organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3232-o3233

Ethyl 4-hydr­­oxy-1-(2-morpholinopro­pano­yl)-2,6-di­phenyl-1,2,5,6-tetra­hydro­pyridin-3-carboxyl­ate

aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608-739, Republic of Korea, bInstitute of Structural Biology and Biophysics-2: Molecular Biophysics, Research Centre Jülich, D-52425 Jülich, Germany, and cDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 18 November 2009; accepted 23 November 2009; online 28 November 2009)

In the title compound, C27H32N2O5, the morpholine ring adopts a chair conformation with two C atoms deviating by −0.656 (4) and 0.679 (3) Å from the least-squares plane defined by the rest of atoms in the ring. The tetra­hydro­pyridine ring adopts a half-chair conformation. The mol­ecular structure is stabilized by a strong intra­molecular O—H⋯O inter­action, generating an S(6) motif. The crystal packing is stabilized by inter­molecular C—H⋯O inter­actions, generating a C(7) chain along the a axis, and R22(20) and R44(20) graph-set motifs.

Related literature

For related structures, see: Aridoss et al. (2009a[Aridoss, G., Gayathri, D., Velmurugan, D., Kim, M. S. & Jeong, Y. T. (2009a). Acta Cryst. E65, o1708-o1709.],b[Aridoss, G., Gayathri, D., Velmurugan, D., Kim, M. S. & Jeong, Y. T. (2009b). Acta Cryst. E65, o1994-o1995.]); Gayathri et al. (2008[Gayathri, D., Velmurugan, D., Aridoss, G., Kabilan, S. & Ravikumar, K. (2008). Acta Cryst. E64, o429.]); Kavitha et al. (2007[Kavitha, T., Ponnuswamy, S., Mohanraj, V., Ilango, S. S. & Ponnuswamy, M. N. (2007). Acta Cryst. E63, o3985.]); Ramachandran et al. (2008[Ramachandran, R., Aridoss, G., Velmurugan, D., Kabilan, S. & Jeong, Y. T. (2008). Acta Cryst. E64, o2009-o2010.]); Subha Nandhini et al. (2003[Subha Nandhini, M., Vijayakumar, V., Mostad, A., Sundaravadivelu, M. & Natarajan, S. (2003). Acta Cryst. E59, o1672-o1674.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C27H32N2O5

  • Mr = 464.55

  • Monoclinic, P 21 /c

  • a = 8.2251 (2) Å

  • b = 10.6219 (4) Å

  • c = 28.7046 (10) Å

  • β = 92.375 (2)°

  • V = 2505.66 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.983

  • 22895 measured reflections

  • 4850 independent reflections

  • 3353 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.145

  • S = 1.02

  • 4850 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4 0.82 1.83 2.542 (2) 145
C10—H10A⋯O1i 0.97 2.51 3.311 (3) 140
C11—H11A⋯O2ii 0.97 2.54 3.222 (3) 127
C26—H26B⋯O3iii 0.97 2.53 3.470 (4) 163
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA..]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA..]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

It has been reported earlier that 2,6-diarylpiperidin-4-ones are in rigid chair conformation with equatorial orientation of the two aryl groups (Gayathri et al. 2008; Kavitha et al. 2007). Upon chloroacetylation (Aridoss et al. 2009b) or bromoacetylation (Ramachandran et al. 2008) of the 2,6-diarylpiperidin-4-one, the normal chair conformation of the piperidone ring was changed into non-chair conformation of its preference. Similarly, bromopropionylation of ethyl 4-oxo-2,6-diphenyl-4-piperidin-3-carboxylate gave ethyl 1-(2-bromopropanoyl)-4-hydroxy-2,6-diphenyl- 1,2,5,6-tetrahydropyridin-3-carboxylate as the product (Aridoss et al. 2009a) wherein the normal chair conformation of the piperidone ring in starting material (Subha Nandhini et al. 2003) was changed into a non-chair conformation. In continuation of this, we report here the crystal structure of the title compound.

The sum of the angles at N1 [359.5 (6)°] and N2 [337.6 (6)°] are in accordance with sp2 and sp3 hybridization. The dihedral angle between the two phenyl rings is 35.0 (1)°. The morpholine ring adopts a chair conformation with atoms C9 and C11 deviating by -0.656 (4) and 0.679 (3) Å, respectively, from the least squares plane defined by N2/C8/O2/C10. The tetrahydropyridine ring adopts a half chair conformation. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the morpholine and tetrahydropyridine rings are q2 = 0.010 (3), 0.324 (2) Å, q3 = -0.572 (3), -0.287 (2) Å; QT = 0.573 (3), 0.433 (2) Å and θ = 177.8 (3), 131.5 (3)°, respectively.

The molecule is stabilized by a strong O—H···O intramolecular interaction, wherein, atom O3 acts as a donor to O4, generating an S(6) motif. The crystal packing is stabilized by C—H···O intermolecular interactions. Atoms C10 and C26 act as donors to O1 and O3, respectively, each generating a chain of C(7) running along the a axis, which in turn generates an R22(20) graph set motif. Atom C11 acts as a donor to O2 at (1 - x, 1/2 + y, 1/2 - z), generating an R44(20) graph set motif together with a C10—H10A···O1 intermolecular interaction.

Related literature top

For related structures, see: Aridoss et al. (2009a,b); Gayathri et al. (2008); Kavitha et al. (2007); Ramachandran et al. (2008); Subha Nandhini et al. (2003). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

To a solution of morpholine (1 equiv.) and dry K2CO3 in benzene, ethyl 1-(2-bromopropanoyl)-4-hydroxy-2,6-diphenyl-1,2,5,6-tetrahydropyridin-3- carboxylate (1 equiv.) in benzene (Aridoss et al., 2009a) was added slowly over a period of 15 minutes. Later the contents were refluxed over night. After the completion of reaction, the contents were poured into water and extracted twice with ethyl acetate. The combined organic extracts were then washed well with brine and dried over anhydrous sodium sulfate. This upon evaporation, column purification and subsequent recrystallization in distilled ethanol afforded fine white crystals suitable for X-ray diffraction study.

Refinement top

C-bound H atoms were refined using a riding model, with d(C—H) = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, 0.98 Å and Uiso(H) = 1.2Ueq(C) for CH, 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, and 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3. The H atom of the OH group was also refined using a riding model, with d(O—H) = 0.82 Å, but the Uiso(H) was refiend freely.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing of (I). For clarity, hydrogen atoms which are not involved in hydrogen bonding are omitted.
Ethyl 4-hydroxy-1-(2-morpholinopropanoyl)-2,6-diphenyl- 1,2,5,6-tetrahydropyridin-3-carboxylate top
Crystal data top
C27H32N2O5F(000) = 992
Mr = 464.55Dx = 1.231 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5113 reflections
a = 8.2251 (2) Åθ = 2.4–23.3°
b = 10.6219 (4) ŵ = 0.09 mm1
c = 28.7046 (10) ÅT = 293 K
β = 92.375 (2)°Block, colourless
V = 2505.66 (14) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4850 independent reflections
Radiation source: fine-focus sealed tube3353 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and ϕ scanθmax = 25.9°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker 1999)
h = 109
Tmin = 0.975, Tmax = 0.983k = 1312
22895 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0554P)2 + 1.1339P]
where P = (Fo2 + 2Fc2)/3
4850 reflections(Δ/σ)max < 0.001
308 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C27H32N2O5V = 2505.66 (14) Å3
Mr = 464.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2251 (2) ŵ = 0.09 mm1
b = 10.6219 (4) ÅT = 293 K
c = 28.7046 (10) Å0.30 × 0.20 × 0.20 mm
β = 92.375 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4850 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 1999)
3353 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.036
22895 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
4850 reflectionsΔρmin = 0.21 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09176 (19)0.60293 (18)0.27695 (5)0.0644 (5)
N20.2969 (2)0.54061 (17)0.28207 (6)0.0498 (5)
C10.2028 (2)0.6983 (2)0.36715 (7)0.0444 (5)
H1A0.28030.71790.34320.053*
C20.2787 (3)0.5948 (2)0.39704 (8)0.0509 (5)
H2A0.34120.54010.37750.061*
H2B0.35350.63230.42010.061*
O20.4987 (2)0.32639 (18)0.27766 (9)0.0972 (7)
O30.2277 (2)0.44389 (18)0.45418 (6)0.0688 (5)
H3A0.15940.39500.46370.118 (15)*
C30.1586 (3)0.5184 (2)0.42121 (7)0.0502 (5)
O40.0581 (2)0.36103 (18)0.46520 (6)0.0758 (5)
C40.0018 (3)0.5187 (2)0.40991 (7)0.0491 (5)
O50.2586 (2)0.43166 (18)0.41704 (7)0.0763 (5)
C50.0748 (2)0.6014 (2)0.37157 (7)0.0445 (5)
H5A0.14090.54550.35130.053*
N10.05448 (19)0.65010 (16)0.34259 (5)0.0433 (4)
C60.0380 (3)0.6339 (2)0.29554 (7)0.0486 (5)
C70.1903 (3)0.6443 (2)0.26673 (7)0.0509 (5)
H7A0.24530.72330.27530.061*
C80.2302 (3)0.4162 (2)0.27172 (10)0.0669 (7)
H8A0.22180.40360.23820.080*
H8B0.12190.40960.28370.080*
C90.3375 (3)0.3183 (3)0.29354 (13)0.0853 (9)
H9A0.34000.32820.32720.102*
H9B0.29330.23560.28610.102*
C100.5629 (3)0.4474 (3)0.28766 (12)0.0811 (9)
H10A0.67240.45270.27650.097*
H10B0.56900.46000.32120.097*
C110.4610 (3)0.5486 (2)0.26541 (9)0.0634 (7)
H11A0.50740.63030.27310.076*
H11B0.45840.53900.23180.076*
C120.1901 (2)0.7031 (2)0.38781 (7)0.0454 (5)
C130.2138 (3)0.7287 (3)0.43393 (8)0.0654 (7)
H13A0.15340.68550.45690.078*
C140.3262 (3)0.8179 (3)0.44672 (11)0.0777 (8)
H14A0.34110.83350.47810.093*
C150.4147 (3)0.8827 (3)0.41383 (12)0.0761 (8)
H15A0.49000.94270.42250.091*
C160.3922 (3)0.8588 (3)0.36786 (12)0.0791 (8)
H16A0.45180.90340.34510.095*
C170.2821 (3)0.7691 (3)0.35491 (9)0.0647 (7)
H17A0.26960.75280.32340.078*
C180.1703 (2)0.8208 (2)0.39239 (7)0.0456 (5)
C190.1431 (3)0.9284 (2)0.36661 (9)0.0683 (7)
H19A0.14000.92390.33420.082*
C200.1205 (4)1.0428 (3)0.38800 (12)0.0894 (10)
H20A0.10211.11480.37010.107*
C210.1254 (4)1.0502 (3)0.43555 (12)0.0841 (9)
H21A0.10991.12740.45000.101*
C220.1524 (3)0.9460 (3)0.46159 (9)0.0727 (8)
H22A0.15630.95150.49400.087*
C230.1744 (3)0.8312 (2)0.44022 (8)0.0577 (6)
H23A0.19230.75980.45840.069*
C240.1449 (3)0.6501 (3)0.21484 (8)0.0750 (8)
H24A0.24190.65670.19760.113*
H24B0.07710.72220.20860.113*
H24C0.08700.57500.20570.113*
C250.1051 (3)0.4311 (2)0.43333 (9)0.0593 (6)
C260.3741 (4)0.3489 (3)0.43944 (13)0.0938 (10)
H26A0.34030.33690.47190.113*
H26B0.48100.38750.43830.113*
C270.3819 (6)0.2296 (4)0.41630 (19)0.1500 (18)
H27A0.45780.17610.43130.225*
H27B0.27620.19120.41770.225*
H27C0.41690.24160.38430.225*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0516 (9)0.0898 (13)0.0509 (9)0.0112 (9)0.0078 (7)0.0060 (8)
N20.0478 (10)0.0492 (11)0.0528 (10)0.0081 (8)0.0058 (8)0.0110 (8)
C10.0400 (11)0.0524 (13)0.0408 (10)0.0027 (9)0.0002 (8)0.0027 (9)
C20.0457 (12)0.0547 (13)0.0518 (12)0.0047 (10)0.0029 (9)0.0057 (10)
O20.0619 (12)0.0616 (12)0.169 (2)0.0010 (9)0.0195 (12)0.0312 (13)
O30.0628 (10)0.0734 (12)0.0696 (11)0.0181 (10)0.0053 (9)0.0206 (9)
C30.0548 (13)0.0490 (13)0.0466 (12)0.0115 (10)0.0001 (10)0.0004 (10)
O40.0742 (12)0.0752 (12)0.0780 (12)0.0057 (10)0.0046 (9)0.0336 (10)
C40.0472 (12)0.0507 (13)0.0493 (12)0.0049 (10)0.0022 (9)0.0051 (10)
O50.0573 (10)0.0811 (13)0.0902 (13)0.0100 (9)0.0009 (9)0.0335 (10)
C50.0411 (11)0.0482 (12)0.0438 (11)0.0037 (9)0.0013 (9)0.0040 (9)
N10.0397 (9)0.0502 (10)0.0399 (9)0.0025 (8)0.0006 (7)0.0016 (8)
C60.0494 (12)0.0520 (13)0.0439 (11)0.0026 (10)0.0020 (9)0.0026 (10)
C70.0557 (13)0.0551 (14)0.0420 (11)0.0060 (11)0.0029 (9)0.0028 (10)
C80.0549 (14)0.0582 (15)0.0883 (18)0.0127 (12)0.0102 (13)0.0190 (14)
C90.0709 (18)0.0493 (16)0.137 (3)0.0089 (13)0.0176 (18)0.0140 (17)
C100.0524 (15)0.0664 (18)0.125 (3)0.0077 (13)0.0122 (15)0.0193 (17)
C110.0523 (13)0.0639 (16)0.0748 (16)0.0151 (12)0.0146 (12)0.0146 (13)
C120.0364 (10)0.0493 (12)0.0505 (12)0.0039 (9)0.0012 (9)0.0070 (10)
C130.0607 (14)0.0823 (18)0.0530 (13)0.0145 (13)0.0005 (11)0.0028 (13)
C140.0641 (16)0.093 (2)0.0767 (18)0.0074 (16)0.0106 (14)0.0208 (16)
C150.0513 (15)0.0607 (17)0.117 (3)0.0051 (12)0.0178 (15)0.0037 (17)
C160.0612 (16)0.078 (2)0.099 (2)0.0209 (14)0.0122 (15)0.0306 (17)
C170.0573 (14)0.0737 (17)0.0636 (15)0.0108 (13)0.0070 (11)0.0185 (13)
C180.0378 (11)0.0509 (13)0.0476 (12)0.0014 (9)0.0027 (9)0.0040 (10)
C190.0879 (19)0.0577 (16)0.0577 (14)0.0038 (13)0.0153 (13)0.0019 (12)
C200.118 (3)0.0547 (17)0.093 (2)0.0152 (16)0.0289 (19)0.0008 (16)
C210.091 (2)0.0642 (19)0.095 (2)0.0138 (16)0.0131 (17)0.0268 (17)
C220.0827 (19)0.075 (2)0.0602 (15)0.0021 (15)0.0043 (13)0.0204 (15)
C230.0636 (14)0.0596 (15)0.0502 (13)0.0008 (12)0.0064 (11)0.0055 (11)
C240.0797 (18)0.101 (2)0.0441 (13)0.0055 (16)0.0046 (12)0.0004 (14)
C250.0559 (14)0.0597 (15)0.0625 (14)0.0066 (12)0.0047 (11)0.0135 (12)
C260.0666 (18)0.096 (3)0.119 (3)0.0084 (17)0.0110 (17)0.041 (2)
C270.161 (4)0.083 (3)0.206 (5)0.035 (3)0.016 (4)0.014 (3)
Geometric parameters (Å, º) top
O1—C61.219 (2)C10—H10B0.9700
N2—C111.453 (3)C11—H11A0.9700
N2—C81.457 (3)C11—H11B0.9700
N2—C71.464 (3)C12—C131.373 (3)
C1—N11.475 (2)C12—C171.377 (3)
C1—C21.513 (3)C13—C141.384 (4)
C1—C181.518 (3)C13—H13A0.9300
C1—H1A0.9800C14—C151.356 (4)
C2—C31.474 (3)C14—H14A0.9300
C2—H2A0.9700C15—C161.364 (4)
C2—H2B0.9700C15—H15A0.9300
O2—C101.414 (3)C16—C171.376 (4)
O2—C91.423 (3)C16—H16A0.9300
O3—C31.342 (3)C17—H17A0.9300
O3—H3A0.8200C18—C191.375 (3)
C3—C41.345 (3)C18—C231.376 (3)
O4—C251.229 (3)C19—C201.378 (4)
C4—C251.445 (3)C19—H19A0.9300
C4—C51.513 (3)C20—C211.366 (4)
O5—C251.328 (3)C20—H20A0.9300
O5—C261.463 (3)C21—C221.349 (4)
C5—N11.471 (2)C21—H21A0.9300
C5—C121.524 (3)C22—C231.380 (3)
C5—H5A0.9800C22—H22A0.9300
N1—C61.363 (3)C23—H23A0.9300
C6—C71.533 (3)C24—H24A0.9600
C7—C241.522 (3)C24—H24B0.9600
C7—H7A0.9800C24—H24C0.9600
C8—C91.486 (4)C26—C271.430 (5)
C8—H8A0.9700C26—H26A0.9700
C8—H8B0.9700C26—H26B0.9700
C9—H9A0.9700C27—H27A0.9600
C9—H9B0.9700C27—H27B0.9600
C10—C111.491 (4)C27—H27C0.9600
C10—H10A0.9700
C11—N2—C8109.46 (18)C10—C11—H11A109.8
C11—N2—C7114.22 (18)N2—C11—H11B109.8
C8—N2—C7113.89 (18)C10—C11—H11B109.8
N1—C1—C2109.42 (17)H11A—C11—H11B108.3
N1—C1—C18111.54 (16)C13—C12—C17117.7 (2)
C2—C1—C18115.37 (17)C13—C12—C5123.4 (2)
N1—C1—H1A106.7C17—C12—C5118.8 (2)
C2—C1—H1A106.7C12—C13—C14120.9 (2)
C18—C1—H1A106.7C12—C13—H13A119.5
C3—C2—C1113.42 (17)C14—C13—H13A119.5
C3—C2—H2A108.9C15—C14—C13120.6 (3)
C1—C2—H2A108.9C15—C14—H14A119.7
C3—C2—H2B108.9C13—C14—H14A119.7
C1—C2—H2B108.9C14—C15—C16119.3 (3)
H2A—C2—H2B107.7C14—C15—H15A120.4
C10—O2—C9109.6 (2)C16—C15—H15A120.4
C3—O3—H3A109.5C15—C16—C17120.5 (3)
O3—C3—C4123.6 (2)C15—C16—H16A119.8
O3—C3—C2112.59 (19)C17—C16—H16A119.8
C4—C3—C2123.7 (2)C12—C17—C16121.1 (2)
C3—C4—C25118.4 (2)C12—C17—H17A119.5
C3—C4—C5122.17 (19)C16—C17—H17A119.5
C25—C4—C5119.27 (19)C19—C18—C23117.8 (2)
C25—O5—C26117.9 (2)C19—C18—C1118.91 (19)
N1—C5—C4109.94 (16)C23—C18—C1123.2 (2)
N1—C5—C12113.43 (17)C18—C19—C20121.0 (2)
C4—C5—C12114.99 (17)C18—C19—H19A119.5
N1—C5—H5A105.9C20—C19—H19A119.5
C4—C5—H5A105.9C21—C20—C19119.8 (3)
C12—C5—H5A105.9C21—C20—H20A120.1
C6—N1—C5118.14 (16)C19—C20—H20A120.1
C6—N1—C1124.31 (17)C22—C21—C20120.2 (3)
C5—N1—C1117.05 (15)C22—C21—H21A119.9
O1—C6—N1121.15 (19)C20—C21—H21A119.9
O1—C6—C7120.23 (19)C21—C22—C23120.0 (3)
N1—C6—C7118.41 (18)C21—C22—H22A120.0
N2—C7—C24116.4 (2)C23—C22—H22A120.0
N2—C7—C6106.06 (17)C18—C23—C22121.1 (2)
C24—C7—C6110.97 (18)C18—C23—H23A119.5
N2—C7—H7A107.7C22—C23—H23A119.5
C24—C7—H7A107.7C7—C24—H24A109.5
C6—C7—H7A107.7C7—C24—H24B109.5
N2—C8—C9109.7 (2)H24A—C24—H24B109.5
N2—C8—H8A109.7C7—C24—H24C109.5
C9—C8—H8A109.7H24A—C24—H24C109.5
N2—C8—H8B109.7H24B—C24—H24C109.5
C9—C8—H8B109.7O4—C25—O5122.0 (2)
H8A—C8—H8B108.2O4—C25—C4124.3 (2)
O2—C9—C8111.6 (2)O5—C25—C4113.7 (2)
O2—C9—H9A109.3C27—C26—O5110.2 (3)
C8—C9—H9A109.3C27—C26—H26A109.6
O2—C9—H9B109.3O5—C26—H26A109.6
C8—C9—H9B109.3C27—C26—H26B109.6
H9A—C9—H9B108.0O5—C26—H26B109.6
O2—C10—C11111.7 (2)H26A—C26—H26B108.1
O2—C10—H10A109.3C26—C27—H27A109.5
C11—C10—H10A109.3C26—C27—H27B109.5
O2—C10—H10B109.3H27A—C27—H27B109.5
C11—C10—H10B109.3C26—C27—H27C109.5
H10A—C10—H10B107.9H27A—C27—H27C109.5
N2—C11—C10109.3 (2)H27B—C27—H27C109.5
N2—C11—H11A109.8
N1—C1—C2—C340.7 (2)C9—O2—C10—C1158.4 (3)
C18—C1—C2—C386.0 (2)C8—N2—C11—C1057.6 (3)
C1—C2—C3—O3167.93 (18)C7—N2—C11—C10173.3 (2)
C1—C2—C3—C415.2 (3)O2—C10—C11—N258.9 (3)
O3—C3—C4—C252.2 (3)N1—C5—C12—C13120.7 (2)
C2—C3—C4—C25174.4 (2)C4—C5—C12—C137.0 (3)
O3—C3—C4—C5178.2 (2)N1—C5—C12—C1762.6 (3)
C2—C3—C4—C51.6 (3)C4—C5—C12—C17169.6 (2)
C3—C4—C5—N114.9 (3)C17—C12—C13—C140.0 (4)
C25—C4—C5—N1161.11 (19)C5—C12—C13—C14176.7 (2)
C3—C4—C5—C12114.6 (2)C12—C13—C14—C150.5 (4)
C25—C4—C5—C1269.4 (3)C13—C14—C15—C160.2 (4)
C4—C5—N1—C6127.7 (2)C14—C15—C16—C170.6 (4)
C12—C5—N1—C6102.0 (2)C13—C12—C17—C160.9 (4)
C4—C5—N1—C144.5 (2)C5—C12—C17—C16177.7 (2)
C12—C5—N1—C185.8 (2)C15—C16—C17—C121.2 (4)
C2—C1—N1—C6113.0 (2)N1—C1—C18—C1971.5 (2)
C18—C1—N1—C6118.1 (2)C2—C1—C18—C19162.9 (2)
C2—C1—N1—C558.7 (2)N1—C1—C18—C23111.8 (2)
C18—C1—N1—C570.1 (2)C2—C1—C18—C2313.8 (3)
C5—N1—C6—O114.1 (3)C23—C18—C19—C200.1 (4)
C1—N1—C6—O1174.3 (2)C1—C18—C19—C20177.0 (3)
C5—N1—C6—C7160.63 (18)C18—C19—C20—C210.2 (5)
C1—N1—C6—C711.0 (3)C19—C20—C21—C220.1 (5)
C11—N2—C7—C2467.5 (3)C20—C21—C22—C230.4 (5)
C8—N2—C7—C2459.3 (3)C19—C18—C23—C220.1 (3)
C11—N2—C7—C6168.57 (18)C1—C18—C23—C22176.6 (2)
C8—N2—C7—C664.6 (2)C21—C22—C23—C180.4 (4)
O1—C6—C7—N2110.6 (2)C26—O5—C25—O42.3 (4)
N1—C6—C7—N264.2 (2)C26—O5—C25—C4178.2 (2)
O1—C6—C7—C2416.7 (3)C3—C4—C25—O44.8 (4)
N1—C6—C7—C24168.6 (2)C5—C4—C25—O4179.1 (2)
C11—N2—C8—C957.5 (3)C3—C4—C25—O5174.8 (2)
C7—N2—C8—C9173.2 (2)C5—C4—C25—O51.4 (3)
C10—O2—C9—C858.0 (3)C25—O5—C26—C2791.5 (4)
N2—C8—C9—O258.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O40.821.832.542 (2)145
C10—H10A···O1i0.972.513.311 (3)140
C11—H11A···O2ii0.972.543.222 (3)127
C26—H26B···O3iii0.972.533.470 (4)163
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC27H32N2O5
Mr464.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.2251 (2), 10.6219 (4), 28.7046 (10)
β (°) 92.375 (2)
V3)2505.66 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 1999)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
22895, 4850, 3353
Rint0.036
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.145, 1.02
No. of reflections4850
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O40.821.832.542 (2)145
C10—H10A···O1i0.972.513.311 (3)140
C11—H11A···O2ii0.972.543.222 (3)127
C26—H26B···O3iii0.972.533.470 (4)163
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z.
 

Acknowledgements

GA and YTJ acknowledge the support provided by the second stage of the BK21 program, Republic of Korea.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAridoss, G., Gayathri, D., Velmurugan, D., Kim, M. S. & Jeong, Y. T. (2009a). Acta Cryst. E65, o1708–o1709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAridoss, G., Gayathri, D., Velmurugan, D., Kim, M. S. & Jeong, Y. T. (2009b). Acta Cryst. E65, o1994–o1995.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA..  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGayathri, D., Velmurugan, D., Aridoss, G., Kabilan, S. & Ravikumar, K. (2008). Acta Cryst. E64, o429.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKavitha, T., Ponnuswamy, S., Mohanraj, V., Ilango, S. S. & Ponnuswamy, M. N. (2007). Acta Cryst. E63, o3985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRamachandran, R., Aridoss, G., Velmurugan, D., Kabilan, S. & Jeong, Y. T. (2008). Acta Cryst. E64, o2009–o2010.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubha Nandhini, M., Vijayakumar, V., Mostad, A., Sundaravadivelu, M. & Natarajan, S. (2003). Acta Cryst. E59, o1672–o1674.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3232-o3233
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds