organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hydr­­oxy-6-[(4-hydr­­oxy-1-oxo-1,2-di­hydro­phthalazin-6-yl)carbon­yl]phthalazin-1(2H)-one

aDepartment of Chemistry, North University of China, Taiyuan, Shanxi 030051, People's Republic of China
*Correspondence e-mail: jfsong0129@gmail.com

(Received 16 October 2009; accepted 4 November 2009; online 11 November 2009)

In the crystal structure of the title compound, C17H10N4O5, the mol­ecules lie on twofold axes (through the ketone bridge C and O atoms). The dihedral angle between the two phthalazine rings is 52.25 (1)°. In the crystal, inter­molecular N—H⋯O and O—H⋯O inter­actions link the mol­ecules.

Related literature

For the acyl­ate reaction of polycarboxyl­ate with hydrazine hydrate, see: Benniston et al. (1999[Benniston, A. C., Yufit, D. S. & Howard, J. A. K. (1999). Acta Cryst. C55, 1535-1536.]); Hu et al. (2004[Hu, X. X., Xu, J. Q., Cheng, P., Chen, X. Y., Cui, X. B., Song, J. F., Yang, G. D. & Wang, T. G. (2004). Inorg. Chem. 43, 2261-2266.]).

[Scheme 1]

Experimental

Crystal data
  • C17H10N4O5

  • Mr = 350.29

  • Monoclinic, C 2/c

  • a = 11.576 (3) Å

  • b = 10.511 (3) Å

  • c = 12.274 (3) Å

  • β = 111.718 (4)°

  • V = 1387.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995[Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.987

  • 3800 measured reflections

  • 1370 independent reflections

  • 774 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.161

  • S = 0.99

  • 1370 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.85 1.76 2.581 (3) 163
N2—H2⋯O1ii 0.86 2.19 3.034 (4) 168
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In situ hydrothermal acylate reaction of multidentate aromatic polycarboxylate with hydrazine hydrate has been investigated (Benniston et al., 1999; Hu et al., 2004). We intend to select 3, 3'-4, 4'-benzophenonetetracarboxylic dianhydride as the ligand to continue the exploration of the in situ acylate reaction. However, the crystals of the title compound were obtained unintentionally as the harvested product of the hydrothermal reaction of 3, 3'-4, 4'-benzophenonetetracarboxylic dianhydride, CoCl2 and hydrazine hydrate. In the title compound, a twofold axis lies in the C atom and O atom of the ketone bridge (Fig. 1). Each organic molecule connects six adjacent ones into a three-dimensional supramolecular network by intermolecular O—H···O (2.576 Å) and N—H···O (3.034 Å) hydrogen bonds (Fig. 2 and Fig. 3).

Related literature top

For the acylate reaction of polycarboxylate with hydrazine hydrate, see: Benniston et al. (1999); Hu et al. (2004).

Experimental top

Yellow needle-like crystals of the title compound were synthesized hydrothermally from a mixture of CoCl2.H2O (0.0230 g), 3, 3'-4, 4'-benzophenonetetracarboxylic dianhydride (0.0641 g), hydrazine hydrate (0.028 ml), and deionized water (15 ml) in a 23 ml Teflon-lined stainless steel autoclave under autogenous pressure heated to 170 °C for 4 days and cooled to room temperature. Crystalline product was filtered, washed with distilled water, and dried at ambient temperature.

Refinement top

The H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å, N—H = 0.85 Å and isotropic displacement parameters Uiso(H) = 1.2U(Ceq / Neq). However, the H of the O1 atom was located in a difference Fourier map refined as riding, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound shown with 30% probabilty ellipsoids [symmetry code: (A) 1 - x, y, 1.5 - z].
[Figure 2] Fig. 2. View of the crystal packing of the title compound, with O—H···O and N—H···O hydrogen bonds drawn as dashed lines [see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity].
[Figure 3] Fig. 3. Three-dimensional network formed by hydrogen bonds (dashed lines).
4-Hydroxy-6-[(4-hydroxy-1-oxo-1,2-dihydrophthalazin-6-yl)carbonyl]phthalazin- 1(2H)-one top
Crystal data top
C17H10N4O5F(000) = 720
Mr = 350.29Dx = 1.677 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.576 (3) Åθ = 2.7–26.0°
b = 10.511 (3) ŵ = 0.13 mm1
c = 12.274 (3) ÅT = 293 K
β = 111.718 (4)°Needle-like, yellow
V = 1387.4 (6) Å30.30 × 0.25 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
1370 independent reflections
Radiation source: fine-focus sealed tube774 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
h = 1412
Tmin = 0.963, Tmax = 0.987k = 1212
3800 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0758P)2]
where P = (Fo2 + 2Fc2)/3
1370 reflections(Δ/σ)max = 0.005
120 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H10N4O5V = 1387.4 (6) Å3
Mr = 350.29Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.576 (3) ŵ = 0.13 mm1
b = 10.511 (3) ÅT = 293 K
c = 12.274 (3) Å0.30 × 0.25 × 0.10 mm
β = 111.718 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1370 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
774 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.987Rint = 0.057
3800 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 0.99Δρmax = 0.27 e Å3
1370 reflectionsΔρmin = 0.22 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.50000.2105 (3)0.75000.0411 (9)
O10.1272 (2)0.0713 (2)0.23363 (19)0.0468 (7)
H10.09020.11640.17320.070*
O20.5078 (2)0.3361 (2)0.5277 (2)0.0512 (8)
N10.2410 (3)0.2518 (3)0.2824 (2)0.0406 (8)
N20.3389 (3)0.3149 (3)0.3641 (2)0.0367 (8)
H20.35130.39160.34670.044*
C60.3861 (3)0.1464 (3)0.5017 (3)0.0303 (8)
C90.2158 (3)0.1394 (3)0.3114 (3)0.0356 (9)
C50.2831 (3)0.0802 (3)0.4238 (2)0.0314 (8)
C40.2480 (3)0.0367 (3)0.4556 (3)0.0362 (9)
H40.17810.07900.40520.043*
C70.4564 (3)0.0920 (3)0.6103 (2)0.0320 (8)
H50.52540.13460.66200.038*
C80.4182 (3)0.2707 (3)0.4689 (3)0.0340 (8)
C30.3181 (3)0.0884 (3)0.5624 (3)0.0363 (9)
H30.29560.16680.58350.044*
C10.50000.0954 (4)0.75000.0281 (10)
C20.4228 (3)0.0255 (3)0.6404 (2)0.0297 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.046 (2)0.030 (2)0.0369 (19)0.0000.0043 (17)0.000
O10.0448 (16)0.0439 (16)0.0330 (14)0.0014 (13)0.0076 (12)0.0032 (11)
O20.0573 (18)0.0442 (16)0.0328 (14)0.0200 (14)0.0057 (13)0.0032 (12)
N10.0419 (18)0.0406 (19)0.0291 (15)0.0021 (15)0.0011 (14)0.0015 (13)
N20.0413 (18)0.0273 (16)0.0286 (15)0.0031 (13)0.0020 (14)0.0025 (12)
C60.033 (2)0.032 (2)0.0226 (16)0.0007 (15)0.0059 (16)0.0040 (14)
C90.038 (2)0.033 (2)0.0260 (18)0.0018 (17)0.0002 (17)0.0027 (15)
C50.0308 (19)0.033 (2)0.0254 (16)0.0047 (16)0.0051 (15)0.0033 (14)
C40.037 (2)0.032 (2)0.0297 (18)0.0059 (16)0.0016 (17)0.0023 (15)
C70.0294 (19)0.035 (2)0.0231 (17)0.0043 (16)0.0001 (15)0.0035 (14)
C80.038 (2)0.033 (2)0.0254 (17)0.0009 (17)0.0053 (16)0.0021 (15)
C30.039 (2)0.033 (2)0.0302 (18)0.0042 (17)0.0050 (16)0.0010 (16)
C10.028 (3)0.024 (3)0.027 (2)0.0000.005 (2)0.000
C20.035 (2)0.030 (2)0.0217 (17)0.0007 (15)0.0074 (16)0.0046 (13)
Geometric parameters (Å, º) top
O3—C11.210 (5)C9—C51.450 (4)
O1—C91.323 (4)C5—C41.394 (4)
O1—H10.8501C4—C31.373 (4)
O2—C81.231 (4)C4—H40.9300
N1—C91.298 (4)C7—C21.386 (4)
N1—N21.374 (4)C7—H50.9300
N2—C81.357 (4)C3—C21.401 (4)
N2—H20.8600C3—H30.9300
C6—C71.401 (4)C1—C2i1.502 (4)
C6—C51.406 (4)C1—C21.502 (4)
C6—C81.455 (5)
C9—O1—H1109.5C5—C4—H4120.5
C9—N1—N2116.6 (3)C2—C7—C6119.7 (3)
C8—N2—N1127.8 (3)C2—C7—H5120.1
C8—N2—H2116.1C6—C7—H5120.1
N1—N2—H2116.1O2—C8—N2119.5 (3)
C7—C6—C5119.5 (3)O2—C8—C6125.8 (3)
C7—C6—C8120.8 (3)N2—C8—C6114.6 (3)
C5—C6—C8119.7 (3)C4—C3—C2121.5 (3)
N1—C9—O1119.2 (3)C4—C3—H3119.3
N1—C9—C5123.8 (3)C2—C3—H3119.3
O1—C9—C5117.0 (3)O3—C1—C2i119.3 (2)
C4—C5—C6120.5 (3)O3—C1—C2119.3 (2)
C4—C5—C9122.3 (3)C2i—C1—C2121.5 (4)
C6—C5—C9117.2 (3)C7—C2—C3119.7 (3)
C3—C4—C5119.0 (3)C7—C2—C1122.8 (3)
C3—C4—H4120.5C3—C2—C1117.3 (3)
C9—N1—N2—C84.9 (5)N1—N2—C8—O2173.9 (3)
N2—N1—C9—O1176.2 (3)N1—N2—C8—C66.8 (5)
N2—N1—C9—C51.1 (5)C7—C6—C8—O22.4 (5)
C7—C6—C5—C42.4 (5)C5—C6—C8—O2177.7 (3)
C8—C6—C5—C4177.5 (3)C7—C6—C8—N2176.8 (3)
C7—C6—C5—C9178.3 (3)C5—C6—C8—N23.1 (4)
C8—C6—C5—C91.8 (5)C5—C4—C3—C20.8 (5)
N1—C9—C5—C4175.2 (3)C6—C7—C2—C30.6 (5)
O1—C9—C5—C47.5 (5)C6—C7—C2—C1174.2 (3)
N1—C9—C5—C64.1 (5)C4—C3—C2—C70.6 (5)
O1—C9—C5—C6173.2 (3)C4—C3—C2—C1174.4 (3)
C6—C5—C4—C32.4 (5)O3—C1—C2—C7148.7 (2)
C9—C5—C4—C3178.4 (3)C2i—C1—C2—C731.3 (2)
C5—C6—C7—C20.9 (5)O3—C1—C2—C326.2 (3)
C8—C6—C7—C2179.0 (3)C2i—C1—C2—C3153.8 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.851.762.581 (3)163
N2—H2···O1iii0.862.193.034 (4)168
Symmetry codes: (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H10N4O5
Mr350.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)11.576 (3), 10.511 (3), 12.274 (3)
β (°) 111.718 (4)
V3)1387.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.25 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1995)
Tmin, Tmax0.963, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
3800, 1370, 774
Rint0.057
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.161, 0.99
No. of reflections1370
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.851.762.581 (3)162.5
N2—H2···O1ii0.862.193.034 (4)168.3
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Doctoral Foundation of North University of China.

References

First citationBenniston, A. C., Yufit, D. S. & Howard, J. A. K. (1999). Acta Cryst. C55, 1535–1536.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, X. X., Xu, J. Q., Cheng, P., Chen, X. Y., Cui, X. B., Song, J. F., Yang, G. D. & Wang, T. G. (2004). Inorg. Chem. 43, 2261–2266.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds