organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3180-o3181

Ethyl 4-hydr­­oxy-2,6-di­phenyl-1-(2-thio­morpholino­propano­yl)-1,2,5,6-tetra­hydro­pyridine-3-carboxyl­ate

aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608-739, Republic of Korea, and bInstitute of Structural Biology and Biophysics-2: Molecular Biophysics, Research Centre Jülich, D-52425 Jülich, Germany
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 14 November 2009; accepted 18 November 2009; online 21 November 2009)

In the title compound, C27H32N2O4S, the thio­morpholine ring adopts a chair conformation and the tetra­hydro­pyridine ring is in a distorted envelope conformation. The mol­ecular structure is stabilized by an intra­molecular O—H⋯O inter­action and the crystal packing is stabilized by an inter­molecular C—H⋯O inter­action, generating an S(6) motif and a dimer of the type R22(18), respectively.

Related literature

For the synthesis and biological activity of 2,6-diaryl­piperidin-4-one derivatives, see: Aridoss, Balasubramanian, Parthiban, Ramachandran & Kabilan (2007[Aridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007). Med. Chem. Res. 16, 188-204.]); Aridoss, Balasubramanian, Parthiban & Kabilan (2007[Aridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007). Eur. J. Med. Chem. 42, 851-860.]); Aridoss, Parthiban et al. (2009[Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577-592.]). For a related structure, see: Aridoss, Gayathri et al. (2009[Aridoss, G., Gayathri, D., Velmurugan, D., Kim, M. S. & Jeong, Y. T. (2009). Acta Cryst. E65, o1708-o1709.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C27H32N2O4S

  • Mr = 480.61

  • Triclinic, [P \overline 1]

  • a = 9.904 (3) Å

  • b = 11.400 (4) Å

  • c = 12.103 (4) Å

  • α = 93.908 (18)°

  • β = 104.941 (15)°

  • γ = 106.819 (16)°

  • V = 1248.7 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.968

  • 26182 measured reflections

  • 5707 independent reflections

  • 4543 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.117

  • S = 1.01

  • 5707 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.82 1.85 2.560 (2) 144
C24—H24B⋯O3i 0.96 2.54 3.285 (2) 135
Symmetry code: (i) -x+2, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Our current research work is committed to find 2,6-diarylpiperidin-4-one based lead drug for the antimicrobial therapy and exploring the stereochemistry of its N-acyl derivatives (Aridoss, Balasubramanian, Parthiban, Ramachandran & Kabilan, 2007; Aridoss, Balasubramanian, Parthiban & Kabilan, 2007; Aridoss, Parthiban et al., 2009). Recently we have disclosed the crystal structure of ethyl 1-(2-bromopropanoyl)-4-hydroxy-2,6-diphenyl-1,2,5,6- tetrahydropyridin-3-carboxylate (Aridoss, Gayathri et al., 2009), which crystallizes with two independent molecules per asymmetric unit. Here, the tetrahydropyridine ring adopts a half-chair conformation in one molecule and distorted envelope conformation in other molecule. Thus to understand the change in conformation of the above said compound upon nucleophilic substitution of thiomorpholine in place of bromine, crystal structure of the title compound is determined by X-ray diffraction study and discussed in this paper.

The sum of the angles at N1 [358.6 (3)°] and N2 [336.1 (3)°] are in accordance with sp2 and sp3 hybridization, respectively. The dihedral angle between the two phenyl rings attached to the pyridine moiety is 21.8 (1)°. The thiomorpholine ring adopts chair conformation with atoms C9 and C11 deviating by 0.758 (2) and -0.673 (2) Å, respectively, from the least squares plane defined by atoms N2/C8/S1/C10. The tetrahydropyridine ring adops distorted envelope conformation. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for thiomorpholine and tetrahydropyridine rings are q2 = 0.065 (1), 0.394 (1) Å, q3 = 0.639 (2), 0.294 (1) Å; QT = 0.642 (2), 0.491 (1) Å and θ = 5.7 (1), 53.3 (2)°, respectively.

The molecular structure and the crystal packing are stabilized by O—H···O intramolecular and C—H···O intermolecular interactions, respectively, with atom O3 acting as bifurcated acceptor. In intramolecular interaction, atom O2 acts as a donor to O3 generating an S(6) motif and in intermolecular interaction, atom C24 acts as a donor to atom O3 at (2 - x, -y, -z), generating a dimer of the type R22(18).

Related literature top

For the synthesis and biological activity of 2,6-diarylpiperidin-4-one derivatives, see: Aridoss, Balasubramanian, Parthiban, Ramachandran & Kabilan (2007); Aridoss, Balasubramanian, Parthiban & Kabilan (2007); Aridoss, Parthiban et al. (2009). For a related structure, see: Aridoss, Gayathri et al. (2009). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

To a solution of thiomorpholine (1 equiv.) and dry K2CO3 in benzene, ethyl 1-(2-bromopropanoyl)-4-hydroxy-2,6-diphenyl-1,2,5,6-tetrahydropyridin-3- carboxylate (1 equiv.; Aridoss, Gayathri et al., 2009) in benzene was added slowly over a period of 15 minutes and refluxed over night. After the completion of reaction, the contents were poured into water and extracted twice with ethyl acetate. The combined organic extracts were then washed well with brine and dried over anhydrous sodium sulfate. This upon evaporation, column purification and subsequent recrystallization in distilled ethanol afforded fine white crystals appropriate for X-ray diffraction study.

Refinement top

All H atoms were refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for CH, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3, and O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O) for the OH group.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing of (I). For clarity, hydrogen atoms which are not involved in hydrogen bonding are omitted.
Ethyl 4-hydroxy-2,6-diphenyl-1-(2-thiomorpholinopropanoyl)- 1,2,5,6-tetrahydropyridine-3-carboxylate top
Crystal data top
C27H32N2O4SZ = 2
Mr = 480.61F(000) = 512
Triclinic, P1Dx = 1.278 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.904 (3) ÅCell parameters from 5338 reflections
b = 11.400 (4) Åθ = 2.3–27.8°
c = 12.103 (4) ŵ = 0.17 mm1
α = 93.908 (18)°T = 293 K
β = 104.941 (15)°Block, colorless
γ = 106.819 (16)°0.30 × 0.25 × 0.20 mm
V = 1248.7 (7) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5707 independent reflections
Radiation source: fine-focus sealed tube4543 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scanθmax = 27.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1212
Tmin = 0.952, Tmax = 0.968k = 1414
26182 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.2715P]
where P = (Fo2 + 2Fc2)/3
5707 reflections(Δ/σ)max = 0.001
309 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C27H32N2O4Sγ = 106.819 (16)°
Mr = 480.61V = 1248.7 (7) Å3
Triclinic, P1Z = 2
a = 9.904 (3) ÅMo Kα radiation
b = 11.400 (4) ŵ = 0.17 mm1
c = 12.103 (4) ÅT = 293 K
α = 93.908 (18)°0.30 × 0.25 × 0.20 mm
β = 104.941 (15)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5707 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4543 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.968Rint = 0.032
26182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.01Δρmax = 0.21 e Å3
5707 reflectionsΔρmin = 0.36 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.19148 (14)0.27730 (12)0.23357 (11)0.0347 (3)
H11.28190.28830.29590.042*
C21.22176 (15)0.24683 (13)0.12043 (12)0.0400 (3)
H2A1.28170.32180.10130.048*
H2B1.27690.18850.12930.048*
C31.08292 (15)0.19255 (12)0.02448 (11)0.0371 (3)
C40.95026 (14)0.14479 (11)0.04268 (10)0.0331 (3)
C50.93213 (13)0.13505 (11)0.16238 (10)0.0310 (3)
H50.88280.04720.16260.037*
C61.10345 (14)0.08311 (12)0.31764 (10)0.0337 (3)
C71.25989 (15)0.11016 (13)0.39709 (11)0.0357 (3)
H71.32740.13580.35010.043*
C81.45086 (15)0.27218 (15)0.54032 (13)0.0478 (4)
H8A1.49940.28710.48010.057*
H8B1.48890.21540.58530.057*
C91.4863 (2)0.39292 (17)0.61776 (16)0.0611 (4)
H9A1.44500.44850.57330.073*
H9B1.59240.43150.64540.073*
C101.2279 (2)0.29267 (17)0.65584 (14)0.0574 (4)
H10A1.16970.26550.70820.069*
H10B1.18860.34990.61260.069*
C111.21338 (17)0.18191 (15)0.57289 (12)0.0457 (3)
H11A1.25080.12390.61630.055*
H11B1.10990.14050.53290.055*
C121.15095 (14)0.39523 (12)0.24545 (11)0.0358 (3)
C131.12638 (16)0.43177 (14)0.34780 (13)0.0448 (3)
H131.12910.38140.40510.054*
C141.0980 (2)0.54136 (16)0.36610 (16)0.0577 (4)
H141.08090.56430.43520.069*
C151.0948 (2)0.61727 (16)0.28258 (18)0.0640 (5)
H151.07730.69220.29550.077*
C161.1173 (2)0.58217 (16)0.18069 (17)0.0608 (4)
H161.11350.63270.12350.073*
C171.14591 (18)0.47184 (13)0.16176 (13)0.0471 (3)
H171.16180.44900.09210.057*
C180.83851 (13)0.20571 (12)0.19968 (11)0.0332 (3)
C190.80193 (16)0.18358 (14)0.30119 (12)0.0425 (3)
H190.83390.12620.34290.051*
C200.71920 (19)0.24515 (16)0.34109 (15)0.0547 (4)
H200.69550.22940.40930.066*
C210.6719 (2)0.32964 (16)0.28039 (16)0.0597 (4)
H210.61650.37200.30750.072*
C220.7062 (2)0.35187 (16)0.17939 (16)0.0555 (4)
H220.67330.40900.13790.067*
C230.78906 (16)0.29013 (13)0.13889 (12)0.0423 (3)
H230.81160.30570.07020.051*
C241.2782 (2)0.00907 (15)0.43919 (14)0.0524 (4)
H24A1.37190.00960.49650.079*
H24B1.27330.06610.37510.079*
H24C1.20080.04570.47250.079*
C250.82265 (15)0.08996 (12)0.05693 (11)0.0369 (3)
C260.56361 (17)0.00482 (15)0.12584 (13)0.0494 (4)
H26A0.48910.06680.10380.059*
H26B0.58200.04300.19220.059*
C270.5094 (2)0.1005 (2)0.15733 (19)0.0757 (6)
H27A0.49670.14110.09040.114*
H27B0.41670.07010.21670.114*
H27C0.57970.15850.18520.114*
N11.07728 (11)0.16791 (10)0.24818 (9)0.0326 (2)
N21.29325 (11)0.21563 (10)0.48737 (9)0.0336 (2)
O11.00568 (11)0.01107 (9)0.31843 (9)0.0454 (2)
O21.10662 (12)0.19398 (11)0.07897 (9)0.0520 (3)
H21.02830.16140.12960.078*
O30.82742 (12)0.08937 (11)0.15678 (8)0.0539 (3)
O40.69839 (10)0.03850 (9)0.03050 (8)0.0406 (2)
S11.41530 (6)0.37181 (4)0.73873 (4)0.06261 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0296 (6)0.0326 (6)0.0350 (6)0.0045 (5)0.0035 (5)0.0060 (5)
C20.0337 (7)0.0390 (7)0.0460 (8)0.0076 (5)0.0137 (6)0.0064 (6)
C30.0431 (7)0.0354 (7)0.0351 (7)0.0139 (6)0.0140 (6)0.0047 (5)
C40.0358 (6)0.0322 (6)0.0299 (6)0.0116 (5)0.0070 (5)0.0025 (5)
C50.0288 (6)0.0298 (6)0.0289 (6)0.0052 (5)0.0041 (5)0.0032 (5)
C60.0370 (7)0.0346 (7)0.0286 (6)0.0105 (5)0.0090 (5)0.0055 (5)
C70.0362 (7)0.0409 (7)0.0306 (6)0.0146 (5)0.0078 (5)0.0069 (5)
C80.0320 (7)0.0619 (10)0.0434 (8)0.0100 (7)0.0079 (6)0.0019 (7)
C90.0495 (9)0.0547 (10)0.0591 (10)0.0010 (8)0.0049 (8)0.0027 (8)
C100.0655 (11)0.0708 (11)0.0464 (9)0.0303 (9)0.0250 (8)0.0069 (8)
C110.0438 (8)0.0530 (9)0.0390 (7)0.0094 (7)0.0169 (6)0.0063 (6)
C120.0307 (6)0.0302 (6)0.0368 (7)0.0014 (5)0.0032 (5)0.0031 (5)
C130.0459 (8)0.0404 (7)0.0407 (7)0.0057 (6)0.0097 (6)0.0036 (6)
C140.0615 (10)0.0485 (9)0.0599 (10)0.0124 (8)0.0215 (8)0.0046 (8)
C150.0691 (12)0.0387 (9)0.0863 (13)0.0184 (8)0.0259 (10)0.0066 (8)
C160.0725 (11)0.0420 (9)0.0709 (11)0.0196 (8)0.0213 (9)0.0216 (8)
C170.0546 (9)0.0389 (8)0.0446 (8)0.0112 (7)0.0125 (7)0.0101 (6)
C180.0293 (6)0.0327 (6)0.0313 (6)0.0049 (5)0.0051 (5)0.0003 (5)
C190.0429 (7)0.0467 (8)0.0379 (7)0.0131 (6)0.0130 (6)0.0062 (6)
C200.0576 (10)0.0613 (10)0.0484 (9)0.0173 (8)0.0248 (8)0.0013 (7)
C210.0619 (10)0.0562 (10)0.0693 (11)0.0254 (8)0.0285 (9)0.0019 (8)
C220.0611 (10)0.0474 (9)0.0641 (10)0.0279 (8)0.0167 (8)0.0086 (8)
C230.0455 (8)0.0413 (7)0.0403 (7)0.0150 (6)0.0117 (6)0.0060 (6)
C240.0642 (10)0.0485 (9)0.0429 (8)0.0280 (8)0.0018 (7)0.0064 (7)
C250.0422 (7)0.0358 (7)0.0311 (6)0.0146 (6)0.0065 (5)0.0017 (5)
C260.0395 (8)0.0513 (9)0.0411 (8)0.0069 (6)0.0052 (6)0.0004 (6)
C270.0595 (11)0.0746 (13)0.0794 (13)0.0234 (10)0.0081 (10)0.0230 (11)
N10.0296 (5)0.0308 (5)0.0314 (5)0.0059 (4)0.0030 (4)0.0054 (4)
N20.0291 (5)0.0398 (6)0.0302 (5)0.0091 (4)0.0077 (4)0.0055 (4)
O10.0431 (5)0.0415 (5)0.0446 (5)0.0043 (4)0.0088 (4)0.0161 (4)
O20.0516 (6)0.0649 (7)0.0388 (5)0.0120 (5)0.0204 (5)0.0043 (5)
O30.0537 (6)0.0723 (8)0.0297 (5)0.0162 (6)0.0084 (4)0.0000 (5)
O40.0352 (5)0.0447 (5)0.0327 (5)0.0077 (4)0.0010 (4)0.0018 (4)
S10.0835 (3)0.0571 (3)0.0407 (2)0.0286 (2)0.0031 (2)0.00484 (18)
Geometric parameters (Å, º) top
C1—N11.4773 (16)C12—C131.382 (2)
C1—C21.5142 (19)C13—C141.373 (2)
C1—C121.5182 (19)C13—H130.9300
C1—H10.9800C14—C151.375 (3)
C2—C31.4861 (19)C14—H140.9300
C2—H2A0.9700C15—C161.363 (3)
C2—H2B0.9700C15—H150.9300
C3—O21.3323 (16)C16—C171.384 (2)
C3—C41.3501 (19)C16—H160.9300
C4—C251.4477 (18)C17—H170.9300
C4—C51.5126 (17)C18—C231.375 (2)
C5—N11.4665 (16)C18—C191.3867 (19)
C5—C181.5202 (18)C19—C201.374 (2)
C5—H50.9800C19—H190.9300
C6—O11.2227 (16)C20—C211.367 (3)
C6—N11.3609 (17)C20—H200.9300
C6—C71.5281 (18)C21—C221.371 (2)
C7—N21.4675 (18)C21—H210.9300
C7—C241.526 (2)C22—C231.380 (2)
C7—H70.9800C22—H220.9300
C8—N21.4520 (18)C23—H230.9300
C8—C91.507 (2)C24—H24A0.9600
C8—H8A0.9700C24—H24B0.9600
C8—H8B0.9700C24—H24C0.9600
C9—S11.782 (2)C25—O31.2212 (17)
C9—H9A0.9700C25—O41.3310 (17)
C9—H9B0.9700C26—O41.4505 (16)
C10—C111.507 (2)C26—C271.485 (3)
C10—S11.792 (2)C26—H26A0.9700
C10—H10A0.9700C26—H26B0.9700
C10—H10B0.9700C27—H27A0.9600
C11—N21.4647 (17)C27—H27B0.9600
C11—H11A0.9700C27—H27C0.9600
C11—H11B0.9700O2—H20.8200
C12—C171.382 (2)
N1—C1—C2107.66 (11)C12—C13—H13119.5
N1—C1—C12112.16 (11)C13—C14—C15120.20 (16)
C2—C1—C12114.82 (11)C13—C14—H14119.9
N1—C1—H1107.3C15—C14—H14119.9
C2—C1—H1107.3C16—C15—C14119.63 (16)
C12—C1—H1107.3C16—C15—H15120.2
C3—C2—C1111.58 (11)C14—C15—H15120.2
C3—C2—H2A109.3C15—C16—C17120.40 (16)
C1—C2—H2A109.3C15—C16—H16119.8
C3—C2—H2B109.3C17—C16—H16119.8
C1—C2—H2B109.3C12—C17—C16120.56 (15)
H2A—C2—H2B108.0C12—C17—H17119.7
O2—C3—C4125.09 (13)C16—C17—H17119.7
O2—C3—C2112.09 (12)C23—C18—C19118.54 (13)
C4—C3—C2122.79 (12)C23—C18—C5123.75 (12)
C3—C4—C25118.29 (12)C19—C18—C5117.71 (12)
C3—C4—C5122.64 (11)C20—C19—C18120.98 (14)
C25—C4—C5118.79 (11)C20—C19—H19119.5
N1—C5—C4109.82 (10)C18—C19—H19119.5
N1—C5—C18110.60 (10)C21—C20—C19119.88 (15)
C4—C5—C18116.73 (10)C21—C20—H20120.1
N1—C5—H5106.3C19—C20—H20120.1
C4—C5—H5106.3C20—C21—C22119.83 (15)
C18—C5—H5106.3C20—C21—H21120.1
O1—C6—N1121.77 (12)C22—C21—H21120.1
O1—C6—C7120.49 (12)C21—C22—C23120.49 (15)
N1—C6—C7117.73 (11)C21—C22—H22119.8
N2—C7—C24116.11 (11)C23—C22—H22119.8
N2—C7—C6109.40 (10)C18—C23—C22120.26 (14)
C24—C7—C6109.39 (12)C18—C23—H23119.9
N2—C7—H7107.2C22—C23—H23119.9
C24—C7—H7107.2C7—C24—H24A109.5
C6—C7—H7107.2C7—C24—H24B109.5
N2—C8—C9111.80 (13)H24A—C24—H24B109.5
N2—C8—H8A109.3C7—C24—H24C109.5
C9—C8—H8A109.3H24A—C24—H24C109.5
N2—C8—H8B109.3H24B—C24—H24C109.5
C9—C8—H8B109.3O3—C25—O4122.39 (12)
H8A—C8—H8B107.9O3—C25—C4123.53 (13)
C8—C9—S1112.18 (12)O4—C25—C4114.08 (11)
C8—C9—H9A109.2O4—C26—C27110.13 (13)
S1—C9—H9A109.2O4—C26—H26A109.6
C8—C9—H9B109.2C27—C26—H26A109.6
S1—C9—H9B109.2O4—C26—H26B109.6
H9A—C9—H9B107.9C27—C26—H26B109.6
C11—C10—S1112.47 (12)H26A—C26—H26B108.1
C11—C10—H10A109.1C26—C27—H27A109.5
S1—C10—H10A109.1C26—C27—H27B109.5
C11—C10—H10B109.1H27A—C27—H27B109.5
S1—C10—H10B109.1C26—C27—H27C109.5
H10A—C10—H10B107.8H27A—C27—H27C109.5
N2—C11—C10112.61 (13)H27B—C27—H27C109.5
N2—C11—H11A109.1C6—N1—C5117.56 (10)
C10—C11—H11A109.1C6—N1—C1125.05 (11)
N2—C11—H11B109.1C5—N1—C1115.92 (10)
C10—C11—H11B109.1C8—N2—C11112.46 (11)
H11A—C11—H11B107.8C8—N2—C7111.81 (11)
C17—C12—C13118.22 (14)C11—N2—C7111.79 (11)
C17—C12—C1123.25 (13)C3—O2—H2109.5
C13—C12—C1118.41 (12)C25—O4—C26116.77 (11)
C14—C13—C12120.97 (15)C9—S1—C1095.98 (8)
C14—C13—H13119.5
N1—C1—C2—C348.04 (14)C18—C19—C20—C210.0 (2)
C12—C1—C2—C377.64 (14)C19—C20—C21—C220.5 (3)
C1—C2—C3—O2164.35 (11)C20—C21—C22—C230.4 (3)
C1—C2—C3—C417.41 (18)C19—C18—C23—C220.6 (2)
O2—C3—C4—C250.3 (2)C5—C18—C23—C22179.08 (13)
C2—C3—C4—C25177.71 (12)C21—C22—C23—C180.2 (2)
O2—C3—C4—C5174.15 (12)C3—C4—C25—O33.3 (2)
C2—C3—C4—C53.9 (2)C5—C4—C25—O3177.40 (13)
C3—C4—C5—N17.76 (17)C3—C4—C25—O4176.05 (12)
C25—C4—C5—N1166.06 (11)C5—C4—C25—O41.95 (17)
C3—C4—C5—C18119.13 (14)O1—C6—N1—C58.07 (18)
C25—C4—C5—C1867.04 (15)C7—C6—N1—C5172.90 (10)
O1—C6—C7—N2110.36 (14)O1—C6—N1—C1173.66 (12)
N1—C6—C7—N268.68 (14)C7—C6—N1—C17.31 (18)
O1—C6—C7—C2417.86 (18)C4—C5—N1—C6123.91 (12)
N1—C6—C7—C24163.10 (12)C18—C5—N1—C6105.82 (13)
N2—C8—C9—S164.32 (17)C4—C5—N1—C142.99 (14)
S1—C10—C11—N261.25 (16)C18—C5—N1—C187.27 (13)
N1—C1—C12—C17125.18 (14)C2—C1—N1—C6101.21 (14)
C2—C1—C12—C171.86 (18)C12—C1—N1—C6131.53 (13)
N1—C1—C12—C1358.79 (15)C2—C1—N1—C564.58 (14)
C2—C1—C12—C13177.89 (12)C12—C1—N1—C562.67 (14)
C17—C12—C13—C140.1 (2)C9—C8—N2—C1163.15 (17)
C1—C12—C13—C14176.10 (14)C9—C8—N2—C7170.12 (13)
C12—C13—C14—C150.5 (3)C10—C11—N2—C861.90 (17)
C13—C14—C15—C161.1 (3)C10—C11—N2—C7171.36 (12)
C14—C15—C16—C171.1 (3)C24—C7—N2—C875.03 (16)
C13—C12—C17—C160.2 (2)C6—C7—N2—C8160.59 (11)
C1—C12—C17—C16175.88 (14)C24—C7—N2—C1152.06 (16)
C15—C16—C17—C120.5 (3)C6—C7—N2—C1172.31 (14)
N1—C5—C18—C23116.73 (13)O3—C25—O4—C267.80 (19)
C4—C5—C18—C239.78 (18)C4—C25—O4—C26172.84 (11)
N1—C5—C18—C1962.99 (15)C27—C26—O4—C2581.20 (18)
C4—C5—C18—C19170.50 (11)C8—C9—S1—C1055.24 (14)
C23—C18—C19—C200.6 (2)C11—C10—S1—C953.83 (14)
C5—C18—C19—C20179.18 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.821.852.560 (2)144
C24—H24B···O3i0.962.543.285 (2)135
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC27H32N2O4S
Mr480.61
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.904 (3), 11.400 (4), 12.103 (4)
α, β, γ (°)93.908 (18), 104.941 (15), 106.819 (16)
V3)1248.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.952, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
26182, 5707, 4543
Rint0.032
(sin θ/λ)max1)0.655
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.117, 1.01
No. of reflections5707
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.36

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.821.852.560 (2)144
C24—H24B···O3i0.962.543.285 (2)135
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

GA and YTJ are grateful for the support provided by the second stage of the BK21 program, Republic of Korea.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007). Eur. J. Med. Chem. 42, 851–860.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007). Med. Chem. Res. 16, 188–204.  Web of Science CrossRef CAS Google Scholar
First citationAridoss, G., Gayathri, D., Velmurugan, D., Kim, M. S. & Jeong, Y. T. (2009). Acta Cryst. E65, o1708–o1709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3180-o3181
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds