectionsΔρmin = 0.17 e Å3
236 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1188 (4)0.2780 (3)0.28444 (16)0.0632 (7)
H1C0.10270.18710.33120.095*
H1A0.25880.33490.27340.095*
H1B0.06370.35110.30560.095*
C80.3626 (5)0.3046 (4)0.26006 (19)0.0813 (9)
H8A0.49320.34720.23040.122*
H8C0.34940.38180.31090.122*
H8B0.34590.20340.28340.122*
H130.603 (4)0.009 (3)0.3488 (17)0.072 (8)*
H1N0.454 (4)0.035 (3)0.2036 (17)0.065 (8)*
C50.1821 (3)0.1032 (3)0.03208 (15)0.0469 (5)
O10.3049 (3)0.1303 (2)0.12329 (11)0.0627 (5)
N40.0597 (3)0.0569 (2)0.19056 (12)0.0476 (5)
N30.2269 (3)0.1657 (2)0.10789 (12)0.0466 (5)
N10.4915 (3)0.1421 (3)0.20600 (13)0.0546 (5)
C100.3530 (3)0.1374 (3)0.04983 (14)0.0468 (5)
C90.3224 (3)0.2282 (3)0.03032 (15)0.0477 (5)
H90.37160.34130.03080.057*
N20.5729 (3)0.2165 (3)0.28556 (13)0.0574 (5)
C110.2838 (3)0.0374 (3)0.05407 (15)0.0480 (5)
C60.1544 (3)0.0025 (3)0.11057 (14)0.0444 (5)
O20.5063 (3)0.3819 (2)0.12262 (11)0.0682 (5)
C20.0111 (3)0.2171 (3)0.19557 (16)0.0510 (6)
C30.0108 (4)0.3277 (3)0.12111 (17)0.0631 (7)
H30.03950.43930.12660.076*
C130.6167 (4)0.1254 (4)0.35312 (17)0.0580 (6)
C70.2050 (4)0.2758 (3)0.19052 (15)0.0564 (7)
H7B0.21520.37950.17090.068*
H7A0.07330.22810.21990.068*
C140.6940 (4)0.1896 (3)0.44275 (15)0.0549 (6)
C40.1069 (4)0.2702 (3)0.04011 (17)0.0594 (7)
H40.12210.34310.00970.071*
C120.4574 (4)0.2336 (3)0.12865 (15)0.0522 (6)
C150.7825 (4)0.1063 (3)0.50867 (17)0.0681 (7)
H150.79520.01040.49530.082*
C190.6743 (5)0.3296 (4)0.46494 (18)0.0778 (9)
H190.61350.38630.42190.093*
C170.8318 (5)0.3036 (4)0.6144 (2)0.0901 (10)
H170.87800.34210.67200.108*
C160.8518 (5)0.1637 (4)0.59383 (19)0.0807 (9)
H160.91230.10730.63730.097*
C180.7436 (6)0.3872 (4)0.5502 (2)0.0992 (12)
H180.73050.48260.56400.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0648 (16)0.0627 (16)0.0549 (15)0.0110 (13)0.0065 (12)0.0216 (12)
C80.108 (2)0.0676 (18)0.0590 (16)0.0244 (17)0.0082 (16)0.0081 (14)
C50.0490 (13)0.0456 (12)0.0439 (12)0.0144 (10)0.0011 (10)0.0061 (10)
O10.0816 (13)0.0578 (10)0.0443 (9)0.0239 (9)0.0122 (8)0.0018 (8)
N40.0495 (11)0.0484 (11)0.0412 (10)0.0126 (9)0.0058 (8)0.0109 (8)
N30.0524 (11)0.0450 (10)0.0398 (10)0.0149 (9)0.0093 (8)0.0096 (8)
N10.0641 (13)0.0592 (13)0.0389 (11)0.0206 (11)0.0121 (9)0.0124 (9)
C100.0482 (13)0.0518 (13)0.0381 (11)0.0155 (10)0.0046 (10)0.0082 (10)
C90.0492 (13)0.0460 (12)0.0448 (12)0.0133 (10)0.0070 (10)0.0111 (10)
N20.0586 (13)0.0661 (13)0.0432 (11)0.0171 (10)0.0096 (9)0.0136 (9)
C110.0504 (13)0.0540 (13)0.0392 (11)0.0192 (11)0.0038 (10)0.0063 (10)
C60.0421 (12)0.0461 (12)0.0408 (11)0.0112 (10)0.0033 (9)0.0070 (9)
O20.0869 (13)0.0542 (11)0.0533 (10)0.0148 (9)0.0182 (9)0.0144 (8)
C20.0487 (13)0.0503 (13)0.0493 (13)0.0099 (11)0.0003 (10)0.0133 (11)
C30.0777 (18)0.0438 (13)0.0589 (15)0.0108 (13)0.0029 (13)0.0105 (11)
C130.0620 (16)0.0665 (17)0.0463 (14)0.0239 (13)0.0064 (11)0.0119 (12)
C70.0746 (17)0.0453 (13)0.0436 (12)0.0187 (12)0.0179 (12)0.0054 (10)
C140.0554 (15)0.0638 (15)0.0403 (12)0.0161 (12)0.0055 (10)0.0076 (11)
C40.0732 (17)0.0480 (14)0.0499 (14)0.0157 (12)0.0022 (12)0.0011 (11)
C120.0525 (14)0.0578 (15)0.0435 (13)0.0162 (12)0.0070 (10)0.0111 (11)
C150.0797 (19)0.0685 (17)0.0563 (15)0.0290 (15)0.0143 (13)0.0099 (13)
C190.110 (2)0.0807 (19)0.0517 (15)0.0485 (18)0.0251 (15)0.0146 (14)
C170.125 (3)0.095 (2)0.0570 (17)0.048 (2)0.0380 (17)0.0298 (16)
C160.095 (2)0.089 (2)0.0568 (16)0.0363 (18)0.0282 (15)0.0125 (15)
C180.154 (3)0.095 (2)0.0663 (19)0.066 (2)0.038 (2)0.0343 (17)
Geometric parameters (Å, º) top
C1—C21.501 (3)C9—H90.9300
C1—H1C0.9600N2—C131.279 (3)
C1—H1A0.9600O2—C121.220 (3)
C1—H1B0.9600C2—C31.397 (3)
C8—C71.501 (4)C3—C41.369 (3)
C8—H8A0.9600C3—H30.9300
C8—H8C0.9600C13—C141.467 (3)
C8—H8B0.9600C13—H131.01 (3)
C5—C41.391 (3)C7—H7B0.9700
C5—C61.398 (3)C7—H7A0.9700
C5—C111.467 (3)C14—C191.375 (4)
O1—C111.246 (3)C14—C151.384 (3)
N4—C21.328 (3)C4—H40.9300
N4—C61.345 (3)C15—C161.378 (3)
N3—C91.339 (3)C15—H150.9300
N3—C61.388 (3)C19—C181.379 (4)
N3—C71.477 (3)C19—H190.9300
N1—C121.354 (3)C17—C161.367 (4)
N1—N21.379 (3)C17—C181.370 (4)
N1—H1N0.89 (3)C17—H170.9300
C10—C91.373 (3)C16—H160.9300
C10—C111.435 (3)C18—H180.9300
C10—C121.494 (3)
C2—C1—H1C109.5C3—C2—C1120.2 (2)
C2—C1—H1A109.5C4—C3—C2119.4 (2)
H1C—C1—H1A109.5C4—C3—H3120.3
C2—C1—H1B109.5C2—C3—H3120.3
H1C—C1—H1B109.5N2—C13—C14120.2 (2)
H1A—C1—H1B109.5N2—C13—H13123.6 (14)
C7—C8—H8A109.5C14—C13—H13116.3 (14)
C7—C8—H8C109.5N3—C7—C8111.6 (2)
H8A—C8—H8C109.5N3—C7—H7B109.3
C7—C8—H8B109.5C8—C7—H7B109.3
H8A—C8—H8B109.5N3—C7—H7A109.3
H8C—C8—H8B109.5C8—C7—H7A109.3
C4—C5—C6116.1 (2)H7B—C7—H7A108.0
C4—C5—C11121.7 (2)C19—C14—C15118.3 (2)
C6—C5—C11122.2 (2)C19—C14—C13121.3 (2)
C2—N4—C6117.81 (19)C15—C14—C13120.3 (2)
C9—N3—C6119.42 (18)C3—C4—C5120.2 (2)
C9—N3—C7119.91 (18)C3—C4—H4119.9
C6—N3—C7120.65 (17)C5—C4—H4119.9
C12—N1—N2119.2 (2)O2—C12—N1123.7 (2)
C12—N1—H1N117.7 (16)O2—C12—C10122.0 (2)
N2—N1—H1N123.0 (16)N1—C12—C10114.2 (2)
C9—C10—C11120.18 (19)C16—C15—C14120.8 (3)
C9—C10—C12115.2 (2)C16—C15—H15119.6
C11—C10—C12124.6 (2)C14—C15—H15119.6
N3—C9—C10124.7 (2)C14—C19—C18120.9 (3)
N3—C9—H9117.7C14—C19—H19119.5
C10—C9—H9117.7C18—C19—H19119.5
C13—N2—N1115.6 (2)C16—C17—C18120.0 (3)
O1—C11—C10125.0 (2)C16—C17—H17120.0
O1—C11—C5120.8 (2)C18—C17—H17120.0
C10—C11—C5114.23 (19)C17—C16—C15120.0 (3)
N4—C6—N3116.26 (19)C17—C16—H16120.0
N4—C6—C5124.4 (2)C15—C16—H16120.0
N3—C6—C5119.32 (18)C17—C18—C19120.0 (3)
N4—C2—C3122.0 (2)C17—C18—H18120.0
N4—C2—C1117.8 (2)C19—C18—H18120.0
C6—N3—C9—C101.1 (3)N4—C2—C3—C40.3 (4)
C7—N3—C9—C10179.3 (2)C1—C2—C3—C4179.1 (2)
C11—C10—C9—N31.2 (4)N1—N2—C13—C14176.7 (2)
C12—C10—C9—N3178.0 (2)C9—N3—C7—C897.7 (3)
C12—N1—N2—C13174.3 (2)C6—N3—C7—C880.4 (3)
C9—C10—C11—O1179.8 (2)N2—C13—C14—C1916.6 (4)
C12—C10—C11—O11.2 (4)N2—C13—C14—C15165.8 (2)
C9—C10—C11—C50.3 (3)C2—C3—C4—C50.0 (4)
C12—C10—C11—C5178.8 (2)C6—C5—C4—C30.5 (4)
C4—C5—C11—O10.4 (4)C11—C5—C4—C3179.3 (2)
C6—C5—C11—O1179.4 (2)N2—N1—C12—O24.9 (4)
C4—C5—C11—C10179.6 (2)N2—N1—C12—C10174.99 (19)
C6—C5—C11—C100.6 (3)C9—C10—C12—O22.0 (4)
C2—N4—C6—N3179.8 (2)C11—C10—C12—O2177.1 (2)
C2—N4—C6—C50.5 (3)C9—C10—C12—N1178.1 (2)
C9—N3—C6—N4179.85 (19)C11—C10—C12—N12.8 (3)
C7—N3—C6—N42.0 (3)C19—C14—C15—C161.0 (4)
C9—N3—C6—C50.1 (3)C13—C14—C15—C16178.7 (3)
C7—N3—C6—C5178.3 (2)C15—C14—C19—C180.9 (5)
C4—C5—C6—N40.8 (3)C13—C14—C19—C18178.6 (3)
C11—C5—C6—N4179.0 (2)C18—C17—C16—C150.3 (5)
C4—C5—C6—N3179.5 (2)C14—C15—C16—C170.7 (5)
C11—C5—C6—N30.7 (3)C16—C17—C18—C190.3 (6)
C6—N4—C2—C30.1 (3)C14—C19—C18—C170.6 (6)
C6—N4—C2—C1179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.89 (3)1.93 (2)2.674 (3)140 (2)
C7—H7B···O2i0.972.453.204 (3)134
C9—H9···O2i0.932.513.340 (3)149
Symmetry code: (i) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC19H18N4O2
Mr334.37
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1642 (1), 8.8383 (1), 14.4560 (2)
α, β, γ (°)82.624 (6), 85.454 (7), 68.594 (5)
V3)844.63 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.983, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
18153, 3446, 2105
Rint0.066
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.175, 1.03
No. of reflections3446
No. of parameters236
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.89 (3)1.93 (2)2.674 (3)140 (2)
C7—H7B···O2i0.972.45003.204 (3)134.00
C9—H9···O2i0.93002.51003.340 (3)149.00
Symmetry code: (i) x+1, y1, z.
 

Acknowledgements

The authors are indebted to the Department of Chemistry and Atatürk University, Turkey, for the use of the X-ray diffractometer purchased under grant No. 2003/219 from the University Research Fund.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCatalano, V. J., Kar, H. M. & Bennett, B. L. (2000). Inorg. Chem. 39, 121–127.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeeba, F., Khan, M. A., Zia-ur-Rehman, M., Çaylak, N. & Şahin, E. (2009). Acta Cryst. E65, o860–o861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerrarini, P. L., Mori, C., Badawneh, M., Calderone, V., Greco, R., Manera, C., Martinelli, A., Nieri, P. & Saccomanni, G. (2000). Eur. J. Chem. 35, 815–819.  CrossRef CAS Google Scholar
First citationHoock, C., Reichert, J. & Schmidtke, M. (1999). Molecules, 4, 264–271.  Web of Science CrossRef CAS Google Scholar
First citationNakatani, K., Sando, S., Kumasawa, H., Kikuchi, J. & Saito, I. (2001). J. Am. Chem. Soc. 123, 12650–12657.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/ MSC (2005). CrystalClear. Rigaku/ MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRoma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1026.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3152-o3153
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds