metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1553-m1554

catena-Poly[di­aqua­tris­(μ3-bi­phenyl-2,2-di­carboxyl­ato)disamarium(III)]

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: weidanyi@nbu.edu.cn

(Received 9 July 2009; accepted 5 November 2009; online 11 November 2009)

The title compound, [Sm2(C14H8O4)3(H2O)2]n, is composed of one-dimensional chains and is isostructural with previously reported compounds [Wang et al. (2003[Wang, Y.-B., Zheng, X.-J., Zhuang, W.-J. & Jin, L.-P. (2003). Eur. J. Inorg. Chem. pp. 1355-1360.]). Eur. J. Inorg. Chem. pp. 1355–1360]. The asymmetric unit contains two Sm atoms, each of which lies on a crystallographic twofold axis. Both crystallographically independent Sm atoms are coordinated by eight O atoms in a distorted dodeca­hedral arrangement. The polymeric chains run along [001]. Adjacent chains are connected through ππ inter­actions [centroid–centroid distance = 3.450 (2) Å], forming a two-dimensional supra­molecular network.

Related literature

For background to the design and syntheses of lanthanide complexes and their potential applications as fluorescent probes, magnetic materials and catalysts, see: Barta et al. (2008[Barta, C. A., Bayly, S. R., Read, P. W., Patrick, B. O., Thompson, R. C. & Orvig, C. (2008). Inorg. Chem. 47, 2280-2293.]); de Bettencourt-Dias et al. (2005[Bettencourt-Dias, A. de (2005). Inorg. Chem. 44, 2734-2741.]), (2005); Chen et al. (2008[Chen, F. F., Qian, Z. Q., Liu, Z. W., Nie, D. B., Chen, Z. Q. & Huang, C. H. (2008). Inorg. Chem. 47, 2507-2513.]); Fujita et al. (1994[Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.]); Taniguchi & Takahei (1993[Taniguchi, M. & Takahei, K. (1993). J. Appl. Phys. 73, 943-948.]). For the effect of the organic ligands on the structural framework of lanthanide complexes, see: Liu & Xu (2005[Liu, Q. Y. & Xu, L. (2005). Eur. J. Inorg. Chem. pp. 3458-3466.]); Wang et al. (2007[Wang, H. S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D. Z. & Yan, S. P. (2007). Cryst. Growth Des. 7, 1851-1857.]); Yigit et al. (2006[Yigit, M. V., Biyikli, K., Moulton, B. & MacDonald, J. C. (2006). Cryst. Growth Des. 6, 63-69.]). For the use of multidentate O-donor ligands as organic spacers in the construction of these complexes, see: Lin et al. (2005[Lin, Z.-Z., Jiang, F.-L., Chen, L., Yuan, D.-P. & Hong, M.-C. (2005). Inorg. Chem. 44, 73-76.]); Zheng et al. (2008[Zheng, Y.-Q., Lin, J.-L., Xu, W., Xie, H.-Z., Sun, J. & Wang, X.-W. (2008). Inorg. Chem. 47, 10280-10287.]). For the coordination behaviour of 2,2′-biphenyl­dicarboxyl­ate, see: Thirumurugan et al. (2003[Thirumurugan, A., Pati, S. K., Green, M. A. & Natarajan, S. (2003). J. Mater. Chem. 13, 2937-2941.]); Xu et al. (2006[Xu, X.-X., Lu, Y., Wang, E.-B., Ma, Y. & Bai, X.-L. (2006). Cryst. Growth Des. 6, 2029-2035.]); Rui et al. (2007[Rui, Y., Yu-Qi, L. & Wen, Y. (2007). Acta Cryst. E63, m2899-m2900.]).

[Scheme 1]

Experimental

Crystal data
  • [Sm2(C14H8O4)3(H2O)2]

  • Mr = 1057.34

  • Monoclinic, C 2/c

  • a = 20.776 (4) Å

  • b = 21.441 (4) Å

  • c = 8.2660 (17) Å

  • β = 103.94 (3)°

  • V = 3573.7 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.33 mm−1

  • T = 293 K

  • 0.39 × 0.34 × 0.27 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.261, Tmax = 0.409

  • 15001 measured reflections

  • 3962 independent reflections

  • 3238 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.130

  • S = 1.18

  • 3962 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 2.31 e Å−3

  • Δρmin = −1.91 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Design and syntheses of lanthanide complexes are of great interest due to their various topological networks and potential applications in fluorescent probes, magnetic materials, catalysts (Barta et al., 2008; Bettencout-de Dias, 2005; Chen et al., 2008; Fujita et al., 1994; Taniguchi & Takahei, 1993). As reported in literature, the geometries and properties of organic ligands have great effect on structural framework of lanthanide complexes. So much effort has been devoted to modify the building blocks to control the products by selection of appropriate organic ligands (Liu & Xu, 2005; Wang et al., 2007; Yigit et al., 2006). Multidentae O donor ligands have been employed extensively as organic spacers in the construction of these complexes, such as α,ω-dicarboxylate and 1,3,5-benzenetricarboxylate (Lin et al., 2005; Zheng et al., 2008). Recently, research suggests that 2,2'-biphenyldicarboxylate (dpdc) possesses intriguing coordination behaviors to afford new coordination polymers (Thirumurugan et al., 2003; Xu, et al., 2006; Rui, et al., 2007). In this articles, we will report a new coordination polymers [Sm2(C14H8O4)3(H2O)2]n.

The crystal structure of the title compound (I) consists of one-dimensional chains of [Sm2(C14H8O4)3(H2O)2]n. (Fig 1). The asymmetric unit consists of two Sm atoms, each of which lies on the crystallographic twofold axis. Both crystallographically independent Sm atoms are coordinated to eight oxygen atoms and have a distorted dodecahedral arrangement. The Sm(1)—O (carboxylate) distances fall in the range 2.320 (5)–2.615 (5) Å, and the O—Sm(1)—O bond angles are in the range 25.5 (2)–153.5 (2)°. While the Sm(2)—O (carboxylate) bond lengths vary from 2.301 (5) Å to 2.480 (5))Å, and the Sm(2)—O (aqua) distances are both 2.540 (6) Å. The O—Sm(2)—O bond angles range from 66.8 (2)–147.2 (2)°. The coordination environments of two Sm atoms are different. The Sm(1) is coordinated to one tetradentate dpdc ligand and four pentadentate dpdc ligands, however, the Sm(2) is bonded to two tetradentate dpdc ligands, two pentadentate dpdc ligands, and two coordinated water molecules. The Sm atoms are bridged by the two types dpdc ligands to afford one-dimensional infinite polymeric chain which run along the [001] direction. As reported in documents, the one-dimensional chain looks like a pinwheel, the Sm atoms are at the center of pinwheel. The parallel phenyl rings of adjacent chains are interdigitaed. The two-dimensional supramolecule networks are formed by π-π interactions between these phenyl rings.

Related literature top

For background to the design and syntheses of lanthanide complexes and their potential applications as fluorescent probes, magnetic materials and catalysts, see: Barta et al. (2008); de Bettencourt-Dias et al. (2005), (2005); Chen et al. (2008); Fujita et al. (1994); Taniguchi & Takahei (1993). For the effect of the organic ligands on the structural framework of lanthanide complexes, see: Liu & Xu (2005); Wang et al. (2007); Yigit et al. (2006). For the use of multidentate O-donor ligands as organic spacers in the construction of these complexes, see: Lin et al. (2005); Zheng et al. (2008). For the coordination behaviour of 2,2'-biphenyldicarboxylate, see: Thirumurugan et al. (2003); Xu et al. (2006); Rui et al. (2007).

Experimental top

A mixture of Sm(NO3)3.6H2O (0.222 g, 0.5 mmol) and 2,2'-diphenldicarboxylic acid (0.126 g, 0.5 mmol), H2O (5 ml), and H2C2O4 (0.080 g, 1 mmol), NaOH (0.040 g, 1 mmol) was sealed in a 25-ml stainless-steel reactor with Teflon liner, heated to 180°C for 4 days, and then cooled to room temperature. The products were filtered and colorless block crystals are obtained.

Refinement top

H atoms bonded to C atoms were placed in geometrically calulated positons and refined using a riding moldel, with Uiso(H) = 1.2Ueq(C). Water H atoms were found in difference Fourier synthesis and refined with th O—H distances fixed as initially found, with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of complex molecule of (I). Displacement ellipsoids are drawn at the 45% probability level. (#1 = -x, y, 3/2 - z; #2 = x, y, z + 1; #3 = -x, y, 1/2 - z.)
[Figure 2] Fig. 2. two-dimensional supramolecular layer in (I).
catena-Poly[diaquatris(µ3-biphenyl-2,2-dicarboxylato)disamarium(III)] top
Crystal data top
[Sm2(C14H8O4)3(H2O)2]F(000) = 2064
Mr = 1057.34Dx = 1.965 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 12337 reflections
a = 20.776 (4) Åθ = 3.0–27.7°
b = 21.441 (4) ŵ = 3.33 mm1
c = 8.2660 (17) ÅT = 293 K
β = 103.94 (3)°Block, colorless
V = 3573.7 (13) Å30.39 × 0.34 × 0.27 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3962 independent reflections
Radiation source: fine-focus sealed tube3238 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 2626
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2727
Tmin = 0.261, Tmax = 0.409l = 1010
15001 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + 89.0505P]
where P = (Fo2 + 2Fc2)/3
3962 reflections(Δ/σ)max = 0.005
263 parametersΔρmax = 2.31 e Å3
0 restraintsΔρmin = 1.91 e Å3
Crystal data top
[Sm2(C14H8O4)3(H2O)2]V = 3573.7 (13) Å3
Mr = 1057.34Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.776 (4) ŵ = 3.33 mm1
b = 21.441 (4) ÅT = 293 K
c = 8.2660 (17) Å0.39 × 0.34 × 0.27 mm
β = 103.94 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3962 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3238 reflections with I > 2σ(I)
Tmin = 0.261, Tmax = 0.409Rint = 0.067
15001 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + 89.0505P]
where P = (Fo2 + 2Fc2)/3
3962 reflectionsΔρmax = 2.31 e Å3
263 parametersΔρmin = 1.91 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.00000.20641 (2)0.75000.01913 (15)
Sm20.00000.28693 (2)0.25000.01920 (15)
O10.0507 (3)0.1479 (3)0.5795 (7)0.0347 (14)
O20.0696 (3)0.2088 (2)0.3778 (7)0.0270 (12)
O30.0595 (3)0.2463 (3)0.0471 (7)0.0272 (12)
O40.0957 (3)0.1637 (3)0.0570 (7)0.0371 (15)
O50.0340 (3)0.3549 (3)0.4988 (7)0.0314 (14)
O60.0664 (3)0.2896 (2)0.7115 (7)0.0253 (12)
C10.0717 (4)0.1566 (4)0.4500 (9)0.0219 (15)
C20.0997 (4)0.1010 (4)0.3809 (10)0.0261 (17)
C30.0705 (5)0.0434 (4)0.3985 (11)0.038 (2)
H3A0.03400.04180.44510.045*
C40.0948 (6)0.0106 (4)0.3481 (12)0.047 (3)
H4A0.07500.04870.36080.056*
C50.1484 (6)0.0084 (5)0.2790 (11)0.051 (3)
H5A0.16500.04480.24300.062*
C60.1774 (5)0.0479 (5)0.2632 (12)0.043 (2)
H6A0.21470.04840.21940.051*
C70.1542 (4)0.1042 (4)0.3090 (10)0.0303 (19)
C80.1910 (4)0.1616 (4)0.2945 (10)0.0290 (18)
C90.2548 (5)0.1680 (5)0.3969 (12)0.043 (2)
H9A0.27100.13770.47680.051*
C100.2938 (5)0.2178 (5)0.3824 (14)0.049 (3)
H10A0.33590.22090.45290.059*
C110.2722 (5)0.2637 (6)0.2657 (14)0.047 (3)
H11A0.29960.29710.25550.057*
C120.2084 (5)0.2593 (5)0.1633 (10)0.037 (2)
H12A0.19260.29020.08490.045*
C130.1687 (4)0.2091 (4)0.1778 (11)0.0307 (19)
C140.1034 (4)0.2052 (4)0.0510 (10)0.0277 (17)
C150.0564 (4)0.3429 (3)0.6499 (10)0.0226 (16)
C160.0779 (4)0.3973 (3)0.7700 (9)0.0246 (17)
C170.1438 (4)0.3978 (4)0.8573 (10)0.0294 (18)
H17A0.17150.36490.84580.035*
C180.1689 (5)0.4476 (5)0.9620 (12)0.040 (2)
H18A0.21310.44781.02060.048*
C190.1282 (5)0.4962 (4)0.9784 (11)0.041 (2)
H19A0.14520.53001.04580.049*
C200.0622 (5)0.4954 (4)0.8956 (11)0.034 (2)
H20A0.03480.52820.90970.041*
C210.0358 (5)0.4454 (3)0.7900 (10)0.0278 (18)
O70.0919 (4)0.3610 (3)0.2356 (8)0.0474 (18)
H7B0.12180.37080.32700.050*
H7A0.10340.35610.14930.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.0230 (3)0.0164 (3)0.0182 (3)0.0000.0054 (2)0.000
Sm20.0226 (3)0.0174 (3)0.0179 (3)0.0000.0056 (2)0.000
O10.054 (4)0.025 (3)0.033 (3)0.009 (3)0.025 (3)0.005 (2)
O20.025 (3)0.023 (3)0.033 (3)0.005 (2)0.009 (2)0.002 (2)
O30.029 (3)0.031 (3)0.023 (3)0.005 (2)0.009 (2)0.001 (2)
O40.041 (4)0.032 (3)0.032 (3)0.013 (3)0.004 (3)0.007 (2)
O50.047 (4)0.027 (3)0.022 (3)0.007 (3)0.012 (3)0.003 (2)
O60.022 (3)0.019 (3)0.037 (3)0.004 (2)0.011 (2)0.001 (2)
C10.017 (4)0.025 (4)0.024 (4)0.004 (3)0.007 (3)0.002 (3)
C20.031 (4)0.023 (4)0.023 (4)0.012 (3)0.004 (3)0.000 (3)
C30.051 (6)0.028 (4)0.034 (5)0.002 (4)0.010 (4)0.000 (3)
C40.077 (8)0.024 (5)0.036 (6)0.004 (5)0.007 (5)0.000 (4)
C50.090 (9)0.038 (5)0.018 (5)0.029 (6)0.001 (5)0.008 (4)
C60.042 (6)0.047 (6)0.037 (5)0.025 (5)0.004 (4)0.009 (4)
C70.033 (5)0.035 (5)0.018 (4)0.014 (4)0.002 (3)0.004 (3)
C80.021 (4)0.039 (5)0.029 (4)0.010 (3)0.009 (3)0.010 (3)
C90.031 (5)0.057 (6)0.038 (5)0.022 (5)0.005 (4)0.015 (4)
C100.022 (5)0.069 (7)0.054 (7)0.004 (5)0.006 (4)0.028 (5)
C110.032 (5)0.058 (7)0.053 (7)0.015 (5)0.015 (5)0.023 (5)
C120.043 (6)0.061 (6)0.010 (4)0.005 (5)0.012 (4)0.007 (3)
C130.019 (4)0.037 (5)0.036 (5)0.005 (3)0.006 (3)0.008 (3)
C140.030 (4)0.027 (4)0.026 (4)0.004 (3)0.006 (3)0.003 (3)
C150.018 (4)0.021 (4)0.032 (4)0.000 (3)0.013 (3)0.005 (3)
C160.034 (5)0.019 (4)0.022 (4)0.006 (3)0.010 (3)0.002 (3)
C170.034 (5)0.033 (4)0.026 (4)0.001 (4)0.017 (4)0.004 (3)
C180.035 (5)0.048 (6)0.037 (5)0.009 (4)0.011 (4)0.016 (4)
C190.055 (6)0.040 (5)0.031 (5)0.017 (5)0.016 (4)0.017 (4)
C200.049 (6)0.019 (4)0.043 (5)0.006 (4)0.026 (4)0.009 (3)
C210.047 (5)0.015 (3)0.027 (4)0.007 (3)0.019 (4)0.001 (3)
O70.053 (4)0.052 (4)0.043 (4)0.026 (4)0.023 (3)0.018 (3)
Geometric parameters (Å, º) top
Sm1—O1i2.321 (6)C4—H4A0.9300
Sm1—O12.321 (6)C5—C61.370 (15)
Sm1—O62.322 (5)C5—H5A0.9300
Sm1—O6i2.322 (5)C6—C71.386 (11)
Sm1—O4ii2.410 (6)C6—H6A0.9300
Sm1—O4iii2.410 (6)C7—C81.469 (13)
Sm1—O3iii2.613 (5)C8—C91.397 (12)
Sm1—O3ii2.613 (5)C8—C131.403 (12)
Sm1—C14iii2.869 (8)C9—C101.362 (15)
Sm1—C14ii2.869 (8)C9—H9A0.9300
Sm2—O2ii2.298 (5)C10—C111.375 (16)
Sm2—O22.298 (5)C10—H10A0.9300
Sm2—O3ii2.469 (6)C11—C121.394 (13)
Sm2—O32.469 (6)C11—H11A0.9300
Sm2—O52.480 (5)C12—C131.377 (13)
Sm2—O5ii2.480 (5)C12—H12A0.9300
Sm2—O72.509 (6)C13—C141.503 (11)
Sm2—O7ii2.509 (6)C14—Sm1iv2.869 (8)
O1—C11.264 (9)C15—C161.527 (10)
O2—C11.263 (9)C16—C171.387 (12)
O3—C141.264 (10)C16—C211.388 (11)
O3—Sm1iv2.613 (5)C17—C181.394 (12)
O4—C141.244 (10)C17—H17A0.9300
O4—Sm1iv2.410 (6)C18—C191.369 (14)
O5—C151.250 (10)C18—H18A0.9300
O6—C151.248 (9)C19—C201.376 (14)
C1—C21.498 (10)C19—H19A0.9300
C2—C31.399 (12)C20—C211.407 (11)
C2—C71.402 (12)C20—H20A0.9300
C3—C41.369 (13)C21—C21i1.477 (18)
C3—H3A0.9300O7—H7B0.8798
C4—C51.370 (16)O7—H7A0.8122
O1i—Sm1—O1114.5 (3)C14—O3—Sm2134.8 (5)
O1i—Sm1—O6150.4 (2)C14—O3—Sm1iv88.3 (5)
O1—Sm1—O687.7 (2)Sm2—O3—Sm1iv123.6 (2)
O1i—Sm1—O6i87.7 (2)C14—O4—Sm1iv98.4 (5)
O1—Sm1—O6i150.4 (2)C15—O5—Sm2132.1 (5)
O6—Sm1—O6i79.7 (3)C15—O6—Sm1135.5 (5)
O1i—Sm1—O4ii76.9 (2)O2—C1—O1123.5 (7)
O1—Sm1—O4ii79.4 (2)O2—C1—C2119.8 (7)
O6—Sm1—O4ii128.6 (2)O1—C1—C2116.7 (7)
O6i—Sm1—O4ii87.7 (2)C3—C2—C7120.1 (8)
O1i—Sm1—O4iii79.4 (2)C3—C2—C1116.4 (8)
O1—Sm1—O4iii76.9 (2)C7—C2—C1123.4 (7)
O6—Sm1—O4iii87.7 (2)C4—C3—C2121.0 (10)
O6i—Sm1—O4iii128.6 (2)C4—C3—H3A119.5
O4ii—Sm1—O4iii135.3 (3)C2—C3—H3A119.5
O1i—Sm1—O3iii77.7 (2)C3—C4—C5119.7 (10)
O1—Sm1—O3iii124.5 (2)C3—C4—H4A120.2
O6—Sm1—O3iii73.45 (19)C5—C4—H4A120.2
O6i—Sm1—O3iii77.39 (19)C6—C5—C4119.4 (9)
O4ii—Sm1—O3iii151.0 (2)C6—C5—H5A120.3
O4iii—Sm1—O3iii51.29 (18)C4—C5—H5A120.3
O1i—Sm1—O3ii124.5 (2)C5—C6—C7123.5 (11)
O1—Sm1—O3ii77.7 (2)C5—C6—H6A118.2
O6—Sm1—O3ii77.39 (19)C7—C6—H6A118.2
O6i—Sm1—O3ii73.45 (19)C6—C7—C2116.3 (9)
O4ii—Sm1—O3ii51.29 (18)C6—C7—C8119.1 (9)
O4iii—Sm1—O3ii151.0 (2)C2—C7—C8124.4 (7)
O3iii—Sm1—O3ii141.8 (2)C9—C8—C13117.0 (9)
O1i—Sm1—C14iii79.8 (2)C9—C8—C7118.0 (8)
O1—Sm1—C14iii99.6 (2)C13—C8—C7124.9 (7)
O6—Sm1—C14iii77.3 (2)C10—C9—C8121.4 (10)
O6i—Sm1—C14iii103.5 (2)C10—C9—H9A119.3
O4ii—Sm1—C14iii153.7 (2)C8—C9—H9A119.3
O4iii—Sm1—C14iii25.4 (2)C9—C10—C11121.5 (9)
O3iii—Sm1—C14iii26.1 (2)C9—C10—H10A119.3
O3ii—Sm1—C14iii154.7 (2)C11—C10—H10A119.3
O1i—Sm1—C14ii99.6 (2)C10—C11—C12118.6 (10)
O1—Sm1—C14ii79.8 (2)C10—C11—H11A120.7
O6—Sm1—C14ii103.5 (2)C12—C11—H11A120.7
O6i—Sm1—C14ii77.3 (2)C13—C12—C11120.2 (10)
O4ii—Sm1—C14ii25.4 (2)C13—C12—H12A119.9
O4iii—Sm1—C14ii153.7 (2)C11—C12—H12A119.9
O3iii—Sm1—C14ii154.7 (2)C12—C13—C8121.4 (8)
O3ii—Sm1—C14ii26.1 (2)C12—C13—C14116.2 (8)
C14iii—Sm1—C14ii179.0 (3)C8—C13—C14122.1 (8)
O2ii—Sm2—O286.4 (3)O4—C14—O3120.9 (8)
O2ii—Sm2—O3ii72.10 (19)O4—C14—C13118.7 (8)
O2—Sm2—O3ii78.1 (2)O3—C14—C13120.2 (7)
O2ii—Sm2—O378.1 (2)O4—C14—Sm1iv56.2 (4)
O2—Sm2—O372.10 (19)O3—C14—Sm1iv65.5 (4)
O3ii—Sm2—O3138.7 (3)C13—C14—Sm1iv164.9 (6)
O2ii—Sm2—O5146.3 (2)O6—C15—O5125.6 (7)
O2—Sm2—O591.4 (2)O6—C15—C16116.1 (7)
O3ii—Sm2—O574.51 (19)O5—C15—C16118.2 (7)
O3—Sm2—O5132.9 (2)C17—C16—C21120.2 (7)
O2ii—Sm2—O5ii91.4 (2)C17—C16—C15116.3 (7)
O2—Sm2—O5ii146.3 (2)C21—C16—C15123.5 (7)
O3ii—Sm2—O5ii132.9 (2)C16—C17—C18120.3 (8)
O3—Sm2—O5ii74.51 (19)C16—C17—H17A119.9
O5—Sm2—O5ii108.0 (3)C18—C17—H17A119.9
O2ii—Sm2—O7147.4 (2)C19—C18—C17119.8 (9)
O2—Sm2—O794.7 (2)C19—C18—H18A120.1
O3ii—Sm2—O7140.0 (2)C17—C18—H18A120.1
O3—Sm2—O771.3 (2)C18—C19—C20120.4 (8)
O5—Sm2—O766.4 (2)C18—C19—H19A119.8
O5ii—Sm2—O769.9 (2)C20—C19—H19A119.8
O2ii—Sm2—O7ii94.7 (2)C19—C20—C21120.7 (9)
O2—Sm2—O7ii147.4 (2)C19—C20—H20A119.6
O3ii—Sm2—O7ii71.3 (2)C21—C20—H20A119.6
O3—Sm2—O7ii140.0 (2)C16—C21—C20118.6 (8)
O5—Sm2—O7ii69.9 (2)C16—C21—C21i122.8 (6)
O5ii—Sm2—O7ii66.4 (2)C20—C21—C21i118.5 (7)
O7—Sm2—O7ii101.4 (4)Sm2—O7—H7B119.9
C1—O1—Sm1137.2 (5)Sm2—O7—H7A110.3
C1—O2—Sm2144.0 (5)H7B—O7—H7A119.3
Symmetry codes: (i) x, y, z+3/2; (ii) x, y, z+1/2; (iii) x, y, z+1; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formula[Sm2(C14H8O4)3(H2O)2]
Mr1057.34
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)20.776 (4), 21.441 (4), 8.2660 (17)
β (°) 103.94 (3)
V3)3573.7 (13)
Z4
Radiation typeMo Kα
µ (mm1)3.33
Crystal size (mm)0.39 × 0.34 × 0.27
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.261, 0.409
No. of measured, independent and
observed [I > 2σ(I)] reflections
15001, 3962, 3238
Rint0.067
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.130, 1.18
No. of reflections3962
No. of parameters263
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + 89.0505P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.31, 1.91

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

 

Acknowledgements

This project was sponsored by K. C. Wong Magna Fund in Ningbo University and supported by the Zhejiang Provincial Science and Technology Agency project (2007 F70009).

References

First citationBarta, C. A., Bayly, S. R., Read, P. W., Patrick, B. O., Thompson, R. C. & Orvig, C. (2008). Inorg. Chem. 47, 2280–2293.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBettencourt-Dias, A. de (2005). Inorg. Chem. 44, 2734–2741.  Web of Science PubMed Google Scholar
First citationChen, F. F., Qian, Z. Q., Liu, Z. W., Nie, D. B., Chen, Z. Q. & Huang, C. H. (2008). Inorg. Chem. 47, 2507–2513.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152.  CSD CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLin, Z.-Z., Jiang, F.-L., Chen, L., Yuan, D.-P. & Hong, M.-C. (2005). Inorg. Chem. 44, 73–76.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, Q. Y. & Xu, L. (2005). Eur. J. Inorg. Chem. pp. 3458–3466.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRui, Y., Yu-Qi, L. & Wen, Y. (2007). Acta Cryst. E63, m2899–m2900.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaniguchi, M. & Takahei, K. (1993). J. Appl. Phys. 73, 943–948.  CrossRef CAS Web of Science Google Scholar
First citationThirumurugan, A., Pati, S. K., Green, M. A. & Natarajan, S. (2003). J. Mater. Chem. 13, 2937–2941.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, H. S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D. Z. & Yan, S. P. (2007). Cryst. Growth Des. 7, 1851–1857.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Y.-B., Zheng, X.-J., Zhuang, W.-J. & Jin, L.-P. (2003). Eur. J. Inorg. Chem. pp. 1355–1360.  CSD CrossRef Google Scholar
First citationXu, X.-X., Lu, Y., Wang, E.-B., Ma, Y. & Bai, X.-L. (2006). Cryst. Growth Des. 6, 2029–2035.  Web of Science CSD CrossRef CAS Google Scholar
First citationYigit, M. V., Biyikli, K., Moulton, B. & MacDonald, J. C. (2006). Cryst. Growth Des. 6, 63–69.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Y.-Q., Lin, J.-L., Xu, W., Xie, H.-Z., Sun, J. & Wang, X.-W. (2008). Inorg. Chem. 47, 10280–10287.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1553-m1554
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds