organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzyl-N-cyclo­hexyl-4-methyl­benzene­sulfonamide

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 12 November 2009; accepted 13 November 2009; online 18 November 2009)

In the title compound, C20H25NO2S, the cyclo­hexyl ring exists in a chair form and the mean plane through all six atoms makes dihedral angles of 56.12 (9) and 55.19 (10)° with the benzene and phenyl rings, respectively. The dihedral angle between the two aromatic rings is 77.23 (7)°. A weak intra­molecular C—H⋯O interaction occurs.

Related literature

For the biological activity of sulfonamides, see: Ozbek et al. (2007[Ozbek, N., Katircioğ lu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105-5109.]); Parari et al. (2008[Parari, M. K., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett. 18, 776-781.]); Ratish et al. (2009[Ratish, G. I., Javed, K., Ahmad, S., Bano, S., Alam, M. S., Pillai, K. K., Singh, S. & Bagchi, V. (2009). Bioorg. & Med. Chem. Lett. 19, 255-258.]); Selnam et al. (2001[Selnam, P., Chandramohan, M., Clercq, E. D., Witvrouw, M. & Pannecouque, C. (2001). Eur. J. Pharm. Sci. 14, 313-316.]). For related structures, see: Khan et al. (2009[Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.]); Zia-ur-Rehman et al. (2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]); Gowda et al. (2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.],b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.],c[Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H25NO2S

  • Mr = 343.47

  • Orthorhombic, P 21 21 21

  • a = 9.0702 (4) Å

  • b = 11.1054 (5) Å

  • c = 18.1971 (8) Å

  • V = 1832.96 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.24 × 0.18 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.956, Tmax = 0.976

  • 11619 measured reflections

  • 4493 independent reflections

  • 2764 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.097

  • S = 0.98

  • 4493 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1915 Friedel pairs

  • Flack parameter: 0.04 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1 0.98 2.38 2.903 (3) 113

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Sulfonamides are well known as anti-inflamatory (Ratish et al., 2009), anti-microbial (Ozbek et al., 2007; Parari et al., 2008), anti HIV (Selnam et al., 2001) compounds. In continuation of our work regarding the synthesis of various sulfur containing heterocycles (Zia-ur-Rehman et al., 2009; Khan et al., 2009), the structure of N-benzyl-N-cyclohexyl-4-methyl benzene sulfonamide, (I), has been determined.

Bond lengths and bond angles of the title molecule (Fig. 1) are almost similar to those in the related molecules (Gowda et al., 2007a,b,c) and are within the normal ranges (Allen et al., 1987). The two aromatic rings as usual are essentially planar, while the cyclohexane ring is in a chair form. The dihedral angles between the two aromatic rings (C1—C6) & (C14—C19), the benzene (C1—C6) ring & the mean plane of cyclohexyl ring (C7—C12), and the phenyl (C14—C19) ring & the mean plane cyclohexyl ring (C7—C12) are 77.23 (7), 56.12 (9) and 55.19 (10)°, respectively, while the r.m.s. deviations for the (C1—C6), (C7—C12) & (C14—C19) rings are 0.0056, 0.2320 and 0.0046 Å, respectively. An intramolecular C—H···O hydrogen bond gives rise to a five membered hydrogen bonded ring (Table 1).

Related literature top

For the biological activity of sulfonamides, see: Ozbek et al. (2007); Parari et al. (2008); Ratish et al. (2009); Selnam et al. (2001). For related structures, see: Khan et al. (2009); Zia-ur-Rehman et al. (2009); Gowda et al. (2007a,b,c). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of N-cyclohexyl-4-methyl benzene sulfonamide (1.089 g, 4.3 mmol), sodium hydride (0.21 g, 0.88 mmol) and N, N-dimethylformamide (10 ml) was stirred at room temperature for half an hour followed by addition of benzyl chloride (1.14 g, 9.0 mmol). Stirring was continued further for a period of three hours and the contents were poured over crushed ice. Precipitated product was isolated, washed and crystallized from a methanol solution.

Refinement top

All H atoms were identified in a difference map and then were treated as riding (C—H = 0.93–0.98 Å), with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 50% probability level.
N-Benzyl-N-cyclohexyl-4-methylbenzenesulfonamide top
Crystal data top
C20H25NO2SF(000) = 736
Mr = 343.47Dx = 1.245 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2246 reflections
a = 9.0702 (4) Åθ = 2.9–20.7°
b = 11.1054 (5) ŵ = 0.19 mm1
c = 18.1971 (8) ÅT = 296 K
V = 1832.96 (14) Å3Blocks, yellow
Z = 40.24 × 0.18 × 0.13 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4493 independent reflections
Radiation source: fine-focus sealed tube2764 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.956, Tmax = 0.976k = 147
11619 measured reflectionsl = 2422
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0397P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
4493 reflectionsΔρmax = 0.16 e Å3
218 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack (1983), 1915 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (8)
Crystal data top
C20H25NO2SV = 1832.96 (14) Å3
Mr = 343.47Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.0702 (4) ŵ = 0.19 mm1
b = 11.1054 (5) ÅT = 296 K
c = 18.1971 (8) Å0.24 × 0.18 × 0.13 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4493 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2764 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.976Rint = 0.036
11619 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.16 e Å3
S = 0.98Δρmin = 0.25 e Å3
4493 reflectionsAbsolute structure: Flack (1983), 1915 Friedel pairs
218 parametersAbsolute structure parameter: 0.04 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13668 (7)0.35270 (6)0.83512 (3)0.04431 (17)
O10.0611 (2)0.45762 (15)0.86060 (9)0.0603 (5)
O20.28860 (18)0.36124 (17)0.81433 (9)0.0604 (5)
N10.04730 (19)0.30283 (17)0.76418 (9)0.0396 (5)
C10.1256 (3)0.2456 (2)0.90607 (11)0.0386 (5)
C20.2185 (3)0.1481 (2)0.90729 (13)0.0520 (6)
H20.28720.13750.86990.062*
C30.2102 (3)0.0660 (2)0.96364 (14)0.0556 (7)
H30.27290.00020.96320.067*
C40.1123 (3)0.0789 (2)1.02044 (13)0.0492 (6)
C50.0189 (3)0.1763 (3)1.01803 (13)0.0634 (8)
H50.04980.18671.05540.076*
C60.0247 (3)0.2591 (3)0.96159 (13)0.0607 (8)
H60.03990.32410.96120.073*
C70.1161 (2)0.3031 (2)0.76700 (11)0.0404 (6)
H70.14440.35590.80780.049*
C80.1825 (2)0.1808 (2)0.78275 (15)0.0573 (7)
H8A0.14510.15070.82920.069*
H8B0.15390.12460.74450.069*
C90.3505 (3)0.1892 (3)0.78615 (16)0.0700 (8)
H9A0.39160.10940.79330.084*
H9B0.37900.23850.82780.084*
C100.4124 (3)0.2434 (3)0.71630 (16)0.0723 (9)
H10A0.39130.19040.67520.087*
H10B0.51860.25080.72070.087*
C110.3468 (3)0.3647 (3)0.70192 (14)0.0630 (8)
H11A0.37520.41950.74090.076*
H11B0.38520.39610.65600.076*
C120.1796 (2)0.3582 (3)0.69771 (13)0.0556 (7)
H12A0.15090.31000.65560.067*
H12B0.13980.43850.69110.067*
C130.1222 (3)0.2229 (2)0.71193 (11)0.0423 (6)
H13A0.06130.15220.70430.051*
H13B0.21430.19640.73360.051*
C140.1544 (2)0.2793 (2)0.63832 (12)0.0412 (6)
C150.2396 (3)0.3820 (2)0.63277 (14)0.0582 (8)
H150.27450.41940.67510.070*
C160.2731 (3)0.4293 (3)0.56453 (18)0.0753 (9)
H160.33110.49810.56140.090*
C170.2222 (4)0.3763 (3)0.50164 (17)0.0773 (10)
H170.24570.40820.45590.093*
C180.1365 (4)0.2759 (3)0.50727 (15)0.0756 (9)
H180.10070.23930.46490.091*
C190.1022 (3)0.2279 (2)0.57493 (14)0.0572 (7)
H190.04300.15970.57770.069*
C200.1098 (3)0.0076 (3)1.08385 (14)0.0736 (9)
H20A0.02700.01001.11490.110*
H20B0.19930.00031.11160.110*
H20C0.10150.08841.06560.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0498 (4)0.0418 (3)0.0414 (3)0.0050 (3)0.0074 (3)0.0030 (3)
O10.0852 (13)0.0385 (10)0.0573 (12)0.0057 (9)0.0130 (9)0.0102 (9)
O20.0487 (10)0.0769 (14)0.0555 (11)0.0207 (10)0.0072 (8)0.0060 (10)
N10.0385 (11)0.0467 (13)0.0337 (11)0.0014 (9)0.0024 (8)0.0059 (9)
C10.0404 (13)0.0399 (14)0.0353 (12)0.0011 (12)0.0071 (11)0.0064 (10)
C20.0575 (15)0.0552 (16)0.0432 (15)0.0053 (15)0.0086 (11)0.0058 (15)
C30.0648 (17)0.0481 (17)0.0538 (17)0.0098 (14)0.0022 (14)0.0005 (14)
C40.0535 (17)0.0530 (17)0.0413 (14)0.0061 (14)0.0065 (13)0.0013 (12)
C50.0583 (17)0.089 (3)0.0429 (16)0.0123 (17)0.0101 (12)0.0069 (16)
C60.0546 (17)0.078 (2)0.0499 (16)0.0238 (15)0.0055 (13)0.0068 (15)
C70.0394 (14)0.0433 (14)0.0385 (12)0.0043 (11)0.0007 (11)0.0047 (10)
C80.0416 (16)0.0557 (19)0.0747 (19)0.0022 (12)0.0023 (12)0.0114 (15)
C90.0506 (16)0.070 (2)0.089 (2)0.0053 (15)0.0082 (16)0.0075 (17)
C100.0379 (16)0.104 (3)0.075 (2)0.0028 (16)0.0055 (13)0.010 (2)
C110.0489 (16)0.084 (2)0.0561 (16)0.0138 (17)0.0051 (12)0.0061 (17)
C120.0495 (16)0.0620 (18)0.0552 (16)0.0061 (14)0.0051 (11)0.0098 (16)
C130.0404 (13)0.0429 (15)0.0437 (14)0.0034 (12)0.0023 (11)0.0019 (11)
C140.0426 (14)0.0415 (15)0.0396 (13)0.0057 (12)0.0020 (11)0.0025 (11)
C150.0599 (18)0.062 (2)0.0528 (16)0.0095 (15)0.0029 (13)0.0043 (14)
C160.073 (2)0.078 (2)0.075 (2)0.0156 (18)0.0113 (18)0.022 (2)
C170.094 (2)0.090 (3)0.0482 (19)0.011 (2)0.0187 (16)0.0196 (19)
C180.102 (2)0.079 (2)0.0459 (17)0.015 (2)0.0012 (18)0.0021 (16)
C190.0699 (19)0.0531 (18)0.0486 (16)0.0012 (14)0.0012 (13)0.0011 (14)
C200.093 (2)0.066 (2)0.0620 (18)0.0067 (18)0.0045 (16)0.0123 (16)
Geometric parameters (Å, º) top
S1—O11.4291 (17)C10—C111.495 (4)
S1—O21.4321 (17)C10—H10A0.9700
S1—N11.6219 (18)C10—H10B0.9700
S1—C11.758 (2)C11—C121.520 (3)
N1—C131.467 (3)C11—H11A0.9700
N1—C71.483 (3)C11—H11B0.9700
C1—C61.371 (3)C12—H12A0.9700
C1—C21.372 (3)C12—H12B0.9700
C2—C31.374 (3)C13—C141.507 (3)
C2—H20.9300C13—H13A0.9700
C3—C41.370 (3)C13—H13B0.9700
C3—H30.9300C14—C191.372 (3)
C4—C51.374 (3)C14—C151.381 (3)
C4—C201.502 (3)C15—C161.382 (4)
C5—C61.379 (3)C15—H150.9300
C5—H50.9300C16—C171.367 (4)
C6—H60.9300C16—H160.9300
C7—C81.513 (3)C17—C181.364 (4)
C7—C121.515 (3)C17—H170.9300
C7—H70.9800C18—C191.377 (4)
C8—C91.528 (3)C18—H180.9300
C8—H8A0.9700C19—H190.9300
C8—H8B0.9700C20—H20A0.9600
C9—C101.514 (4)C20—H20B0.9600
C9—H9A0.9700C20—H20C0.9600
C9—H9B0.9700
O1—S1—O2119.55 (12)C9—C10—H10A109.5
O1—S1—N1107.27 (10)C11—C10—H10B109.5
O2—S1—N1107.05 (10)C9—C10—H10B109.5
O1—S1—C1106.61 (10)H10A—C10—H10B108.0
O2—S1—C1107.08 (11)C10—C11—C12111.3 (2)
N1—S1—C1108.96 (10)C10—C11—H11A109.4
C13—N1—C7119.09 (18)C12—C11—H11A109.4
C13—N1—S1119.41 (15)C10—C11—H11B109.4
C7—N1—S1118.11 (14)C12—C11—H11B109.4
C6—C1—C2118.9 (2)H11A—C11—H11B108.0
C6—C1—S1120.3 (2)C7—C12—C11110.9 (2)
C2—C1—S1120.71 (18)C7—C12—H12A109.5
C1—C2—C3120.1 (2)C11—C12—H12A109.5
C1—C2—H2119.9C7—C12—H12B109.5
C3—C2—H2119.9C11—C12—H12B109.5
C4—C3—C2121.9 (2)H12A—C12—H12B108.1
C4—C3—H3119.0N1—C13—C14114.46 (18)
C2—C3—H3119.0N1—C13—H13A108.6
C3—C4—C5117.2 (2)C14—C13—H13A108.6
C3—C4—C20121.5 (3)N1—C13—H13B108.6
C5—C4—C20121.3 (2)C14—C13—H13B108.6
C4—C5—C6121.7 (2)H13A—C13—H13B107.6
C4—C5—H5119.2C19—C14—C15118.4 (2)
C6—C5—H5119.2C19—C14—C13120.5 (2)
C1—C6—C5120.1 (3)C15—C14—C13121.1 (2)
C1—C6—H6120.0C14—C15—C16120.2 (3)
C5—C6—H6120.0C14—C15—H15119.9
N1—C7—C8113.73 (19)C16—C15—H15119.9
N1—C7—C12110.59 (18)C17—C16—C15121.0 (3)
C8—C7—C12111.7 (2)C17—C16—H16119.5
N1—C7—H7106.8C15—C16—H16119.5
C8—C7—H7106.8C18—C17—C16118.8 (3)
C12—C7—H7106.8C18—C17—H17120.6
C7—C8—C9110.4 (2)C16—C17—H17120.6
C7—C8—H8A109.6C17—C18—C19120.8 (3)
C9—C8—H8A109.6C17—C18—H18119.6
C7—C8—H8B109.6C19—C18—H18119.6
C9—C8—H8B109.6C14—C19—C18120.9 (3)
H8A—C8—H8B108.1C14—C19—H19119.6
C10—C9—C8111.1 (2)C18—C19—H19119.6
C10—C9—H9A109.4C4—C20—H20A109.5
C8—C9—H9A109.4C4—C20—H20B109.5
C10—C9—H9B109.4H20A—C20—H20B109.5
C8—C9—H9B109.4C4—C20—H20C109.5
H9A—C9—H9B108.0H20A—C20—H20C109.5
C11—C10—C9110.9 (2)H20B—C20—H20C109.5
C11—C10—H10A109.5
O1—S1—N1—C13159.58 (16)S1—N1—C7—C8101.8 (2)
O2—S1—N1—C1330.12 (19)C13—N1—C7—C1269.2 (3)
C1—S1—N1—C1385.37 (18)S1—N1—C7—C12131.65 (18)
O1—S1—N1—C741.37 (19)N1—C7—C8—C9178.9 (2)
O2—S1—N1—C7170.83 (17)C12—C7—C8—C955.1 (3)
C1—S1—N1—C773.68 (19)C7—C8—C9—C1055.6 (3)
O1—S1—C1—C616.6 (2)C8—C9—C10—C1156.8 (3)
O2—S1—C1—C6145.7 (2)C9—C10—C11—C1256.8 (3)
N1—S1—C1—C698.9 (2)N1—C7—C12—C11177.1 (2)
O1—S1—C1—C2162.71 (19)C8—C7—C12—C1155.2 (3)
O2—S1—C1—C233.6 (2)C10—C11—C12—C756.0 (3)
N1—S1—C1—C281.8 (2)C7—N1—C13—C1491.6 (2)
C6—C1—C2—C30.3 (4)S1—N1—C13—C14109.5 (2)
S1—C1—C2—C3179.01 (18)N1—C13—C14—C19123.0 (2)
C1—C2—C3—C41.0 (4)N1—C13—C14—C1558.5 (3)
C2—C3—C4—C51.6 (4)C19—C14—C15—C161.3 (4)
C2—C3—C4—C20176.6 (2)C13—C14—C15—C16177.2 (2)
C3—C4—C5—C61.0 (4)C14—C15—C16—C170.4 (5)
C20—C4—C5—C6177.2 (3)C15—C16—C17—C180.4 (5)
C2—C1—C6—C50.9 (4)C16—C17—C18—C190.4 (5)
S1—C1—C6—C5178.4 (2)C15—C14—C19—C181.3 (4)
C4—C5—C6—C10.2 (4)C13—C14—C19—C18177.2 (3)
C13—N1—C7—C857.3 (3)C17—C18—C19—C140.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.982.382.903 (3)113

Experimental details

Crystal data
Chemical formulaC20H25NO2S
Mr343.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)9.0702 (4), 11.1054 (5), 18.1971 (8)
V3)1832.96 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.24 × 0.18 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.956, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
11619, 4493, 2764
Rint0.036
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.097, 0.98
No. of reflections4493
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.25
Absolute structureFlack (1983), 1915 Friedel pairs
Absolute structure parameter0.04 (8)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.98002.38002.903 (3)113.00
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for financial support for the purchase of diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOzbek, N., Katircioğ lu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105–5109.  Web of Science CrossRef PubMed Google Scholar
First citationParari, M. K., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett. 18, 776–781.  PubMed Google Scholar
First citationRatish, G. I., Javed, K., Ahmad, S., Bano, S., Alam, M. S., Pillai, K. K., Singh, S. & Bagchi, V. (2009). Bioorg. & Med. Chem. Lett. 19, 255–258.  Google Scholar
First citationSelnam, P., Chandramohan, M., Clercq, E. D., Witvrouw, M. & Pannecouque, C. (2001). Eur. J. Pharm. Sci. 14, 313–316.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds