metal-organic compounds
catena-Poly[diaquatris(μ3-biphenyl-2,2-dicarboxylato)disamarium(III)]
aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: weidanyi@nbu.edu.cn
The title compound, [Sm2(C14H8O4)3(H2O)2]n, is composed of one-dimensional chains and is isostructural with previously reported compounds [Wang et al. (2003). Eur. J. Inorg. Chem. pp. 1355–1360]. The contains two Sm atoms, each of which lies on a crystallographic twofold axis. Both crystallographically independent Sm atoms are coordinated by eight O atoms in a distorted dodecahedral arrangement. The polymeric chains run along [001]. Adjacent chains are connected through π–π interactions [centroid–centroid distance = 3.450 (2) Å], forming a two-dimensional supramolecular network.
Related literature
For background to the design and syntheses of lanthanide complexes and their potential applications as fluorescent probes, magnetic materials and catalysts, see: Barta et al. (2008); de Bettencourt-Dias et al. (2005), (2005); Chen et al. (2008); Fujita et al. (1994); Taniguchi & Takahei (1993). For the effect of the organic ligands on the structural framework of lanthanide complexes, see: Liu & Xu (2005); Wang et al. (2007); Yigit et al. (2006). For the use of multidentate O-donor ligands as organic spacers in the construction of these complexes, see: Lin et al. (2005); Zheng et al. (2008). For the coordination behaviour of 2,2′-biphenyldicarboxylate, see: Thirumurugan et al. (2003); Xu et al. (2006); Rui et al. (2007).
Experimental
Crystal data
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809046625/jh2091sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809046625/jh2091Isup2.hkl
A mixture of Sm(NO3)3.6H2O (0.222 g, 0.5 mmol) and 2,2'-diphenldicarboxylic acid (0.126 g, 0.5 mmol), H2O (5 ml), and H2C2O4 (0.080 g, 1 mmol), NaOH (0.040 g, 1 mmol) was sealed in a 25-ml stainless-steel reactor with Teflon liner, heated to 180°C for 4 days, and then cooled to room temperature. The products were filtered and colorless block crystals are obtained.
H atoms bonded to C atoms were placed in geometrically calulated positons and refined using a riding moldel, with Uiso(H) = 1.2Ueq(C). Water H atoms were found in difference Fourier synthesis and refined with th O—H distances fixed as initially found, with Uiso(H) = 1.2Ueq(O).
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Sm2(C14H8O4)3(H2O)2] | F(000) = 2064 |
Mr = 1057.34 | Dx = 1.965 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 12337 reflections |
a = 20.776 (4) Å | θ = 3.0–27.7° |
b = 21.441 (4) Å | µ = 3.33 mm−1 |
c = 8.2660 (17) Å | T = 293 K |
β = 103.94 (3)° | Block, colorless |
V = 3573.7 (13) Å3 | 0.39 × 0.34 × 0.27 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 3962 independent reflections |
Radiation source: fine-focus sealed tube | 3238 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.067 |
Detector resolution: 0 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ω scans | h = −26→26 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −27→27 |
Tmin = 0.261, Tmax = 0.409 | l = −10→10 |
15001 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.18 | w = 1/[σ2(Fo2) + 89.0505P] where P = (Fo2 + 2Fc2)/3 |
3962 reflections | (Δ/σ)max = 0.005 |
263 parameters | Δρmax = 2.31 e Å−3 |
0 restraints | Δρmin = −1.91 e Å−3 |
[Sm2(C14H8O4)3(H2O)2] | V = 3573.7 (13) Å3 |
Mr = 1057.34 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 20.776 (4) Å | µ = 3.33 mm−1 |
b = 21.441 (4) Å | T = 293 K |
c = 8.2660 (17) Å | 0.39 × 0.34 × 0.27 mm |
β = 103.94 (3)° |
Rigaku R-AXIS RAPID diffractometer | 3962 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 3238 reflections with I > 2σ(I) |
Tmin = 0.261, Tmax = 0.409 | Rint = 0.067 |
15001 measured reflections |
R[F2 > 2σ(F2)] = 0.066 | 0 restraints |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.18 | w = 1/[σ2(Fo2) + 89.0505P] where P = (Fo2 + 2Fc2)/3 |
3962 reflections | Δρmax = 2.31 e Å−3 |
263 parameters | Δρmin = −1.91 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sm1 | 0.0000 | 0.20641 (2) | 0.7500 | 0.01913 (15) | |
Sm2 | 0.0000 | 0.28693 (2) | 0.2500 | 0.01920 (15) | |
O1 | 0.0507 (3) | 0.1479 (3) | 0.5795 (7) | 0.0347 (14) | |
O2 | 0.0696 (3) | 0.2088 (2) | 0.3778 (7) | 0.0270 (12) | |
O3 | 0.0595 (3) | 0.2463 (3) | 0.0471 (7) | 0.0272 (12) | |
O4 | 0.0957 (3) | 0.1637 (3) | −0.0570 (7) | 0.0371 (15) | |
O5 | 0.0340 (3) | 0.3549 (3) | 0.4988 (7) | 0.0314 (14) | |
O6 | 0.0664 (3) | 0.2896 (2) | 0.7115 (7) | 0.0253 (12) | |
C1 | 0.0717 (4) | 0.1566 (4) | 0.4500 (9) | 0.0219 (15) | |
C2 | 0.0997 (4) | 0.1010 (4) | 0.3809 (10) | 0.0261 (17) | |
C3 | 0.0705 (5) | 0.0434 (4) | 0.3985 (11) | 0.038 (2) | |
H3A | 0.0340 | 0.0418 | 0.4451 | 0.045* | |
C4 | 0.0948 (6) | −0.0106 (4) | 0.3481 (12) | 0.047 (3) | |
H4A | 0.0750 | −0.0487 | 0.3608 | 0.056* | |
C5 | 0.1484 (6) | −0.0084 (5) | 0.2790 (11) | 0.051 (3) | |
H5A | 0.1650 | −0.0448 | 0.2430 | 0.062* | |
C6 | 0.1774 (5) | 0.0479 (5) | 0.2632 (12) | 0.043 (2) | |
H6A | 0.2147 | 0.0484 | 0.2194 | 0.051* | |
C7 | 0.1542 (4) | 0.1042 (4) | 0.3090 (10) | 0.0303 (19) | |
C8 | 0.1910 (4) | 0.1616 (4) | 0.2945 (10) | 0.0290 (18) | |
C9 | 0.2548 (5) | 0.1680 (5) | 0.3969 (12) | 0.043 (2) | |
H9A | 0.2710 | 0.1377 | 0.4768 | 0.051* | |
C10 | 0.2938 (5) | 0.2178 (5) | 0.3824 (14) | 0.049 (3) | |
H10A | 0.3359 | 0.2209 | 0.4529 | 0.059* | |
C11 | 0.2722 (5) | 0.2637 (6) | 0.2657 (14) | 0.047 (3) | |
H11A | 0.2996 | 0.2971 | 0.2555 | 0.057* | |
C12 | 0.2084 (5) | 0.2593 (5) | 0.1633 (10) | 0.037 (2) | |
H12A | 0.1926 | 0.2902 | 0.0849 | 0.045* | |
C13 | 0.1687 (4) | 0.2091 (4) | 0.1778 (11) | 0.0307 (19) | |
C14 | 0.1034 (4) | 0.2052 (4) | 0.0510 (10) | 0.0277 (17) | |
C15 | 0.0564 (4) | 0.3429 (3) | 0.6499 (10) | 0.0226 (16) | |
C16 | 0.0779 (4) | 0.3973 (3) | 0.7700 (9) | 0.0246 (17) | |
C17 | 0.1438 (4) | 0.3978 (4) | 0.8573 (10) | 0.0294 (18) | |
H17A | 0.1715 | 0.3649 | 0.8458 | 0.035* | |
C18 | 0.1689 (5) | 0.4476 (5) | 0.9620 (12) | 0.040 (2) | |
H18A | 0.2131 | 0.4478 | 1.0206 | 0.048* | |
C19 | 0.1282 (5) | 0.4962 (4) | 0.9784 (11) | 0.041 (2) | |
H19A | 0.1452 | 0.5300 | 1.0458 | 0.049* | |
C20 | 0.0622 (5) | 0.4954 (4) | 0.8956 (11) | 0.034 (2) | |
H20A | 0.0348 | 0.5282 | 0.9097 | 0.041* | |
C21 | 0.0358 (5) | 0.4454 (3) | 0.7900 (10) | 0.0278 (18) | |
O7 | 0.0919 (4) | 0.3610 (3) | 0.2356 (8) | 0.0474 (18) | |
H7B | 0.1218 | 0.3708 | 0.3270 | 0.050* | |
H7A | 0.1034 | 0.3561 | 0.1493 | 0.075* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sm1 | 0.0230 (3) | 0.0164 (3) | 0.0182 (3) | 0.000 | 0.0054 (2) | 0.000 |
Sm2 | 0.0226 (3) | 0.0174 (3) | 0.0179 (3) | 0.000 | 0.0056 (2) | 0.000 |
O1 | 0.054 (4) | 0.025 (3) | 0.033 (3) | 0.009 (3) | 0.025 (3) | 0.005 (2) |
O2 | 0.025 (3) | 0.023 (3) | 0.033 (3) | 0.005 (2) | 0.009 (2) | 0.002 (2) |
O3 | 0.029 (3) | 0.031 (3) | 0.023 (3) | 0.005 (2) | 0.009 (2) | −0.001 (2) |
O4 | 0.041 (4) | 0.032 (3) | 0.032 (3) | 0.013 (3) | −0.004 (3) | −0.007 (2) |
O5 | 0.047 (4) | 0.027 (3) | 0.022 (3) | −0.007 (3) | 0.012 (3) | −0.003 (2) |
O6 | 0.022 (3) | 0.019 (3) | 0.037 (3) | −0.004 (2) | 0.011 (2) | 0.001 (2) |
C1 | 0.017 (4) | 0.025 (4) | 0.024 (4) | 0.004 (3) | 0.007 (3) | −0.002 (3) |
C2 | 0.031 (4) | 0.023 (4) | 0.023 (4) | 0.012 (3) | 0.004 (3) | 0.000 (3) |
C3 | 0.051 (6) | 0.028 (4) | 0.034 (5) | 0.002 (4) | 0.010 (4) | 0.000 (3) |
C4 | 0.077 (8) | 0.024 (5) | 0.036 (6) | 0.004 (5) | 0.007 (5) | 0.000 (4) |
C5 | 0.090 (9) | 0.038 (5) | 0.018 (5) | 0.029 (6) | −0.001 (5) | −0.008 (4) |
C6 | 0.042 (6) | 0.047 (6) | 0.037 (5) | 0.025 (5) | 0.004 (4) | −0.009 (4) |
C7 | 0.033 (5) | 0.035 (5) | 0.018 (4) | 0.014 (4) | −0.002 (3) | −0.004 (3) |
C8 | 0.021 (4) | 0.039 (5) | 0.029 (4) | 0.010 (3) | 0.009 (3) | −0.010 (3) |
C9 | 0.031 (5) | 0.057 (6) | 0.038 (5) | 0.022 (5) | 0.005 (4) | −0.015 (4) |
C10 | 0.022 (5) | 0.069 (7) | 0.054 (7) | 0.004 (5) | 0.006 (4) | −0.028 (5) |
C11 | 0.032 (5) | 0.058 (7) | 0.053 (7) | −0.015 (5) | 0.015 (5) | −0.023 (5) |
C12 | 0.043 (6) | 0.061 (6) | 0.010 (4) | −0.005 (5) | 0.012 (4) | −0.007 (3) |
C13 | 0.019 (4) | 0.037 (5) | 0.036 (5) | 0.005 (3) | 0.006 (3) | −0.008 (3) |
C14 | 0.030 (4) | 0.027 (4) | 0.026 (4) | −0.004 (3) | 0.006 (3) | 0.003 (3) |
C15 | 0.018 (4) | 0.021 (4) | 0.032 (4) | 0.000 (3) | 0.013 (3) | −0.005 (3) |
C16 | 0.034 (5) | 0.019 (4) | 0.022 (4) | −0.006 (3) | 0.010 (3) | −0.002 (3) |
C17 | 0.034 (5) | 0.033 (4) | 0.026 (4) | −0.001 (4) | 0.017 (4) | −0.004 (3) |
C18 | 0.035 (5) | 0.048 (6) | 0.037 (5) | −0.009 (4) | 0.011 (4) | −0.016 (4) |
C19 | 0.055 (6) | 0.040 (5) | 0.031 (5) | −0.017 (5) | 0.016 (4) | −0.017 (4) |
C20 | 0.049 (6) | 0.019 (4) | 0.043 (5) | −0.006 (4) | 0.026 (4) | −0.009 (3) |
C21 | 0.047 (5) | 0.015 (3) | 0.027 (4) | −0.007 (3) | 0.019 (4) | −0.001 (3) |
O7 | 0.053 (4) | 0.052 (4) | 0.043 (4) | −0.026 (4) | 0.023 (3) | −0.018 (3) |
Sm1—O1i | 2.321 (6) | C4—H4A | 0.9300 |
Sm1—O1 | 2.321 (6) | C5—C6 | 1.370 (15) |
Sm1—O6 | 2.322 (5) | C5—H5A | 0.9300 |
Sm1—O6i | 2.322 (5) | C6—C7 | 1.386 (11) |
Sm1—O4ii | 2.410 (6) | C6—H6A | 0.9300 |
Sm1—O4iii | 2.410 (6) | C7—C8 | 1.469 (13) |
Sm1—O3iii | 2.613 (5) | C8—C9 | 1.397 (12) |
Sm1—O3ii | 2.613 (5) | C8—C13 | 1.403 (12) |
Sm1—C14iii | 2.869 (8) | C9—C10 | 1.362 (15) |
Sm1—C14ii | 2.869 (8) | C9—H9A | 0.9300 |
Sm2—O2ii | 2.298 (5) | C10—C11 | 1.375 (16) |
Sm2—O2 | 2.298 (5) | C10—H10A | 0.9300 |
Sm2—O3ii | 2.469 (6) | C11—C12 | 1.394 (13) |
Sm2—O3 | 2.469 (6) | C11—H11A | 0.9300 |
Sm2—O5 | 2.480 (5) | C12—C13 | 1.377 (13) |
Sm2—O5ii | 2.480 (5) | C12—H12A | 0.9300 |
Sm2—O7 | 2.509 (6) | C13—C14 | 1.503 (11) |
Sm2—O7ii | 2.509 (6) | C14—Sm1iv | 2.869 (8) |
O1—C1 | 1.264 (9) | C15—C16 | 1.527 (10) |
O2—C1 | 1.263 (9) | C16—C17 | 1.387 (12) |
O3—C14 | 1.264 (10) | C16—C21 | 1.388 (11) |
O3—Sm1iv | 2.613 (5) | C17—C18 | 1.394 (12) |
O4—C14 | 1.244 (10) | C17—H17A | 0.9300 |
O4—Sm1iv | 2.410 (6) | C18—C19 | 1.369 (14) |
O5—C15 | 1.250 (10) | C18—H18A | 0.9300 |
O6—C15 | 1.248 (9) | C19—C20 | 1.376 (14) |
C1—C2 | 1.498 (10) | C19—H19A | 0.9300 |
C2—C3 | 1.399 (12) | C20—C21 | 1.407 (11) |
C2—C7 | 1.402 (12) | C20—H20A | 0.9300 |
C3—C4 | 1.369 (13) | C21—C21i | 1.477 (18) |
C3—H3A | 0.9300 | O7—H7B | 0.8798 |
C4—C5 | 1.370 (16) | O7—H7A | 0.8122 |
O1i—Sm1—O1 | 114.5 (3) | C14—O3—Sm2 | 134.8 (5) |
O1i—Sm1—O6 | 150.4 (2) | C14—O3—Sm1iv | 88.3 (5) |
O1—Sm1—O6 | 87.7 (2) | Sm2—O3—Sm1iv | 123.6 (2) |
O1i—Sm1—O6i | 87.7 (2) | C14—O4—Sm1iv | 98.4 (5) |
O1—Sm1—O6i | 150.4 (2) | C15—O5—Sm2 | 132.1 (5) |
O6—Sm1—O6i | 79.7 (3) | C15—O6—Sm1 | 135.5 (5) |
O1i—Sm1—O4ii | 76.9 (2) | O2—C1—O1 | 123.5 (7) |
O1—Sm1—O4ii | 79.4 (2) | O2—C1—C2 | 119.8 (7) |
O6—Sm1—O4ii | 128.6 (2) | O1—C1—C2 | 116.7 (7) |
O6i—Sm1—O4ii | 87.7 (2) | C3—C2—C7 | 120.1 (8) |
O1i—Sm1—O4iii | 79.4 (2) | C3—C2—C1 | 116.4 (8) |
O1—Sm1—O4iii | 76.9 (2) | C7—C2—C1 | 123.4 (7) |
O6—Sm1—O4iii | 87.7 (2) | C4—C3—C2 | 121.0 (10) |
O6i—Sm1—O4iii | 128.6 (2) | C4—C3—H3A | 119.5 |
O4ii—Sm1—O4iii | 135.3 (3) | C2—C3—H3A | 119.5 |
O1i—Sm1—O3iii | 77.7 (2) | C3—C4—C5 | 119.7 (10) |
O1—Sm1—O3iii | 124.5 (2) | C3—C4—H4A | 120.2 |
O6—Sm1—O3iii | 73.45 (19) | C5—C4—H4A | 120.2 |
O6i—Sm1—O3iii | 77.39 (19) | C6—C5—C4 | 119.4 (9) |
O4ii—Sm1—O3iii | 151.0 (2) | C6—C5—H5A | 120.3 |
O4iii—Sm1—O3iii | 51.29 (18) | C4—C5—H5A | 120.3 |
O1i—Sm1—O3ii | 124.5 (2) | C5—C6—C7 | 123.5 (11) |
O1—Sm1—O3ii | 77.7 (2) | C5—C6—H6A | 118.2 |
O6—Sm1—O3ii | 77.39 (19) | C7—C6—H6A | 118.2 |
O6i—Sm1—O3ii | 73.45 (19) | C6—C7—C2 | 116.3 (9) |
O4ii—Sm1—O3ii | 51.29 (18) | C6—C7—C8 | 119.1 (9) |
O4iii—Sm1—O3ii | 151.0 (2) | C2—C7—C8 | 124.4 (7) |
O3iii—Sm1—O3ii | 141.8 (2) | C9—C8—C13 | 117.0 (9) |
O1i—Sm1—C14iii | 79.8 (2) | C9—C8—C7 | 118.0 (8) |
O1—Sm1—C14iii | 99.6 (2) | C13—C8—C7 | 124.9 (7) |
O6—Sm1—C14iii | 77.3 (2) | C10—C9—C8 | 121.4 (10) |
O6i—Sm1—C14iii | 103.5 (2) | C10—C9—H9A | 119.3 |
O4ii—Sm1—C14iii | 153.7 (2) | C8—C9—H9A | 119.3 |
O4iii—Sm1—C14iii | 25.4 (2) | C9—C10—C11 | 121.5 (9) |
O3iii—Sm1—C14iii | 26.1 (2) | C9—C10—H10A | 119.3 |
O3ii—Sm1—C14iii | 154.7 (2) | C11—C10—H10A | 119.3 |
O1i—Sm1—C14ii | 99.6 (2) | C10—C11—C12 | 118.6 (10) |
O1—Sm1—C14ii | 79.8 (2) | C10—C11—H11A | 120.7 |
O6—Sm1—C14ii | 103.5 (2) | C12—C11—H11A | 120.7 |
O6i—Sm1—C14ii | 77.3 (2) | C13—C12—C11 | 120.2 (10) |
O4ii—Sm1—C14ii | 25.4 (2) | C13—C12—H12A | 119.9 |
O4iii—Sm1—C14ii | 153.7 (2) | C11—C12—H12A | 119.9 |
O3iii—Sm1—C14ii | 154.7 (2) | C12—C13—C8 | 121.4 (8) |
O3ii—Sm1—C14ii | 26.1 (2) | C12—C13—C14 | 116.2 (8) |
C14iii—Sm1—C14ii | 179.0 (3) | C8—C13—C14 | 122.1 (8) |
O2ii—Sm2—O2 | 86.4 (3) | O4—C14—O3 | 120.9 (8) |
O2ii—Sm2—O3ii | 72.10 (19) | O4—C14—C13 | 118.7 (8) |
O2—Sm2—O3ii | 78.1 (2) | O3—C14—C13 | 120.2 (7) |
O2ii—Sm2—O3 | 78.1 (2) | O4—C14—Sm1iv | 56.2 (4) |
O2—Sm2—O3 | 72.10 (19) | O3—C14—Sm1iv | 65.5 (4) |
O3ii—Sm2—O3 | 138.7 (3) | C13—C14—Sm1iv | 164.9 (6) |
O2ii—Sm2—O5 | 146.3 (2) | O6—C15—O5 | 125.6 (7) |
O2—Sm2—O5 | 91.4 (2) | O6—C15—C16 | 116.1 (7) |
O3ii—Sm2—O5 | 74.51 (19) | O5—C15—C16 | 118.2 (7) |
O3—Sm2—O5 | 132.9 (2) | C17—C16—C21 | 120.2 (7) |
O2ii—Sm2—O5ii | 91.4 (2) | C17—C16—C15 | 116.3 (7) |
O2—Sm2—O5ii | 146.3 (2) | C21—C16—C15 | 123.5 (7) |
O3ii—Sm2—O5ii | 132.9 (2) | C16—C17—C18 | 120.3 (8) |
O3—Sm2—O5ii | 74.51 (19) | C16—C17—H17A | 119.9 |
O5—Sm2—O5ii | 108.0 (3) | C18—C17—H17A | 119.9 |
O2ii—Sm2—O7 | 147.4 (2) | C19—C18—C17 | 119.8 (9) |
O2—Sm2—O7 | 94.7 (2) | C19—C18—H18A | 120.1 |
O3ii—Sm2—O7 | 140.0 (2) | C17—C18—H18A | 120.1 |
O3—Sm2—O7 | 71.3 (2) | C18—C19—C20 | 120.4 (8) |
O5—Sm2—O7 | 66.4 (2) | C18—C19—H19A | 119.8 |
O5ii—Sm2—O7 | 69.9 (2) | C20—C19—H19A | 119.8 |
O2ii—Sm2—O7ii | 94.7 (2) | C19—C20—C21 | 120.7 (9) |
O2—Sm2—O7ii | 147.4 (2) | C19—C20—H20A | 119.6 |
O3ii—Sm2—O7ii | 71.3 (2) | C21—C20—H20A | 119.6 |
O3—Sm2—O7ii | 140.0 (2) | C16—C21—C20 | 118.6 (8) |
O5—Sm2—O7ii | 69.9 (2) | C16—C21—C21i | 122.8 (6) |
O5ii—Sm2—O7ii | 66.4 (2) | C20—C21—C21i | 118.5 (7) |
O7—Sm2—O7ii | 101.4 (4) | Sm2—O7—H7B | 119.9 |
C1—O1—Sm1 | 137.2 (5) | Sm2—O7—H7A | 110.3 |
C1—O2—Sm2 | 144.0 (5) | H7B—O7—H7A | 119.3 |
Symmetry codes: (i) −x, y, −z+3/2; (ii) −x, y, −z+1/2; (iii) x, y, z+1; (iv) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | [Sm2(C14H8O4)3(H2O)2] |
Mr | 1057.34 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 20.776 (4), 21.441 (4), 8.2660 (17) |
β (°) | 103.94 (3) |
V (Å3) | 3573.7 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.33 |
Crystal size (mm) | 0.39 × 0.34 × 0.27 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.261, 0.409 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15001, 3962, 3238 |
Rint | 0.067 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.066, 0.130, 1.18 |
No. of reflections | 3962 |
No. of parameters | 263 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + 89.0505P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 2.31, −1.91 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).
Acknowledgements
This project was sponsored by K. C. Wong Magna Fund in Ningbo University and supported by the Zhejiang Provincial Science and Technology Agency project (2007 F70009).
References
Barta, C. A., Bayly, S. R., Read, P. W., Patrick, B. O., Thompson, R. C. & Orvig, C. (2008). Inorg. Chem. 47, 2280–2293. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bettencourt-Dias, A. de (2005). Inorg. Chem. 44, 2734–2741. Web of Science PubMed Google Scholar
Chen, F. F., Qian, Z. Q., Liu, Z. W., Nie, D. B., Chen, Z. Q. & Huang, C. H. (2008). Inorg. Chem. 47, 2507–2513. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152. CSD CrossRef CAS Web of Science Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Lin, Z.-Z., Jiang, F.-L., Chen, L., Yuan, D.-P. & Hong, M.-C. (2005). Inorg. Chem. 44, 73–76. Web of Science CSD CrossRef PubMed CAS Google Scholar
Liu, Q. Y. & Xu, L. (2005). Eur. J. Inorg. Chem. pp. 3458–3466. Web of Science CSD CrossRef Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Rui, Y., Yu-Qi, L. & Wen, Y. (2007). Acta Cryst. E63, m2899–m2900. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taniguchi, M. & Takahei, K. (1993). J. Appl. Phys. 73, 943–948. CrossRef CAS Web of Science Google Scholar
Thirumurugan, A., Pati, S. K., Green, M. A. & Natarajan, S. (2003). J. Mater. Chem. 13, 2937–2941. Web of Science CSD CrossRef CAS Google Scholar
Wang, H. S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D. Z. & Yan, S. P. (2007). Cryst. Growth Des. 7, 1851–1857. Web of Science CSD CrossRef CAS Google Scholar
Wang, Y.-B., Zheng, X.-J., Zhuang, W.-J. & Jin, L.-P. (2003). Eur. J. Inorg. Chem. pp. 1355–1360. CSD CrossRef Google Scholar
Xu, X.-X., Lu, Y., Wang, E.-B., Ma, Y. & Bai, X.-L. (2006). Cryst. Growth Des. 6, 2029–2035. Web of Science CSD CrossRef CAS Google Scholar
Yigit, M. V., Biyikli, K., Moulton, B. & MacDonald, J. C. (2006). Cryst. Growth Des. 6, 63–69. Web of Science CSD CrossRef CAS Google Scholar
Zheng, Y.-Q., Lin, J.-L., Xu, W., Xie, H.-Z., Sun, J. & Wang, X.-W. (2008). Inorg. Chem. 47, 10280–10287. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Design and syntheses of lanthanide complexes are of great interest due to their various topological networks and potential applications in fluorescent probes, magnetic materials, catalysts (Barta et al., 2008; Bettencout-de Dias, 2005; Chen et al., 2008; Fujita et al., 1994; Taniguchi & Takahei, 1993). As reported in literature, the geometries and properties of organic ligands have great effect on structural framework of lanthanide complexes. So much effort has been devoted to modify the building blocks to control the products by selection of appropriate organic ligands (Liu & Xu, 2005; Wang et al., 2007; Yigit et al., 2006). Multidentae O donor ligands have been employed extensively as organic spacers in the construction of these complexes, such as α,ω-dicarboxylate and 1,3,5-benzenetricarboxylate (Lin et al., 2005; Zheng et al., 2008). Recently, research suggests that 2,2'-biphenyldicarboxylate (dpdc) possesses intriguing coordination behaviors to afford new coordination polymers (Thirumurugan et al., 2003; Xu, et al., 2006; Rui, et al., 2007). In this articles, we will report a new coordination polymers [Sm2(C14H8O4)3(H2O)2]n.
The crystal structure of the title compound (I) consists of one-dimensional chains of [Sm2(C14H8O4)3(H2O)2]n. (Fig 1). The asymmetric unit consists of two Sm atoms, each of which lies on the crystallographic twofold axis. Both crystallographically independent Sm atoms are coordinated to eight oxygen atoms and have a distorted dodecahedral arrangement. The Sm(1)—O (carboxylate) distances fall in the range 2.320 (5)–2.615 (5) Å, and the O—Sm(1)—O bond angles are in the range 25.5 (2)–153.5 (2)°. While the Sm(2)—O (carboxylate) bond lengths vary from 2.301 (5) Å to 2.480 (5))Å, and the Sm(2)—O (aqua) distances are both 2.540 (6) Å. The O—Sm(2)—O bond angles range from 66.8 (2)–147.2 (2)°. The coordination environments of two Sm atoms are different. The Sm(1) is coordinated to one tetradentate dpdc ligand and four pentadentate dpdc ligands, however, the Sm(2) is bonded to two tetradentate dpdc ligands, two pentadentate dpdc ligands, and two coordinated water molecules. The Sm atoms are bridged by the two types dpdc ligands to afford one-dimensional infinite polymeric chain which run along the [001] direction. As reported in documents, the one-dimensional chain looks like a pinwheel, the Sm atoms are at the center of pinwheel. The parallel phenyl rings of adjacent chains are interdigitaed. The two-dimensional supramolecule networks are formed by π-π interactions between these phenyl rings.