metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridine-κ2N,N′)di­iodido­palladium(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 10 November 2009; accepted 11 November 2009; online 14 November 2009)

The asymmetric unit of the title complex, [PdI2(C10H8N2)], contains one half of the formula unit. The Pd2+ ion is located on a twofold rotation axis and is four-coordinated in a slightly distorted square-planar environment by two N atoms of the chelating 2,2′-bipyridine ligand and two iodide ions. The compound displays inter­molecular ππ inter­actions between the pyridine rings of the ligand, the shortest centroid–centroid distance being 4.220 (4) Å.

Related literature

For the crystal structures of [PdX2(bipy)] (bipy = 2,2′-bipyridine; X = Cl or Br), see: Maekawa et al. (1991[Maekawa, M., Munakata, M., Kitagawa, S. & Nakamura, M. (1991). Anal. Sci. 7, 521-522.]); Smeets et al. (1997[Smeets, W. J. J., Spek, A. L., Hoare, J. L., Canty, A. J., Hovestad, N. & van Koten, G. (1997). Acta Cryst. C53, 1045-1047.]). For the crystal structures of [PdX2(bipy)]·CH2Cl2 (X = Cl or Br), see: Vicente et al. (1997[Vicente, J., Abad, J. A., Rink, B. & Arellano, M. C. R. (1997). Private communication (refcode PYCXMN02). CCDC, Cambridge, England.]); Kim et al. (2009[Kim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m615-m616.]); Kim & Ha (2009[Kim, N.-H. & Ha, K. (2009). Acta Cryst. E65, m1292.]).

[Scheme 1]

Experimental

Crystal data
  • [PdI2(C10H8N2)]

  • Mr = 516.38

  • Monoclinic, C 2/c

  • a = 17.232 (4) Å

  • b = 9.8273 (19) Å

  • c = 7.6868 (15) Å

  • β = 111.438 (3)°

  • V = 1211.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.60 mm−1

  • T = 293 K

  • 0.25 × 0.05 × 0.05 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.139, Tmax = 0.719

  • 3458 measured reflections

  • 1240 independent reflections

  • 1049 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.071

  • S = 1.06

  • 1240 reflections

  • 69 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—N1 2.076 (4)
Pd1—I1 2.5704 (6)
N1—Pd1—N1i 79.4 (2)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex, [PdI2(bipy)] (where bipy is 2,2'-bipyridine, C10H8N2), is isomorphous with [PdBr2(bipy)] (Smeets et al., 1997), whereas [PdCl2(bipy)] crystallized in the orthorhombic space group C2221 (Maekawa et al., 1991).

The asymmetric unit of the title complex contains one half of the formula unit. The complex is disposed about a twofold rotation axis through Pd atom with the special position at (0, y, 1/4) (Wyckoff letter e). The Pd2+ ion is four-coordinated in a slightly distorted square-planar environment by two N atoms of the chelating 2,2'-bipyridine ligand and two iodide ions (Fig. 1). The main contribution to the distortion is the tight N1—Pd1—N1a [symmetry code: (a) -x, y, 1/2 - z] chelate angle [79.4 (2)°], which results in non-linear trans arrangement [<N1—Pd1—I1a = 175.85 (12)°]. The complex displays intermolecular π-π interactions between adjacent pyridine rings of the lignad (the symmetry operation for second plane x, -y, -1/2 + z), with a shortest centroid-centroid distance of 4.220 (4) Å (Fig. 2).

Related literature top

For the crystal structures of [PdX2(bipy)] (bipy = 2,2'-bipyridine; X = Cl or Br), see: Maekawa et al. (1991); Smeets et al. (1997). For the crystal structures of [PdX2(bipy)].CH2Cl2 (X = Cl or Br), see: Vicente et al. (1997); Kim et al. (2009); Kim & Ha (2009).

Experimental top

To a solution of Na2PdCl4 (0.1991 g, 0.677 mmol) in H2O (20 ml) were added KI (1.1230 g, 6.765 mmol) and 2,2'-bipyridine (0.1057 g, 0.677 mmol), and refluxed for 3 h. The precipitate obtained was separated by filtration, and washed with water and acetone, and dried at 70 °C, to give a red-brown powder (0.2999 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, with displacement ellipsoids drawn at the 50% probability level for non-H atoms [Symmetry code: (a) -x, y, 1/2 - z].
[Figure 2] Fig. 2. Crystal packing of the title complex.
(2,2'-Bipyridine-κ2N,N')diiodidopalladium(II) top
Crystal data top
[PdI2(C10H8N2)]F(000) = 936
Mr = 516.38Dx = 2.831 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 550 reflections
a = 17.232 (4) Åθ = 2.4–24.4°
b = 9.8273 (19) ŵ = 6.60 mm1
c = 7.6868 (15) ÅT = 293 K
β = 111.438 (3)°Needle, brown
V = 1211.6 (4) Å30.25 × 0.05 × 0.05 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
1240 independent reflections
Radiation source: fine-focus sealed tube1049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2113
Tmin = 0.139, Tmax = 0.719k = 1112
3458 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0328P)2]
where P = (Fo2 + 2Fc2)/3
1240 reflections(Δ/σ)max < 0.001
69 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[PdI2(C10H8N2)]V = 1211.6 (4) Å3
Mr = 516.38Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.232 (4) ŵ = 6.60 mm1
b = 9.8273 (19) ÅT = 293 K
c = 7.6868 (15) Å0.25 × 0.05 × 0.05 mm
β = 111.438 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
1240 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1049 reflections with I > 2σ(I)
Tmin = 0.139, Tmax = 0.719Rint = 0.025
3458 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.06Δρmax = 0.60 e Å3
1240 reflectionsΔρmin = 0.65 e Å3
69 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.00000.19021 (5)0.25000.03813 (17)
I10.10045 (3)0.37899 (4)0.43052 (5)0.06273 (19)
N10.0755 (3)0.0277 (4)0.3822 (6)0.0431 (10)
C10.1524 (4)0.0339 (6)0.5132 (7)0.0546 (14)
H10.17670.11880.54990.066*
C20.1966 (4)0.0802 (7)0.5952 (9)0.0655 (17)
H20.24950.07250.68710.079*
C30.1617 (4)0.2050 (6)0.5399 (9)0.0656 (18)
H30.19020.28370.59440.079*
C40.0840 (4)0.2128 (6)0.4029 (9)0.0611 (17)
H40.05970.29720.36270.073*
C50.0418 (4)0.0954 (5)0.3248 (8)0.0446 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0378 (3)0.0339 (3)0.0385 (3)0.0000.0091 (2)0.000
I10.0636 (3)0.0471 (3)0.0633 (3)0.01213 (18)0.0064 (2)0.00869 (16)
N10.043 (2)0.043 (2)0.045 (2)0.002 (2)0.018 (2)0.0005 (19)
C10.046 (3)0.062 (4)0.050 (3)0.003 (3)0.012 (3)0.004 (3)
C20.050 (4)0.087 (5)0.056 (4)0.019 (4)0.016 (3)0.015 (3)
C30.065 (4)0.060 (4)0.082 (4)0.029 (4)0.039 (4)0.028 (3)
C40.067 (4)0.050 (3)0.074 (4)0.018 (3)0.036 (4)0.015 (3)
C50.050 (3)0.039 (3)0.056 (3)0.001 (2)0.033 (3)0.002 (2)
Geometric parameters (Å, º) top
Pd1—N12.076 (4)C2—C31.364 (9)
Pd1—N1i2.076 (4)C2—H20.9300
Pd1—I1i2.5704 (6)C3—C41.370 (9)
Pd1—I12.5704 (6)C3—H30.9300
N1—C11.341 (7)C4—C51.378 (7)
N1—C51.345 (6)C4—H40.9300
C1—C21.372 (8)C5—C5i1.480 (12)
C1—H10.9300
N1—Pd1—N1i79.4 (2)C3—C2—C1119.0 (6)
N1—Pd1—I1i175.85 (12)C3—C2—H2120.5
N1i—Pd1—I1i96.48 (12)C1—C2—H2120.5
N1—Pd1—I196.48 (12)C2—C3—C4119.0 (6)
N1i—Pd1—I1175.85 (12)C2—C3—H3120.5
I1i—Pd1—I187.61 (3)C4—C3—H3120.5
C1—N1—C5118.5 (5)C3—C4—C5120.0 (6)
C1—N1—Pd1127.1 (4)C3—C4—H4120.0
C5—N1—Pd1114.4 (4)C5—C4—H4120.0
N1—C1—C2122.6 (6)N1—C5—C4120.9 (6)
N1—C1—H1118.7N1—C5—C5i115.9 (3)
C2—C1—H1118.7C4—C5—C5i123.2 (4)
N1i—Pd1—N1—C1178.7 (6)C2—C3—C4—C50.8 (9)
I1—Pd1—N1—C12.1 (5)C1—N1—C5—C42.1 (8)
N1i—Pd1—N1—C50.5 (3)Pd1—N1—C5—C4178.6 (4)
I1—Pd1—N1—C5178.7 (3)C1—N1—C5—C5i177.9 (6)
C5—N1—C1—C22.3 (9)Pd1—N1—C5—C5i1.4 (7)
Pd1—N1—C1—C2178.5 (4)C3—C4—C5—N10.6 (9)
N1—C1—C2—C30.9 (10)C3—C4—C5—C5i179.4 (6)
C1—C2—C3—C40.6 (10)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[PdI2(C10H8N2)]
Mr516.38
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)17.232 (4), 9.8273 (19), 7.6868 (15)
β (°) 111.438 (3)
V3)1211.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)6.60
Crystal size (mm)0.25 × 0.05 × 0.05
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.139, 0.719
No. of measured, independent and
observed [I > 2σ(I)] reflections
3458, 1240, 1049
Rint0.025
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.071, 1.06
No. of reflections1240
No. of parameters69
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.65

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Pd1—N12.076 (4)Pd1—I12.5704 (6)
N1—Pd1—N1i79.4 (2)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

This work was supported by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007–412-J02001).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKim, N.-H. & Ha, K. (2009). Acta Cryst. E65, m1292.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m615–m616.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaekawa, M., Munakata, M., Kitagawa, S. & Nakamura, M. (1991). Anal. Sci. 7, 521–522.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmeets, W. J. J., Spek, A. L., Hoare, J. L., Canty, A. J., Hovestad, N. & van Koten, G. (1997). Acta Cryst. C53, 1045–1047.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicente, J., Abad, J. A., Rink, B. & Arellano, M. C. R. (1997). Private communication (refcode PYCXMN02). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds