organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 9-p-tolyl-8a,9,9a,10,11,12,13,14a-octa­hydro-8H-benzo[f]chromeno[3,4-b]indolizine-8a-carboxyl­ate

aDepartment of Physics, AMET University, Kanathur, Chennai 603 112, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: manivan_1999@yahoo.com

(Received 16 November 2009; accepted 19 November 2009; online 25 November 2009)

In the title compound, C28H29NO3, the fused pyrrolidine and piperidine rings of the octa­hydro­indolizine unit exhibit envelope and chair conformations, respectively. The dihedral angle between the naphthalene ring system and the benzene ring is 40.37 (5)°. The crystal packing is stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

For the biological activity of indolizine derivatives, see: Campagna et al. (1990[Campagna, F., Carotti, A., Casini, G. & Macripo, M. (1990). Heterocycles, 31, 97-107.]); Malonne et al. (1998[Malonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241-242.]); Medda et al. (2003[Medda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123-128.]); Pearson & Guo (2001[Pearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267-8271.]); Sonnet et al. (2000[Sonnet, P., Dallemagne, P., Guillom, J., Engueard, C., Stiebing, S., Tangue, J., Bureau, B., Rault, S., Auvray, P., Moslemi, S., Sourdaine, P. & Seralini, G. E. (2000). Bioorg. Med. Chem. 8, 945-955.]). For related structures, see: Gunasekaran et al. (2009[Gunasekaran, B., Kathiravan, S., Raghunathan, R., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2550.]); Kamala et al. (2009[Kamala, E. T. S., Nirmala, S., Sudha, L., Kathiravan, S. & Raghunathan, R. (2009). Acta Cryst. E65, o1923-o1924.]). For details of ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C28H29NO3

  • Mr = 427.52

  • Monoclinic, P 21 /c

  • a = 11.4842 (9) Å

  • b = 23.0129 (14) Å

  • c = 9.1642 (5) Å

  • β = 112.725 (2)°

  • V = 2233.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.984

  • 27595 measured reflections

  • 5875 independent reflections

  • 3629 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.141

  • S = 1.01

  • 5875 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.98 2.58 3.496 (2) 156
C7—H7⋯O1ii 0.93 2.55 3.198 (2) 127
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis of biologically active indolizine derivatives continues to attract the attention of organic chemists, because of their wide spectrum of biological activity. Indolizine derivatives have been found to possess a variety of biological activities such as antiinflammatory (Malonne et al., 1998), antiviral (Medda et al., 2003), aromatase inhibitory (Sonnet et al., 2000), analgestic (Campagna et al., 1990) and antitumor (Pearson & Guo, 2001) activities.

The geometric parameters of the title compound (Fig. 1) agree well with reported similar structures (Gunasekaran et al., 2009; Kamala et al., 2009). The mean plane of the naphthalene ring system makes a dihedral angle of 40.37 (5)° with the methyl benzene ring. In the molecule the pyrrolidine ring N1/C13/C12/C19/C18 exhibits an envelope conformation with envelope on C13 with an asymmetry parameter (Nardelli, 1983) ΔCs (C13) = 14.17 (3) and with the puckering parameters (Cremer & Pople, 1975) q2 = 0.4960 (2) Å and ϕ2 = 205.68 (9)°. The six membered ring N1/C14—C18 exhibits chair conformation with asymmetry parameters ΔCs (N1) = 1.78 (1)/(C16) = 1.78 (1) and with the puckering parameters Q = 0.5855 (2) Å, Θ = 3.86 (3)° and ϕ = 335.84 (8)°. The sum of bond angles around N1 [333.20 (12)°] indicates sp3 hybridization. The crystal packing is stabilized by weak intermolecular C—H···O interactions.

Related literature top

For the biological activity of indolizine derivatives, see: Campagna et al. (1990); Malonne et al. (1998); Medda et al. (2003); Pearson & Guo (2001); Sonnet et al. (2000). For related structures, see: Gunasekaran et al. (2009); Kamala et al. (2009). For details of ring conformations, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

A mixture of (Z)-methyl 2-[(1-formylnaphthalen-2-yloxy)methyl]-3-tolylacrylate (20 mmol) and pipecolinic acid (30 mmol) were refluxed in benzene for 20 h and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography to get the pure product. Chloroform and methanol (1:1) solvent mixture was used for the crystallization under slow evaporation method.

Refinement top

H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for C—H, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines.
Methyl 9-p-tolyl-8a,9,9a,10,11,12,13,14a-octahydro- 8H-benzo[f]chromeno[3,4-b]indolizine-8a-carboxylate top
Crystal data top
C28H29NO3F(000) = 912
Mr = 427.52Dx = 1.271 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4649 reflections
a = 11.4842 (9) Åθ = 2.6–26.3°
b = 23.0129 (14) ŵ = 0.08 mm1
c = 9.1642 (5) ÅT = 293 K
β = 112.725 (2)°Block, colourless
V = 2233.9 (3) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5875 independent reflections
Radiation source: fine-focus sealed tube3629 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω and ϕ scansθmax = 28.9°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.976, Tmax = 0.984k = 3131
27595 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.3616P]
where P = (Fo2 + 2Fc2)/3
5875 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C28H29NO3V = 2233.9 (3) Å3
Mr = 427.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4842 (9) ŵ = 0.08 mm1
b = 23.0129 (14) ÅT = 293 K
c = 9.1642 (5) Å0.30 × 0.20 × 0.20 mm
β = 112.725 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5875 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3629 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.984Rint = 0.044
27595 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
5875 reflectionsΔρmin = 0.17 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.61198 (18)0.14947 (8)0.0295 (2)0.0504 (4)
H10.56400.12760.07110.061*
C20.5662 (2)0.20144 (9)0.0413 (2)0.0670 (6)
H20.48790.21440.04690.080*
C30.6357 (3)0.23540 (9)0.1053 (3)0.0771 (7)
H30.60430.27100.15190.093*
C40.7483 (2)0.21626 (9)0.0990 (2)0.0676 (6)
H40.79380.23890.14240.081*
C50.79886 (19)0.16256 (8)0.02817 (19)0.0497 (5)
C60.91374 (19)0.14077 (9)0.0278 (2)0.0545 (5)
H60.95980.16300.07140.065*
C70.95803 (17)0.08848 (8)0.0344 (2)0.0490 (4)
H71.03280.07440.03070.059*
C80.89125 (15)0.05504 (7)0.10510 (17)0.0383 (4)
C90.78070 (15)0.07379 (7)0.11318 (16)0.0354 (3)
C100.73006 (16)0.12828 (7)0.04091 (17)0.0399 (4)
C110.89693 (14)0.02897 (7)0.25903 (17)0.0391 (4)
H11A0.92690.06880.27020.047*
H11B0.92950.01120.36310.047*
C120.75363 (14)0.02882 (7)0.19453 (16)0.0339 (3)
C130.71155 (14)0.03487 (6)0.18493 (16)0.0331 (3)
H130.62040.03760.12360.040*
C140.70537 (18)0.10215 (7)0.39732 (18)0.0460 (4)
H14A0.74850.13260.36450.055*
H14B0.61510.10840.34470.055*
C150.74380 (19)0.10420 (8)0.57578 (19)0.0541 (5)
H15A0.71770.14100.60510.065*
H15B0.83500.10160.62740.065*
C160.6842 (2)0.05474 (8)0.6322 (2)0.0574 (5)
H16A0.71630.05490.74680.069*
H16B0.59350.06030.59240.069*
C170.71307 (19)0.00345 (8)0.57545 (18)0.0509 (5)
H17A0.80280.01160.62540.061*
H17B0.66790.03420.60390.061*
C180.67275 (16)0.00141 (7)0.39653 (17)0.0387 (4)
H180.58240.00760.35060.046*
C190.69420 (15)0.05562 (7)0.30745 (17)0.0388 (4)
H190.60960.06860.23800.047*
C200.75513 (17)0.10776 (7)0.41025 (17)0.0418 (4)
C210.88099 (18)0.11218 (8)0.51269 (19)0.0511 (5)
H210.93630.08220.51620.061*
C220.92615 (19)0.15999 (8)0.60945 (19)0.0512 (5)
H221.01150.16180.67420.061*
C230.8483 (2)0.20499 (7)0.6126 (2)0.0521 (5)
C240.7237 (2)0.20078 (8)0.5124 (2)0.0610 (5)
H240.66860.23060.51130.073*
C250.67736 (19)0.15346 (8)0.4128 (2)0.0527 (5)
H250.59240.15240.34640.063*
C260.8973 (3)0.25562 (9)0.7251 (2)0.0732 (7)
H26A0.86260.29120.67090.110*
H26B0.98770.25690.76260.110*
H26C0.87250.25090.81320.110*
C270.69921 (15)0.05766 (7)0.03259 (17)0.0369 (4)
C280.7123 (2)0.13788 (8)0.1198 (2)0.0593 (5)
H28A0.72750.11410.19670.089*
H28B0.75710.17390.10820.089*
H28C0.62350.14550.15440.089*
N10.73871 (12)0.04567 (6)0.35365 (13)0.0366 (3)
O10.94386 (11)0.00186 (5)0.15779 (13)0.0454 (3)
O20.61520 (12)0.03875 (6)0.07961 (14)0.0632 (4)
O30.75561 (12)0.10804 (5)0.02989 (13)0.0535 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0596 (12)0.0466 (10)0.0456 (9)0.0086 (9)0.0208 (8)0.0026 (8)
C20.0793 (15)0.0566 (12)0.0630 (12)0.0200 (11)0.0252 (11)0.0058 (10)
C30.115 (2)0.0444 (12)0.0684 (13)0.0130 (13)0.0313 (14)0.0120 (10)
C40.1003 (18)0.0460 (12)0.0592 (11)0.0105 (12)0.0339 (12)0.0069 (9)
C50.0691 (13)0.0446 (10)0.0366 (8)0.0111 (9)0.0217 (8)0.0039 (7)
C60.0656 (13)0.0611 (12)0.0451 (9)0.0219 (10)0.0304 (9)0.0034 (8)
C70.0449 (10)0.0642 (12)0.0454 (9)0.0113 (9)0.0258 (8)0.0085 (8)
C80.0389 (9)0.0435 (9)0.0336 (7)0.0040 (8)0.0152 (6)0.0039 (6)
C90.0386 (9)0.0391 (8)0.0296 (7)0.0032 (7)0.0144 (6)0.0041 (6)
C100.0508 (10)0.0377 (9)0.0304 (7)0.0023 (8)0.0150 (7)0.0036 (6)
C110.0351 (9)0.0422 (9)0.0374 (7)0.0008 (7)0.0113 (6)0.0001 (7)
C120.0320 (8)0.0387 (8)0.0292 (6)0.0017 (7)0.0099 (6)0.0004 (6)
C130.0324 (8)0.0383 (8)0.0292 (6)0.0000 (7)0.0125 (6)0.0015 (6)
C140.0553 (11)0.0462 (10)0.0397 (8)0.0017 (8)0.0220 (8)0.0044 (7)
C150.0643 (12)0.0605 (12)0.0383 (8)0.0025 (10)0.0208 (8)0.0105 (8)
C160.0710 (13)0.0708 (13)0.0368 (8)0.0016 (11)0.0278 (9)0.0028 (8)
C170.0609 (12)0.0597 (12)0.0347 (8)0.0025 (9)0.0212 (8)0.0021 (8)
C180.0367 (9)0.0477 (10)0.0331 (7)0.0026 (7)0.0150 (6)0.0014 (6)
C190.0368 (9)0.0442 (9)0.0326 (7)0.0081 (7)0.0104 (6)0.0010 (6)
C200.0523 (11)0.0394 (9)0.0342 (7)0.0095 (8)0.0173 (7)0.0039 (6)
C210.0572 (11)0.0440 (10)0.0420 (8)0.0136 (9)0.0080 (8)0.0043 (8)
C220.0644 (12)0.0451 (10)0.0382 (8)0.0018 (9)0.0134 (8)0.0016 (7)
C230.0826 (15)0.0382 (10)0.0439 (9)0.0005 (10)0.0338 (10)0.0023 (7)
C240.0805 (16)0.0423 (10)0.0721 (13)0.0186 (10)0.0425 (12)0.0021 (9)
C250.0571 (12)0.0490 (11)0.0547 (10)0.0142 (9)0.0245 (9)0.0023 (8)
C260.121 (2)0.0436 (11)0.0669 (12)0.0086 (12)0.0488 (13)0.0079 (9)
C270.0357 (9)0.0408 (9)0.0342 (7)0.0030 (7)0.0134 (7)0.0018 (6)
C280.0722 (14)0.0531 (11)0.0492 (10)0.0007 (10)0.0197 (9)0.0172 (9)
N10.0424 (8)0.0394 (7)0.0310 (6)0.0016 (6)0.0173 (5)0.0024 (5)
O10.0378 (7)0.0524 (7)0.0517 (6)0.0038 (6)0.0234 (5)0.0031 (5)
O20.0601 (8)0.0701 (9)0.0386 (6)0.0181 (7)0.0037 (6)0.0108 (6)
O30.0660 (9)0.0462 (7)0.0395 (6)0.0111 (6)0.0108 (6)0.0080 (5)
Geometric parameters (Å, º) top
C1—C21.365 (3)C15—H15A0.9700
C1—C101.406 (2)C15—H15B0.9700
C1—H10.9300C16—C171.519 (2)
C2—C31.397 (3)C16—H16A0.9700
C2—H20.9300C16—H16B0.9700
C3—C41.346 (3)C17—C181.523 (2)
C3—H30.9300C17—H17A0.9700
C4—C51.412 (3)C17—H17B0.9700
C4—H40.9300C18—N11.460 (2)
C5—C61.410 (3)C18—C191.562 (2)
C5—C101.426 (2)C18—H180.9800
C6—C71.344 (3)C19—C201.519 (2)
C6—H60.9300C19—H190.9800
C7—C81.409 (2)C20—C251.386 (2)
C7—H70.9300C20—C211.390 (2)
C8—O11.3678 (19)C21—C221.382 (2)
C8—C91.370 (2)C21—H210.9300
C9—C101.432 (2)C22—C231.375 (3)
C9—C131.506 (2)C22—H220.9300
C11—O11.4286 (18)C23—C241.373 (3)
C11—C121.519 (2)C23—C261.513 (3)
C11—H11A0.9700C24—C251.388 (3)
C11—H11B0.9700C24—H240.9300
C12—C271.522 (2)C25—H250.9300
C12—C131.535 (2)C26—H26A0.9600
C12—C191.569 (2)C26—H26B0.9600
C13—N11.4755 (17)C26—H26C0.9600
C13—H130.9800C27—O21.1878 (19)
C14—N11.454 (2)C27—O31.3329 (19)
C14—C151.521 (2)C28—O31.4404 (19)
C14—H14A0.9700C28—H28A0.9600
C14—H14B0.9700C28—H28B0.9600
C15—C161.518 (3)C28—H28C0.9600
C2—C1—C10121.47 (19)C15—C16—H16A109.4
C2—C1—H1119.3C17—C16—H16A109.4
C10—C1—H1119.3C15—C16—H16B109.4
C1—C2—C3120.8 (2)C17—C16—H16B109.4
C1—C2—H2119.6H16A—C16—H16B108.0
C3—C2—H2119.6C16—C17—C18109.00 (14)
C4—C3—C2119.6 (2)C16—C17—H17A109.9
C4—C3—H3120.2C18—C17—H17A109.9
C2—C3—H3120.2C16—C17—H17B109.9
C3—C4—C5121.6 (2)C18—C17—H17B109.9
C3—C4—H4119.2H17A—C17—H17B108.3
C5—C4—H4119.2N1—C18—C17109.83 (13)
C6—C5—C4122.05 (18)N1—C18—C19104.42 (11)
C6—C5—C10118.72 (16)C17—C18—C19119.63 (14)
C4—C5—C10119.20 (19)N1—C18—H18107.5
C7—C6—C5121.31 (16)C17—C18—H18107.5
C7—C6—H6119.3C19—C18—H18107.5
C5—C6—H6119.3C20—C19—C18115.77 (12)
C6—C7—C8119.99 (17)C20—C19—C12120.39 (14)
C6—C7—H7120.0C18—C19—C12103.14 (12)
C8—C7—H7120.0C20—C19—H19105.4
O1—C8—C9123.71 (14)C18—C19—H19105.4
O1—C8—C7113.99 (14)C12—C19—H19105.4
C9—C8—C7122.24 (16)C25—C20—C21116.22 (16)
C8—C9—C10118.03 (14)C25—C20—C19117.67 (16)
C8—C9—C13119.49 (14)C21—C20—C19125.90 (15)
C10—C9—C13122.28 (14)C22—C21—C20121.74 (17)
C1—C10—C5117.31 (16)C22—C21—H21119.1
C1—C10—C9123.05 (15)C20—C21—H21119.1
C5—C10—C9119.60 (16)C23—C22—C21121.79 (18)
O1—C11—C12111.72 (12)C23—C22—H22119.1
O1—C11—H11A109.3C21—C22—H22119.1
C12—C11—H11A109.3C24—C23—C22116.82 (17)
O1—C11—H11B109.3C24—C23—C26121.77 (19)
C12—C11—H11B109.3C22—C23—C26121.4 (2)
H11A—C11—H11B107.9C23—C24—C25122.03 (18)
C11—C12—C27110.70 (12)C23—C24—H24119.0
C11—C12—C13107.11 (13)C25—C24—H24119.0
C27—C12—C13111.03 (12)C20—C25—C24121.38 (19)
C11—C12—C19115.12 (12)C20—C25—H25119.3
C27—C12—C19110.62 (12)C24—C25—H25119.3
C13—C12—C19101.87 (12)C23—C26—H26A109.5
N1—C13—C9115.07 (12)C23—C26—H26B109.5
N1—C13—C1299.57 (11)H26A—C26—H26B109.5
C9—C13—C12112.67 (12)C23—C26—H26C109.5
N1—C13—H13109.7H26A—C26—H26C109.5
C9—C13—H13109.7H26B—C26—H26C109.5
C12—C13—H13109.7O2—C27—O3122.72 (14)
N1—C14—C15109.00 (14)O2—C27—C12125.07 (15)
N1—C14—H14A109.9O3—C27—C12112.20 (13)
C15—C14—H14A109.9O3—C28—H28A109.5
N1—C14—H14B109.9O3—C28—H28B109.5
C15—C14—H14B109.9H28A—C28—H28B109.5
H14A—C14—H14B108.3O3—C28—H28C109.5
C16—C15—C14111.17 (15)H28A—C28—H28C109.5
C16—C15—H15A109.4H28B—C28—H28C109.5
C14—C15—H15A109.4C14—N1—C18111.72 (12)
C16—C15—H15B109.4C14—N1—C13117.86 (12)
C14—C15—H15B109.4C18—N1—C13103.62 (11)
H15A—C15—H15B108.0C8—O1—C11116.59 (12)
C15—C16—C17110.99 (14)C27—O3—C28116.17 (13)
C10—C1—C2—C30.1 (3)N1—C18—C19—C1210.03 (14)
C1—C2—C3—C40.9 (3)C17—C18—C19—C12133.35 (15)
C2—C3—C4—C50.4 (3)C11—C12—C19—C2036.45 (19)
C3—C4—C5—C6176.85 (19)C27—C12—C19—C2089.96 (16)
C3—C4—C5—C101.1 (3)C13—C12—C19—C20151.96 (13)
C4—C5—C6—C7177.23 (17)C11—C12—C19—C1894.42 (15)
C10—C5—C6—C70.8 (3)C27—C12—C19—C18139.17 (13)
C5—C6—C7—C81.9 (3)C13—C12—C19—C1821.08 (14)
C6—C7—C8—O1177.48 (15)C18—C19—C20—C25101.78 (17)
C6—C7—C8—C90.1 (2)C12—C19—C20—C25133.08 (16)
O1—C8—C9—C10174.48 (13)C18—C19—C20—C2172.7 (2)
C7—C8—C9—C102.6 (2)C12—C19—C20—C2152.4 (2)
O1—C8—C9—C130.6 (2)C25—C20—C21—C221.1 (3)
C7—C8—C9—C13177.70 (13)C19—C20—C21—C22175.66 (16)
C2—C1—C10—C51.6 (2)C20—C21—C22—C231.8 (3)
C2—C1—C10—C9179.52 (16)C21—C22—C23—C241.3 (3)
C6—C5—C10—C1175.96 (15)C21—C22—C23—C26176.75 (17)
C4—C5—C10—C12.1 (2)C22—C23—C24—C250.2 (3)
C6—C5—C10—C92.0 (2)C26—C23—C24—C25177.77 (17)
C4—C5—C10—C9179.92 (15)C21—C20—C25—C240.1 (3)
C8—C9—C10—C1174.23 (15)C19—C20—C25—C24175.10 (16)
C13—C9—C10—C10.7 (2)C23—C24—C25—C200.4 (3)
C8—C9—C10—C53.6 (2)C11—C12—C27—O2133.84 (18)
C13—C9—C10—C5178.58 (13)C13—C12—C27—O215.0 (2)
O1—C11—C12—C2760.21 (17)C19—C12—C27—O297.33 (19)
O1—C11—C12—C1360.97 (15)C11—C12—C27—O347.10 (18)
O1—C11—C12—C19173.42 (12)C13—C12—C27—O3165.93 (12)
C8—C9—C13—N195.53 (16)C19—C12—C27—O381.74 (16)
C10—C9—C13—N189.59 (17)C15—C14—N1—C1861.31 (18)
C8—C9—C13—C1217.69 (18)C15—C14—N1—C13178.87 (14)
C10—C9—C13—C12157.18 (13)C17—C18—N1—C1463.40 (17)
C11—C12—C13—N176.82 (13)C19—C18—N1—C14167.15 (12)
C27—C12—C13—N1162.21 (12)C17—C18—N1—C13168.72 (13)
C19—C12—C13—N144.41 (13)C19—C18—N1—C1339.26 (14)
C11—C12—C13—C945.60 (15)C9—C13—N1—C1462.47 (18)
C27—C12—C13—C975.37 (16)C12—C13—N1—C14176.84 (13)
C19—C12—C13—C9166.83 (11)C9—C13—N1—C18173.56 (13)
N1—C14—C15—C1656.0 (2)C12—C13—N1—C1852.87 (14)
C14—C15—C16—C1753.9 (2)C9—C8—O1—C1115.4 (2)
C15—C16—C17—C1854.2 (2)C7—C8—O1—C11167.33 (13)
C16—C17—C18—N158.24 (18)C12—C11—O1—C846.71 (18)
C16—C17—C18—C19178.89 (15)O2—C27—O3—C282.3 (2)
N1—C18—C19—C20123.56 (14)C12—C27—O3—C28178.56 (14)
C17—C18—C19—C200.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.982.583.496 (2)156
C7—H7···O1ii0.932.553.198 (2)127
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC28H29NO3
Mr427.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.4842 (9), 23.0129 (14), 9.1642 (5)
β (°) 112.725 (2)
V3)2233.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.976, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
27595, 5875, 3629
Rint0.044
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.141, 1.01
No. of reflections5875
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.17

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.982.583.496 (2)156.1
C7—H7···O1ii0.932.553.198 (2)127.2
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z.
 

Acknowledgements

BG thanks AMET University management, India, for their kind support. BG also acknowledge SAIF, IITMadras, India, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampagna, F., Carotti, A., Casini, G. & Macripo, M. (1990). Heterocycles, 31, 97–107.  CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGunasekaran, B., Kathiravan, S., Raghunathan, R., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2550.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKamala, E. T. S., Nirmala, S., Sudha, L., Kathiravan, S. & Raghunathan, R. (2009). Acta Cryst. E65, o1923–o1924.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMalonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241–242.  CAS Google Scholar
First citationMedda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123–128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267–8271.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonnet, P., Dallemagne, P., Guillom, J., Engueard, C., Stiebing, S., Tangue, J., Bureau, B., Rault, S., Auvray, P., Moslemi, S., Sourdaine, P. & Seralini, G. E. (2000). Bioorg. Med. Chem. 8, 945–955.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds