organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Iso­propyl-5-methyl­cyclo­hexyl 5-acet­­oxy-1,3-oxa­thiol­ane-2-carboxyl­ate

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cSequent Scientific Limited, New Mangalore 575 011, India
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 4 November 2009; accepted 4 November 2009; online 21 November 2009)

In the title compound, C16H26O5S, the oxathiol­ane ring adopts an envelope conformation, with the S atom 0.793 (3) Å out of the mean plane of the remaining four atoms. The cyclo­hexane ring of the menthol fragment adopts an almost ideal chair conformation, with all substituents in the equatorial positions. In the crystal, relatively strong, short and linear C—H⋯O hydrogen bonds link the mol­ecules into the chains along [100] direction. The chains are packed into the crystal structure by means of weak dispersive inter­actions. Inter­molecular C—H⋯S inter­actions are also observed.

Related literature

The title compound is a drug inter­mediate of lamivudine, a reverse transcriptase inhibitor used in the treatment of HIV infections. For the structures of lamivudine and its hydrate have been studied, see: Harris et al. (1997[Harris, R. K., Yeung, R. R., Lamont, R. B., Lancaster, R. W., Lynn, S. M. & Staniforth, S. E. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 2653-2659.]). For the identification of lamivudine conformers by Raman scattering measurements and quantum chemical calculations, see: Pereira et al. (2007[Pereira, B. G., Vianna-Soares, C. D., Righi, A., Pinheiro, M. V. B., Flores, M. Z. S., Bezerra, E. M., Freire, V. N., Lemos, V., Caetano, E. W. S. & Cavada, B. S. (2007). J. Pharm. Biomed. Anal. 43, 1885-1889.]). For asymmetry parameters, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures. New York: Plenum.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C16H26O5S

  • Mr = 330.43

  • Orthorhombic, P 21 21 21

  • a = 5.329 (1) Å

  • b = 13.867 (1) Å

  • c = 23.490 (2) Å

  • V = 1735.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.3 × 0.3 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 large Be window diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.719, Tmax = 1.000

  • 11503 measured reflections

  • 3632 independent reflections

  • 3175 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.053

  • S = 1.03

  • 3632 reflections

  • 277 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1435 Friedel pairs

  • Flack parameter: −0.04 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O12i 0.989 (15) 2.261 (15) 3.1563 (18) 150.0 (12)
C15—H15A⋯S14ii 0.961 (16) 3.033 (15) 3.7794 (15) 135.6 (11)
C20—H20B⋯O19i 0.961 (18) 2.524 (18) 3.464 (2) 166.0 (14)
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989[Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

5-Methyl-2-(propan-2-yl)cyclohexyl 5-(acetyloxy)-1,3-oxathiolane-2-carboxylate (I, Scheme 1) is a drug intermediate of lamivudine which is a reverse transcriptase inhibitor used in the treatment of HIV infection alone or in combination with other class of Anti HIV drugs. The crystal stractures of Lamivudine and its hydrate have been studied (Harris et al., 1997). The identification of lamivudine conformers by Raman scattering measurements and quantum chemical calculations is reported (Pereira et al., 2007).

The conformation of the oxathiolane ring is close to an envelope (Fig. 1), with four atoms C13, C15, C16 and O17 almost coplanar (maximum deviation from the least-squares plane of 0.0469 (11) Å) while the fifth atom (S14) is significantly, by 0.793 (3) Å out of this plane. Also the asymmetry parameter (Duax & Norton, 1975), which describes the deviation from the ideal symmetry (in this case Cs), has relatively low value of 6.0°. Similar conformation was observed in the majority of the structures with not fused oxathiolane rings found in the Cambridge Structural Database (Allen, 2002), however different atoms occupy the out-of-plane position. The acetyloxy substituent occupies the quasi-axial position with respect to the oxathiolane ring (C13—O17—C16—O18 torsion angle is -109.18 (13) °, S14—C15—C16—O18 84.13 (12) °), the position of carboxylate group is also close to the axial one (C16—O17—C13—C12 - 97.66 (14) °, C15—S14—C13—C12 84.89 (10) °). The cyclohexyl ring is close to the typical chair conformation (maximum and minimum values of the asymmetry parameters are 0.74° for ΔCs5, and 3.96° ΔC21–6), all substituents: methyl, isopropyl and carboxylate are in equatorial positions.

In the crystal structure relatively strong (short and directional) C13—H13···O12i hydrogen bonds join the molecules into the infinite chains along [100]. These chain in turn are organized into the crystal structure by weak van der Waals - type interactions (Table 1, Fig. 2).

Related literature top

The title compound is a drug intermediate of lamivudine, a reverse transcriptase inhibitor used in the treatment of HIV infections. For the structures of lamivudine and its hydrate have been studied, see: Harris et al. (1997). For the identification of lamivudine conformers by Raman scattering measurements and quantum chemical calculations, see: Pereira et al. (2007). For asymmetry parameters, see: Duax & Norton (1975). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

To a mixture of L-menthyl-5-hydroxy-1,3-oxathiolane-2-carboxylate (1.5 g, 5.2 m mol) in pyridine (30 ml), acetic anhydride (6.4 ml) was added slowly at 273 K (Fig. 4). The mixture was allowed to attain room temperature and stirred over night, then quenched to ice cold water and extracted with ethyl acetate. The organic layer was concentrated under vacuum to obtain the product. X-ray quality crystals were grown from slow evaporation of methanol solution (m.p.: 333–335 K).

Refinement top

Positional parameters of the hydrogen atoms were freely refined, the Uiso values of these atoms were set at 1.2 (1.5 for methyl groups) times Ueq of their carrier carbon atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009)); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009)); data reduction: CrysAlis PRO (Oxford Diffraction, 2009)); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of the compound I together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii.
[Figure 2] Fig. 2. The hydrogen-bonded chain of molecules of I. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The crystal packing as seen along the chain direction, i.e. along [100].
[Figure 4] Fig. 4. The preparation of the title compound.
2-Isopropyl-5-methylcyclohexyl 5-acetoxy-1,3-oxathiolane-2-carboxylate top
Crystal data top
C16H26O5SF(000) = 712
Mr = 330.43Dx = 1.264 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3953 reflections
a = 5.329 (1) Åθ = 3.0–75.3°
b = 13.867 (1) ŵ = 0.21 mm1
c = 23.490 (2) ÅT = 100 K
V = 1735.8 (4) Å3Prism, colourless
Z = 40.3 × 0.3 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2 large Be window
diffractometer
3632 independent reflections
Radiation source: Nova (Mo) X-ray Source3175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 5.2679 pixels mm-1θmax = 27.8°, θmin = 2.9°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1719
Tmin = 0.719, Tmax = 1.000l = 1828
11503 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.026P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3632 reflectionsΔρmax = 0.28 e Å3
277 parametersΔρmin = 0.18 e Å3
0 restraintsAbsolute structure: Flack (1983), 1435 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (5)
Crystal data top
C16H26O5SV = 1735.8 (4) Å3
Mr = 330.43Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.329 (1) ŵ = 0.21 mm1
b = 13.867 (1) ÅT = 100 K
c = 23.490 (2) Å0.3 × 0.3 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2 large Be window
diffractometer
3632 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3175 reflections with I > 2σ(I)
Tmin = 0.719, Tmax = 1.000Rint = 0.025
11503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.053Δρmax = 0.28 e Å3
S = 1.03Δρmin = 0.18 e Å3
3632 reflectionsAbsolute structure: Flack (1983), 1435 Friedel pairs
277 parametersAbsolute structure parameter: 0.04 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2221 (3)0.81153 (11)0.22603 (6)0.0144 (3)
H10.055 (3)0.7890 (12)0.2363 (5)0.017*
C20.2271 (3)0.92125 (11)0.22689 (6)0.0133 (3)
H20.402 (3)0.9383 (11)0.2176 (6)0.016*
C210.1670 (3)0.96521 (11)0.28540 (6)0.0163 (3)
H210.277 (3)0.9324 (11)0.3133 (7)0.020*
C220.1041 (3)0.95024 (13)0.30376 (8)0.0248 (4)
H22A0.139 (3)0.9755 (13)0.3442 (8)0.037*
H22B0.154 (3)0.8837 (14)0.3016 (7)0.037*
H22C0.216 (3)0.9878 (14)0.2804 (8)0.037*
C230.2308 (3)1.07241 (12)0.28675 (7)0.0207 (4)
H23A0.126 (3)1.1091 (13)0.2621 (7)0.031*
H23B0.396 (3)1.0834 (12)0.2739 (7)0.031*
H23C0.207 (3)1.0990 (12)0.3264 (7)0.031*
C30.0559 (3)0.95554 (11)0.17848 (6)0.0193 (3)
H3A0.122 (3)0.9338 (12)0.1888 (7)0.023*
H3B0.049 (3)1.0270 (12)0.1771 (6)0.023*
C40.1377 (3)0.91614 (12)0.12123 (7)0.0222 (4)
H4A0.300 (3)0.9392 (12)0.1134 (7)0.027*
H4B0.025 (3)0.9406 (12)0.0913 (7)0.027*
C50.1436 (3)0.80595 (12)0.12053 (6)0.0199 (4)
H50.025 (3)0.7843 (12)0.1282 (6)0.024*
C510.2389 (4)0.76739 (13)0.06413 (8)0.0305 (4)
H51A0.398 (4)0.7932 (14)0.0557 (7)0.046*
H51B0.137 (3)0.7914 (15)0.0335 (8)0.046*
H51C0.245 (3)0.6975 (14)0.0650 (8)0.046*
C60.3052 (3)0.76948 (11)0.16982 (6)0.0172 (3)
H6A0.478 (3)0.7877 (12)0.1612 (6)0.021*
H6B0.305 (3)0.6970 (12)0.1714 (6)0.021*
O110.39944 (16)0.77425 (7)0.26904 (4)0.0146 (2)
C120.3058 (3)0.72616 (10)0.31299 (6)0.0134 (3)
O120.08816 (18)0.70999 (9)0.32180 (4)0.0214 (2)
C130.5134 (3)0.69492 (11)0.35302 (6)0.0146 (3)
H130.672 (3)0.6830 (11)0.3325 (6)0.018*
S140.56357 (7)0.79072 (3)0.404699 (15)0.01686 (9)
C150.3109 (3)0.73820 (11)0.44548 (6)0.0176 (3)
H15A0.327 (3)0.7581 (11)0.4845 (7)0.021*
H15B0.150 (3)0.7576 (11)0.4298 (7)0.021*
C160.3439 (3)0.63111 (12)0.43767 (6)0.0189 (3)
H160.175 (3)0.5948 (11)0.4441 (6)0.023*
O170.4379 (2)0.61176 (7)0.38320 (4)0.0205 (2)
O180.52454 (18)0.59729 (7)0.47832 (4)0.0206 (2)
C190.4838 (3)0.50989 (11)0.50215 (6)0.0193 (3)
O190.3034 (2)0.46223 (9)0.49229 (6)0.0418 (4)
C200.6923 (3)0.48274 (13)0.54115 (7)0.0252 (4)
H20A0.709 (3)0.5287 (14)0.5686 (8)0.038*
H20B0.850 (3)0.4807 (13)0.5212 (8)0.038*
H20C0.659 (3)0.4227 (13)0.5576 (7)0.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0124 (7)0.0178 (9)0.0129 (8)0.0003 (7)0.0033 (6)0.0033 (6)
C20.0115 (7)0.0157 (8)0.0127 (8)0.0026 (6)0.0008 (6)0.0021 (6)
C210.0179 (8)0.0171 (8)0.0137 (8)0.0017 (7)0.0020 (6)0.0002 (6)
C220.0232 (9)0.0248 (10)0.0265 (10)0.0013 (8)0.0080 (8)0.0066 (7)
C230.0247 (9)0.0181 (9)0.0192 (10)0.0005 (7)0.0012 (7)0.0027 (7)
C30.0246 (9)0.0149 (8)0.0184 (8)0.0007 (8)0.0050 (7)0.0025 (6)
C40.0310 (10)0.0200 (9)0.0157 (8)0.0019 (7)0.0068 (7)0.0038 (7)
C50.0255 (8)0.0188 (9)0.0155 (8)0.0053 (7)0.0037 (6)0.0011 (7)
C510.0474 (12)0.0260 (11)0.0180 (9)0.0037 (10)0.0045 (8)0.0035 (8)
C60.0198 (8)0.0142 (9)0.0175 (8)0.0005 (7)0.0004 (6)0.0005 (6)
O110.0124 (5)0.0178 (6)0.0137 (5)0.0008 (5)0.0006 (4)0.0037 (4)
C120.0159 (8)0.0115 (8)0.0126 (8)0.0005 (6)0.0010 (6)0.0021 (6)
O120.0138 (5)0.0287 (6)0.0218 (6)0.0059 (5)0.0009 (4)0.0072 (5)
C130.0158 (8)0.0156 (8)0.0124 (7)0.0031 (6)0.0013 (5)0.0005 (6)
S140.01923 (18)0.01732 (18)0.01403 (18)0.00361 (17)0.00206 (15)0.00048 (16)
C150.0176 (8)0.0250 (9)0.0101 (8)0.0018 (7)0.0015 (6)0.0009 (6)
C160.0186 (8)0.0236 (9)0.0145 (8)0.0040 (8)0.0029 (6)0.0058 (7)
O170.0326 (6)0.0136 (5)0.0153 (5)0.0006 (5)0.0039 (5)0.0012 (4)
O180.0229 (6)0.0205 (6)0.0183 (5)0.0065 (5)0.0073 (4)0.0079 (4)
C190.0224 (8)0.0180 (8)0.0174 (8)0.0002 (7)0.0028 (6)0.0046 (6)
O190.0291 (6)0.0330 (8)0.0632 (9)0.0137 (6)0.0157 (6)0.0248 (7)
C200.0335 (10)0.0230 (10)0.0193 (9)0.0006 (8)0.0049 (8)0.0050 (8)
Geometric parameters (Å, º) top
C1—O111.4768 (16)C51—H51A0.94 (2)
C1—C61.510 (2)C51—H51B0.961 (18)
C1—C21.522 (2)C51—H51C0.970 (19)
C1—H10.975 (15)C6—H6A0.975 (15)
C2—C31.533 (2)C6—H6B1.006 (16)
C2—C211.537 (2)O11—C121.3264 (16)
C2—H20.986 (15)C12—O121.1991 (16)
C21—C221.522 (2)C12—C131.5155 (19)
C21—C231.525 (2)C13—O171.4122 (17)
C21—H210.990 (16)C13—S141.8193 (15)
C22—H22A1.029 (19)C13—H130.989 (15)
C22—H22B0.961 (19)S14—C151.8059 (16)
C22—H22C0.965 (18)C15—C161.507 (2)
C23—H23A0.951 (17)C15—H15A0.961 (16)
C23—H23B0.945 (18)C15—H15B0.973 (15)
C23—H23C1.009 (17)C16—O171.4000 (18)
C3—C41.515 (2)C16—O181.4345 (17)
C3—H3A1.024 (16)C16—H161.042 (16)
C3—H3B0.992 (16)O18—C191.3526 (17)
C4—C51.528 (2)C19—O191.1891 (17)
C4—H4A0.941 (18)C19—C201.489 (2)
C4—H4B0.983 (16)C20—H20A0.911 (19)
C5—C511.516 (2)C20—H20B0.961 (18)
C5—C61.529 (2)C20—H20C0.936 (18)
C5—H50.965 (15)
O11—C1—C6106.00 (11)C6—C5—H5106.3 (9)
O11—C1—C2109.26 (12)C5—C51—H51A110.6 (11)
C6—C1—C2113.12 (13)C5—C51—H51B109.9 (11)
O11—C1—H1107.7 (8)H51A—C51—H51B102.8 (15)
C6—C1—H1111.1 (8)C5—C51—H51C110.2 (11)
C2—C1—H1109.5 (10)H51A—C51—H51C110.8 (17)
C1—C2—C3106.85 (12)H51B—C51—H51C112.3 (17)
C1—C2—C21113.86 (13)C1—C6—C5111.69 (12)
C3—C2—C21114.59 (13)C1—C6—H6A111.0 (9)
C1—C2—H2104.7 (9)C5—C6—H6A106.8 (9)
C3—C2—H2108.9 (8)C1—C6—H6B110.7 (9)
C21—C2—H2107.4 (8)C5—C6—H6B111.0 (9)
C22—C21—C23109.79 (14)H6A—C6—H6B105.5 (13)
C22—C21—C2113.39 (13)C12—O11—C1117.88 (11)
C23—C21—C2111.01 (13)O12—C12—O11126.32 (13)
C22—C21—H21108.3 (9)O12—C12—C13123.07 (13)
C23—C21—H21107.6 (9)O11—C12—C13110.60 (11)
C2—C21—H21106.5 (9)O17—C13—C12109.67 (12)
C21—C22—H22A112.7 (9)O17—C13—S14107.65 (9)
C21—C22—H22B112.2 (10)C12—C13—S14108.21 (10)
H22A—C22—H22B109.0 (15)O17—C13—H13110.7 (9)
C21—C22—H22C110.8 (11)C12—C13—H13111.7 (9)
H22A—C22—H22C103.2 (14)S14—C13—H13108.8 (9)
H22B—C22—H22C108.5 (15)C15—S14—C1387.13 (7)
C21—C23—H23A112.2 (10)C16—C15—S14104.23 (11)
C21—C23—H23B111.0 (11)C16—C15—H15A112.8 (9)
H23A—C23—H23B105.6 (14)S14—C15—H15A108.9 (9)
C21—C23—H23C110.4 (10)C16—C15—H15B109.2 (9)
H23A—C23—H23C107.0 (14)S14—C15—H15B110.3 (9)
H23B—C23—H23C110.5 (14)H15A—C15—H15B111.1 (13)
C4—C3—C2112.04 (14)O17—C16—O18107.80 (12)
C4—C3—H3A111.7 (9)O17—C16—C15109.99 (12)
C2—C3—H3A106.5 (9)O18—C16—C15108.64 (12)
C4—C3—H3B110.0 (8)O17—C16—H16110.4 (8)
C2—C3—H3B110.9 (9)O18—C16—H16109.0 (8)
H3A—C3—H3B105.5 (13)C15—C16—H16111.0 (8)
C3—C4—C5112.08 (13)C16—O17—C13113.85 (11)
C3—C4—H4A108.4 (10)C19—O18—C16117.42 (11)
C5—C4—H4A108.6 (10)O19—C19—O18123.18 (13)
C3—C4—H4B109.6 (9)O19—C19—C20125.64 (15)
C5—C4—H4B110.5 (9)O18—C19—C20111.18 (13)
H4A—C4—H4B107.6 (13)C19—C20—H20A109.4 (11)
C51—C5—C4111.65 (14)C19—C20—H20B111.1 (10)
C51—C5—C6110.89 (13)H20A—C20—H20B106.0 (16)
C4—C5—C6109.53 (13)C19—C20—H20C109.6 (11)
C51—C5—H5111.4 (9)H20A—C20—H20C110.5 (16)
C4—C5—H5106.9 (10)H20B—C20—H20C110.1 (15)
O11—C1—C2—C3175.68 (11)C1—O11—C12—O120.5 (2)
C6—C1—C2—C357.86 (16)C1—O11—C12—C13179.08 (11)
O11—C1—C2—C2156.78 (16)O12—C12—C13—O1727.68 (19)
C6—C1—C2—C21174.59 (12)O11—C12—C13—O17153.67 (11)
C1—C2—C21—C2268.34 (17)O12—C12—C13—S1489.49 (16)
C3—C2—C21—C2255.10 (18)O11—C12—C13—S1489.16 (12)
C1—C2—C21—C23167.51 (14)O17—C13—S14—C1533.57 (10)
C3—C2—C21—C2369.05 (17)C12—C13—S14—C1584.90 (11)
C1—C2—C3—C457.56 (17)C13—S14—C15—C1637.16 (10)
C21—C2—C3—C4175.32 (13)S14—C15—C16—O1733.65 (15)
C2—C3—C4—C557.98 (18)S14—C15—C16—O1884.12 (12)
C3—C4—C5—C51176.96 (15)O18—C16—O17—C13109.17 (13)
C3—C4—C5—C653.74 (19)C15—C16—O17—C139.12 (17)
O11—C1—C6—C5177.46 (12)C12—C13—O17—C1697.69 (14)
C2—C1—C6—C557.75 (17)S14—C13—O17—C1619.84 (14)
C51—C5—C6—C1176.82 (14)O17—C16—O18—C1998.38 (14)
C4—C5—C6—C153.16 (17)C15—C16—O18—C19142.46 (13)
C6—C1—O11—C12123.41 (13)C16—O18—C19—O192.4 (2)
C2—C1—O11—C12114.39 (14)C16—O18—C19—C20177.29 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O12i0.989 (15)2.261 (15)3.1563 (18)150.0 (12)
C15—H15A···S14ii0.961 (16)3.033 (15)3.7794 (15)135.6 (11)
C20—H20B···O19i0.961 (18)2.524 (18)3.464 (2)166.0 (14)
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC16H26O5S
Mr330.43
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.329 (1), 13.867 (1), 23.490 (2)
V3)1735.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.3 × 0.3 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2 large Be window
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.719, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11503, 3632, 3175
Rint0.025
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.053, 1.03
No. of reflections3632
No. of parameters277
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.18
Absolute structureFlack (1983), 1435 Friedel pairs
Absolute structure parameter0.04 (5)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009)), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), Stereochemical Workstation Operation Manual (Siemens, 1989).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O12i0.989 (15)2.261 (15)3.1563 (18)150.0 (12)
C15—H15A···S14ii0.961 (16)3.033 (15)3.7794 (15)135.6 (11)
C20—H20B···O19i0.961 (18)2.524 (18)3.464 (2)166.0 (14)
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+3/2, z+1.
 

Acknowledgements

CSC thanks the University of Mysore for research facilities.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures. New York: Plenum.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarris, R. K., Yeung, R. R., Lamont, R. B., Lancaster, R. W., Lynn, S. M. & Staniforth, S. E. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 2653–2659.  CrossRef Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPereira, B. G., Vianna-Soares, C. D., Righi, A., Pinheiro, M. V. B., Flores, M. Z. S., Bezerra, E. M., Freire, V. N., Lemos, V., Caetano, E. W. S. & Cavada, B. S. (2007). J. Pharm. Biomed. Anal. 43, 1885–1889.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds