organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[6-(9H-Carbazol-9-yl)hex­yl]-2-phenyl-1H-benzimidazole

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and bKey Laboratory of Opto-Electronic Technology and Intelligent Control, (Lanzhou Jiaotong University), Ministry of Education, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: ytz823@hotmail.com

(Received 18 October 2009; accepted 6 November 2009; online 14 November 2009)

The mol­ecule of the title compound, C31H29N3, contains a hexyl chain, a coordination unit (benzimidazole) and a functional group (carbazole). The benzimidazole ring is not coplanar with either the phenyl ring or the carbazole system, making dihedral angles of 43.26 (3) and 39.03 (2)°, respectively. The dihedral angle between the phenyl ring and the carbazole system is 24.42 (3)°. The hexyl Cβ atom (with respect to benzimidazole) deviates by 1.124 (2) Å from the benzimidazole plane, although the Cα atom lies in the plane. The hexyl Cβ atom (with respect to carbazole) deviates by 1.315 (1) Å from the carbazole plane, although the Cα atom lies in the plane. The crystal structure is stabilized by inter­molecular C—H⋯π inter­actions.

Related literature

For applications of benzimidazole-containing compounds as human cytomegalovirus inhibitors and anthelmintic agents, see: Spasov et al. (1999[Spasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, 232-243.]); Zhu et al. (2000[Zhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430-2437.]). Benzimidazole derivatives can act as ligands to transition metals for modeling biological systems, see: Bouwman et al. (1990[Bouwman, E., Driessen, W. L. & Reedijk, J. (1990). Coord. Chem. Rev. 104, 143-172.]) and for organic light-emitting devices (OLEDs), see: Huang et al. (2004[Huang, W. S., Lin, J. T., Chien, C. H., Tao, Y. T., Sun, S. S. & Wen, Y. S. (2004). Chem. Mater. 16, 2480-2488.]); Si et al. (2007[Si, Z. J., Li, J., Li, B., Zhao, F. F., Liu, S. Y. & Li, W. L. (2007). Inorg. Chem. 46, 6155-6163.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C31H29N3

  • Mr = 443.57

  • Monoclinic, P 21 /c

  • a = 8.6623 (6) Å

  • b = 31.582 (2) Å

  • c = 8.9187 (6) Å

  • β = 96.3120 (10)°

  • V = 2425.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.43 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.991

  • 13496 measured reflections

  • 4757 independent reflections

  • 3374 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.119

  • S = 1.01

  • 4757 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28⋯Cg1 0.93 2.78 3.665 (2) 159
C18—H18ACg2 0.97 2.87 3.596 (3) 133
Cg1 and Cg2 are the centroids of the 13-atom carbazole ring and the C19/C24/C25/N2/N3 imidazole ring, respectively.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The benzimidazole moiety is an important heterocyclic nucleus which has been used extensively in medicinal chemistry. Many benzimidazole-containing compounds have found commercial applications in human cytomegalovirus inhibitor and anthelmintic agents (Zhu et al., 2000; Spasov et al., 1999). Moreover, benzimidazole derivaterives can act as ligands to transition metals for modeling biological systems (Bouwman et al.,1990) and for organic light-emitting devices (OLEDs) (Huang et al., 2004; Si et al., 2007). 2-Phenyl-benzimidazole-based cyclometalated iridium complexes are excellent phosphorescence materials and the devices using these complexes as dopants exhibit very high efficiencies (Huang et al., 2004). Recently we modified 2-phenyl-benzimidazole with multifunctional charge-transporting groups by nonconjugated aliphatic linkage to improve the charge-transporting characteristic of 2-phenyl-benzimidazole-based cyclometalated iridium complexes. In this paper, we report the crystal structure of a new ligand containing hole-transporting carbazole group, 1-(6-carbazolylhexyl)-2-phenyl-benzimidazole.

The molecular structure of the title compound and the ORTEP structure is shown in Fig. 1. The bond lengths and angles in the molecule are within normal ranges (Allen et al., 1987). The benzimidazole ring and the phenyl ring as well as the benzimidazole ring and the carbazole ring are not coplanar, making the dihedral angle of 43.26 (3)° and 39.03 (2)°, respectively. The dihedral angle between the phenyl ring and the carbazole ring is 24.42 (3)°. The C17 atom deviates by 1.124 (2) Å from the benzimidazole plane, although the C18 atom lies in the plane. The C14 atom deviates by 1.315 (1) Å from the carbazole plane, although the C13 lies in the plane. The torsion angles of C14—C13—N1—C1, C14—C13—N1—C12, C17—C18—N2—C19 and C17—C18—N2—C25 are -98.15 (2)°, 83.41 (3)°, 79.54 (1)° and -111.44 (2)°, respectively.

The crystal structure is stabilized by intermolecular C—H···π interactions [Cg1 and Cg2 are the centroids of 13 atoms carbazole ring and the C19C24C25/N2N3 imidazole ring, respectively.] (Table 1, Fig. 2).

Related literature top

For applications of benzimidazole-containing compounds as human cytomegalovirus inhibitor and anthelmintic agents, see: Spasov et al. (1999); Zhu et al. (2000). Benzimidazole derivatives can act as ligands to transition metals for modeling biological systems, see: Bouwman et al. (1990) and for organic light-emitting devices (OLEDs), see: Huang et al. (2004); Si et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

1-(6-carbazolylhexyl)-2-phenyl-benzimidazole was obtained in three steps. Firstly, 2-phenyl-benzimidazole was synthesized by reacting o-phenylendiamine and benzoic acid in presence of polyphosphoric acid under N2 at 433 K for 8 h. Secondly, 9-(6-bromohexyl)-carbazole was prepared by reacting cabazole and 1,6-dibromohexane in the mixed solvent of toluene and aqueous 50% sodium hydroxide, in which tetrabutyl ammonium bromide was used as the phase-transfer catalyst. Finally, under N2 solid NaH and 2-phenyl-benzoimidazole in anhydrous DMF was stirred at 353 K for 2 h, then 9-(6-bromohexyl)-carbazole was added. The mixed solution was stirred overnight at room temperature. The crude product was chromatographed using ethyl acetate / hexane (1:2, V/V) to afford the title compound. Yield, 75.12%. m. p. 403–405 K. 1H-NMR (500 MHz, CDCl3): 8.09(d, 2H), 7.81(d, 1H), 7.64 (s, 2H), 7.46(m, 5H), 7.31(d, 4H), 7.23 (m, 3H), 4.21–4.13 (m, 4H,), 1.78–1.70 (m, 4H), 1.21–1.19 (m, 4H).

Yellow tabular single crystals of the title compound were obtained by slow evaporation of the methanol solution at room temperature.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 Å (CH2) and 0.93 Å (CH). The isotropic displacement parameters for all H atoms were set equal to 1.2 Ueq of the carrier atom.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing C—H···π stacking interactions as thin black lines. Colour code: grey: C; white: H. H atoms not involved in hydrogen bonding have been omitted for clarity.
1-[6-(9H-Carbazol-9-yl)hexyl]-2-phenyl-1H-benzimidazole top
Crystal data top
C31H29N3F(000) = 944
Mr = 443.57Dx = 1.215 Mg m3
Monoclinic, P21/cMelting point = 403–405 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.6623 (6) ÅCell parameters from 3325 reflections
b = 31.582 (2) Åθ = 2.4–24.3°
c = 8.9187 (6) ŵ = 0.07 mm1
β = 96.312 (1)°T = 293 K
V = 2425.1 (3) Å3Tabular, yellow
Z = 40.43 × 0.18 × 0.12 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4757 independent reflections
Radiation source: fine-focus sealed tube3374 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.970, Tmax = 0.991k = 1838
13496 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.1994P]
where P = (Fo2 + 2Fc2)/3
4757 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C31H29N3V = 2425.1 (3) Å3
Mr = 443.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6623 (6) ŵ = 0.07 mm1
b = 31.582 (2) ÅT = 293 K
c = 8.9187 (6) Å0.43 × 0.18 × 0.12 mm
β = 96.312 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4757 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3374 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.991Rint = 0.026
13496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.01Δρmax = 0.12 e Å3
4757 reflectionsΔρmin = 0.14 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.02475 (16)0.43714 (5)0.59089 (17)0.0523 (4)
C20.12646 (18)0.40495 (6)0.5389 (2)0.0653 (4)
H20.10380.38660.46270.078*
C30.2618 (2)0.40148 (7)0.6050 (2)0.0791 (5)
H30.33130.38000.57370.095*
C40.2981 (2)0.42893 (7)0.7167 (2)0.0820 (6)
H40.39120.42560.75830.098*
C50.19874 (19)0.46114 (6)0.76719 (19)0.0693 (5)
H50.22450.47980.84120.083*
C60.05852 (17)0.46530 (5)0.70515 (16)0.0539 (4)
C70.07318 (18)0.49316 (5)0.73388 (16)0.0543 (4)
C80.1095 (2)0.52700 (6)0.83139 (19)0.0702 (5)
H80.03930.53600.89640.084*
C90.2502 (3)0.54688 (7)0.8303 (2)0.0851 (6)
H90.27460.56970.89450.102*
C100.3566 (2)0.53354 (6)0.7351 (2)0.0851 (6)
H100.45170.54730.73760.102*
C110.3241 (2)0.50022 (6)0.6364 (2)0.0682 (5)
H110.39560.49130.57260.082*
C120.18125 (17)0.48054 (5)0.63596 (16)0.0524 (4)
C130.19565 (18)0.42690 (5)0.42926 (17)0.0581 (4)
H13A0.24820.44830.37580.070*
H13B0.11720.41390.35780.070*
C140.31251 (17)0.39346 (5)0.48825 (18)0.0567 (4)
H14A0.36570.38300.40550.068*
H14B0.38950.40620.56170.068*
C150.23723 (17)0.35671 (5)0.56068 (18)0.0548 (4)
H15A0.15680.34510.48790.066*
H15B0.18700.36740.64500.066*
C160.34575 (17)0.32109 (5)0.61709 (19)0.0592 (4)
H16A0.43120.33270.68390.071*
H16B0.38880.30830.53190.071*
C170.26530 (18)0.28701 (5)0.70071 (17)0.0571 (4)
H17A0.34240.26720.74590.069*
H17B0.21560.30000.78140.069*
C180.14417 (17)0.26304 (5)0.59738 (16)0.0545 (4)
H18A0.07800.28330.53950.065*
H18B0.19660.24640.52680.065*
C190.07789 (17)0.24836 (5)0.74837 (16)0.0563 (4)
C200.1313 (2)0.28859 (6)0.7791 (2)0.0696 (5)
H200.08290.31290.74840.084*
C210.2595 (2)0.29058 (8)0.8573 (2)0.0839 (6)
H210.29850.31700.88010.101*
C220.3322 (2)0.25458 (9)0.9029 (2)0.0886 (6)
H220.41740.25730.95720.106*
C230.2812 (2)0.21486 (8)0.8698 (2)0.0789 (5)
H230.33160.19080.89940.095*
C240.15163 (18)0.21176 (6)0.79052 (18)0.0615 (4)
C250.04203 (18)0.19127 (5)0.67728 (17)0.0557 (4)
C260.1556 (2)0.16414 (5)0.61244 (17)0.0583 (4)
C270.1020 (2)0.12817 (6)0.5325 (2)0.0752 (5)
H270.00390.12250.51710.090*
C280.2057 (3)0.10106 (6)0.4763 (2)0.0905 (6)
H280.16900.07720.42270.109*
C290.3625 (3)0.10872 (7)0.4982 (2)0.0906 (6)
H290.43140.09000.46010.109*
C300.4175 (2)0.14419 (6)0.5768 (2)0.0822 (6)
H300.52360.14960.59150.099*
C310.3140 (2)0.17165 (5)0.63358 (19)0.0675 (5)
H310.35130.19550.68680.081*
N10.12011 (13)0.44707 (4)0.54812 (14)0.0530 (3)
N20.04699 (14)0.23494 (4)0.67667 (13)0.0532 (3)
N30.07470 (16)0.17632 (4)0.74442 (15)0.0653 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0462 (8)0.0539 (9)0.0569 (9)0.0074 (7)0.0055 (7)0.0089 (7)
C20.0521 (9)0.0678 (11)0.0752 (11)0.0046 (8)0.0042 (8)0.0036 (9)
C30.0518 (10)0.0915 (14)0.0937 (14)0.0075 (10)0.0067 (10)0.0035 (12)
C40.0504 (10)0.1153 (17)0.0822 (13)0.0060 (11)0.0164 (9)0.0027 (12)
C50.0578 (10)0.0922 (14)0.0591 (10)0.0098 (10)0.0113 (8)0.0009 (9)
C60.0499 (8)0.0616 (10)0.0502 (8)0.0108 (8)0.0051 (7)0.0091 (7)
C70.0607 (9)0.0530 (9)0.0490 (8)0.0085 (8)0.0055 (7)0.0067 (7)
C80.0806 (12)0.0711 (12)0.0597 (10)0.0051 (10)0.0111 (9)0.0055 (9)
C90.1004 (15)0.0742 (13)0.0810 (13)0.0167 (12)0.0114 (11)0.0152 (10)
C100.0847 (13)0.0765 (13)0.0953 (14)0.0245 (11)0.0153 (11)0.0006 (11)
C110.0692 (11)0.0612 (11)0.0774 (11)0.0072 (9)0.0217 (9)0.0048 (9)
C120.0571 (9)0.0460 (9)0.0549 (9)0.0036 (7)0.0096 (7)0.0095 (7)
C130.0614 (9)0.0559 (9)0.0593 (9)0.0059 (8)0.0173 (7)0.0036 (8)
C140.0529 (9)0.0534 (9)0.0657 (10)0.0018 (7)0.0155 (7)0.0051 (8)
C150.0470 (8)0.0543 (9)0.0633 (9)0.0027 (7)0.0069 (7)0.0011 (8)
C160.0483 (9)0.0563 (9)0.0718 (10)0.0002 (7)0.0020 (7)0.0010 (8)
C170.0556 (9)0.0556 (9)0.0570 (9)0.0007 (8)0.0072 (7)0.0042 (8)
C180.0614 (9)0.0514 (9)0.0492 (8)0.0038 (8)0.0008 (7)0.0047 (7)
C190.0494 (9)0.0675 (10)0.0495 (8)0.0016 (8)0.0055 (7)0.0027 (8)
C200.0620 (11)0.0741 (12)0.0698 (11)0.0063 (9)0.0058 (9)0.0030 (9)
C210.0653 (12)0.1049 (17)0.0790 (13)0.0191 (12)0.0024 (10)0.0109 (12)
C220.0565 (11)0.132 (2)0.0766 (13)0.0119 (13)0.0043 (9)0.0004 (13)
C230.0577 (11)0.1061 (16)0.0713 (11)0.0047 (11)0.0005 (9)0.0150 (11)
C240.0500 (9)0.0769 (12)0.0552 (9)0.0013 (9)0.0045 (7)0.0091 (8)
C250.0596 (9)0.0544 (9)0.0509 (8)0.0056 (8)0.0028 (7)0.0077 (7)
C260.0719 (11)0.0510 (9)0.0514 (9)0.0028 (8)0.0036 (8)0.0098 (7)
C270.0954 (13)0.0573 (11)0.0721 (11)0.0074 (10)0.0051 (10)0.0008 (9)
C280.130 (2)0.0652 (13)0.0764 (13)0.0002 (14)0.0136 (13)0.0099 (10)
C290.1219 (19)0.0758 (14)0.0791 (13)0.0205 (14)0.0334 (13)0.0018 (11)
C300.0835 (13)0.0815 (14)0.0845 (13)0.0088 (11)0.0221 (11)0.0086 (11)
C310.0760 (12)0.0589 (10)0.0680 (10)0.0024 (9)0.0101 (9)0.0019 (8)
N10.0529 (7)0.0477 (7)0.0601 (7)0.0043 (6)0.0135 (6)0.0019 (6)
N20.0552 (7)0.0522 (8)0.0506 (7)0.0037 (6)0.0017 (6)0.0033 (6)
N30.0630 (8)0.0658 (9)0.0659 (8)0.0074 (7)0.0024 (7)0.0131 (7)
Geometric parameters (Å, º) top
C1—N11.3870 (18)C16—H16A0.9700
C1—C21.391 (2)C16—H16B0.9700
C1—C61.407 (2)C17—C181.520 (2)
C2—C31.373 (2)C17—H17A0.9700
C2—H20.9300C17—H17B0.9700
C3—C41.382 (3)C18—N21.4585 (18)
C3—H30.9300C18—H18A0.9700
C4—C51.376 (3)C18—H18B0.9700
C4—H40.9300C19—N21.3823 (19)
C5—C61.395 (2)C19—C201.390 (2)
C5—H50.9300C19—C241.392 (2)
C6—C71.441 (2)C20—C211.377 (3)
C7—C81.392 (2)C20—H200.9300
C7—C121.406 (2)C21—C221.383 (3)
C8—C91.372 (3)C21—H210.9300
C8—H80.9300C22—C231.373 (3)
C9—C101.386 (3)C22—H220.9300
C9—H90.9300C23—C241.395 (2)
C10—C111.380 (3)C23—H230.9300
C10—H100.9300C24—N31.388 (2)
C11—C121.384 (2)C25—N31.3181 (19)
C11—H110.9300C25—N21.3799 (19)
C12—N11.3858 (19)C25—C261.470 (2)
C13—N11.4527 (18)C26—C311.384 (2)
C13—C141.517 (2)C26—C271.393 (2)
C13—H13A0.9700C27—C281.375 (3)
C13—H13B0.9700C27—H270.9300
C14—C151.511 (2)C28—C291.372 (3)
C14—H14A0.9700C28—H280.9300
C14—H14B0.9700C29—C301.378 (3)
C15—C161.516 (2)C29—H290.9300
C15—H15A0.9700C30—C311.383 (2)
C15—H15B0.9700C30—H300.9300
C16—C171.521 (2)C31—H310.9300
N1—C1—C2129.25 (14)H16A—C16—H16B107.8
N1—C1—C6108.82 (13)C18—C17—C16112.21 (12)
C2—C1—C6121.92 (14)C18—C17—H17A109.2
C3—C2—C1117.02 (17)C16—C17—H17A109.2
C3—C2—H2121.5C18—C17—H17B109.2
C1—C2—H2121.5C16—C17—H17B109.2
C2—C3—C4122.15 (18)H17A—C17—H17B107.9
C2—C3—H3118.9N2—C18—C17113.94 (12)
C4—C3—H3118.9N2—C18—H18A108.8
C5—C4—C3121.04 (16)C17—C18—H18A108.8
C5—C4—H4119.5N2—C18—H18B108.8
C3—C4—H4119.5C17—C18—H18B108.8
C4—C5—C6118.71 (16)H18A—C18—H18B107.7
C4—C5—H5120.6N2—C19—C20131.73 (16)
C6—C5—H5120.6N2—C19—C24106.03 (14)
C5—C6—C1119.14 (15)C20—C19—C24122.25 (16)
C5—C6—C7133.92 (15)C21—C20—C19116.48 (19)
C1—C6—C7106.93 (12)C21—C20—H20121.8
C8—C7—C12119.05 (15)C19—C20—H20121.8
C8—C7—C6134.42 (15)C20—C21—C22122.1 (2)
C12—C7—C6106.53 (13)C20—C21—H21119.0
C9—C8—C7119.13 (17)C22—C21—H21119.0
C9—C8—H8120.4C23—C22—C21121.35 (19)
C7—C8—H8120.4C23—C22—H22119.3
C8—C9—C10121.08 (18)C21—C22—H22119.3
C8—C9—H9119.5C22—C23—C24118.0 (2)
C10—C9—H9119.5C22—C23—H23121.0
C11—C10—C9121.31 (18)C24—C23—H23121.0
C11—C10—H10119.3N3—C24—C19109.88 (14)
C9—C10—H10119.3N3—C24—C23130.28 (17)
C10—C11—C12117.63 (17)C19—C24—C23119.83 (18)
C10—C11—H11121.2N3—C25—N2112.69 (14)
C12—C11—H11121.2N3—C25—C26123.34 (15)
C11—C12—N1129.06 (14)N2—C25—C26123.96 (13)
C11—C12—C7121.78 (15)C31—C26—C27118.61 (17)
N1—C12—C7109.16 (13)C31—C26—C25122.84 (15)
N1—C13—C14112.91 (12)C27—C26—C25118.47 (16)
N1—C13—H13A109.0C28—C27—C26119.99 (19)
C14—C13—H13A109.0C28—C27—H27120.0
N1—C13—H13B109.0C26—C27—H27120.0
C14—C13—H13B109.0C29—C28—C27121.0 (2)
H13A—C13—H13B107.8C29—C28—H28119.5
C15—C14—C13112.35 (12)C27—C28—H28119.5
C15—C14—H14A109.1C28—C29—C30119.8 (2)
C13—C14—H14A109.1C28—C29—H29120.1
C15—C14—H14B109.1C30—C29—H29120.1
C13—C14—H14B109.1C29—C30—C31119.6 (2)
H14A—C14—H14B107.9C29—C30—H30120.2
C14—C15—C16115.52 (12)C31—C30—H30120.2
C14—C15—H15A108.4C30—C31—C26121.00 (18)
C16—C15—H15A108.4C30—C31—H31119.5
C14—C15—H15B108.4C26—C31—H31119.5
C16—C15—H15B108.4C12—N1—C1108.55 (12)
H15A—C15—H15B107.5C12—N1—C13124.91 (12)
C15—C16—C17112.76 (12)C1—N1—C13126.53 (13)
C15—C16—H16A109.0C25—N2—C19106.15 (13)
C17—C16—H16A109.0C25—N2—C18129.05 (13)
C15—C16—H16B109.0C19—N2—C18124.10 (13)
C17—C16—H16B109.0C25—N3—C24105.24 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28···Cg10.932.783.665 (2)159
C18—H18A···Cg20.972.873.596 (3)133

Experimental details

Crystal data
Chemical formulaC31H29N3
Mr443.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.6623 (6), 31.582 (2), 8.9187 (6)
β (°) 96.312 (1)
V3)2425.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.43 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
13496, 4757, 3374
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.119, 1.01
No. of reflections4757
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.14

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28···Cg10.9302.7833.665 (2)158.90
C18—H18A···Cg20.9692.8673.596 (3)132.77
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant 60776006), the Program for Changjiang Scholars and Innovative Research Team in Universities (IRT0629) and the `Qing Lan' talent engineering funds (QL-05–23 A) of Lanzhou Jiaotong University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBouwman, E., Driessen, W. L. & Reedijk, J. (1990). Coord. Chem. Rev. 104, 143–172.  CrossRef CAS Web of Science Google Scholar
First citationHuang, W. S., Lin, J. T., Chien, C. H., Tao, Y. T., Sun, S. S. & Wen, Y. S. (2004). Chem. Mater. 16, 2480–2488.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSi, Z. J., Li, J., Li, B., Zhao, F. F., Liu, S. Y. & Li, W. L. (2007). Inorg. Chem. 46, 6155–6163.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, 232–243.  CrossRef CAS Google Scholar
First citationZhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430–2437.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds