organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(4-Fluoro­pheneth­yl)-7-imino-3-phenyl-2,3,6,7-tetra­hydro-1,3-thia­zolo[4,5-d]pyrimidine-2-thione

aHubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Science, Wuhan 430064, People's Republic of China, and bKey Laboratory of Pesticides & Chemical Biology of the Ministry of Education, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: ly.liang8@gmail.com

(Received 10 November 2009; accepted 10 November 2009; online 14 November 2009)

In the title compound, C19H15FN4S2, the mean plane of the thia­zolopyrimidine makes a dihedral angle of 77.6 (1)° with the attached phenyl ring. The crystal packing is stabilized by inter­molecular C—H⋯N hydrogen bonds and weak C—H—π stacking inter­actions.

Related literature

For the biological activity of thia­zolo[4,5-d]pyrimidine deriv­atives, see: Balkan et al. (2002[Balkan, A., Goren, Z. & Urgan, H. (2002). Arzneim. Forsch. 52, 462-467.]); Bekhit et al. (2003[Bekhit, A. A., Fahmy, H. T. Y., Rostom, S. A. F. & Baraka, A. M. (2003). Eur. J. Med. Chem. 38, 27-34.]); Danel et al. (1998[Danel, K., Pedersen, E. B. & Nielsen, C. (1998). J. Med. Chem. 41, 191-198.]); Fahmy et al. (2003[Fahmy, H. T. Y., Rostom, S. A. F., Saudi, M. N. & Zjawiony, J. K. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 216-225.]). For the synthesis of thia­zolo [4,5-d]pyrimidines via tandem aza-Wittig and cyclization reactions of imino­phospho­rane and alkyl­amines, see: Liang et al. (2007[Liang, Y., Fang, S., Mo, W. Y. & He, H. W. (2007). J. Fluorine Chem. 128, 879-884.]). For C—H⋯π inter­actions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15FN4S2

  • Mr = 382.47

  • Monoclinic, P 21 /n

  • a = 8.6449 (13) Å

  • b = 12.3780 (19) Å

  • c = 16.546 (3) Å

  • β = 91.531 (3)°

  • V = 1769.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.910, Tmax = 0.939

  • 13207 measured reflections

  • 4047 independent reflections

  • 3442 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.119

  • S = 1.05

  • 4047 reflections

  • 238 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯N3i 0.93 2.61 3.486 (3) 156
C19—H19⋯Cg3ii 0.93 2.74 3.637 (2) 161
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z. Cg3 is the centroid of the C1–C6 ring.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiazolo[4,5-d]pyrimidine derivatives, which can be considered as thia-analogues of the natural purine bases such as adenine and guanine, have acquired a growing importance as anticancer agents (Fahmy et al., 2003), antiviral agents used in the treatment of human cytomegalovirus (Bekhit et al., 2003), antitumour agents (Balkan et al.,2002) and antibacterial agents (Danel et al., 1998).

An important synthetic route of our previous reports for thiazolo [4,5-d]pyrimidines is the tandem aza-Wittig and cyclization reaction of iminophosphorane and alkylamines (Liang et al., 2007). Recently, we have developed a new cyclization process to synthesize novel thiazolo[4,5-d]pyrimidine derivatives. In this paper, we report the structure of the title compound, (I)(Fig. 1).

In the molecule, all bond lengths and angles are normal (Allen et al., 1987). The mean plane of the thiazolopyrimidine fragment makes dihedral angle of 77.58 (10)° with the attached phenyl ring fragment. In the crystal structure, intermolecular C—H···N hydrogen-bonding interactions stabilize the structure (Table 1). In addition, short intermolecular distances between the centroids of the C1···C6 ring, Cg3, and C19···H19A [C19—H19···Cg3i = 2.740 (3) Å; symmetry code: (i) 1 - x, 1 - y, -z] indicate the existence of C—H-π stacking interactions (Janiak, 2000), which stabilize the crystal packing (Fig. 2) together with hydrogen-bonding interactions.

Related literature top

For the biological activity of thiazolo[4,5-d]pyrimidine derivatives, see: Balkan et al. (2002); Bekhit et al. (2003); Danel et al. (1998); Fahmy et al. (2003). For the synthesis of thiazolo [4,5-d]pyrimidines via the tandem aza-Wittig and cyclization reaction of iminophosphorane and alkylamines, see: Liang et al. (2007). For C—H-π stacking interactions, see: Janiak (2000). For bond-length data, see: Allen et al. (1987). Cg3 is the centroid of the C1–C6 ring.

Experimental top

To a suspension of 5-cyano-4-ethoxymethyleneamino-3-phenyl-3H-thiazolin- 2-thione (0.87 g 5 mmol) in 15 mL dry acetonitrile was added all at once 0.5 g (3.6 mmol) 4-fluorophenylethylamine. After standing at room temperature for 1.5 h, then the solution concentrated under vacuum and the residue was recrystallized from dichloromethane to give the title compound (yield 72.8%). Colourless crystals of (I) suitable for X-ray structure analysis were grown from the mixture of dichloromethane and ethanol (v/v, 1:3).

Refinement top

All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.98 Å, Uiso = 1.2Ueq (C) for CH and 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal Packing diagram of (I). Hydrogen bonds are shown as dashed lines.
6-(4-Fluorophenethyl)-7-imino-3-phenyl-2,3,6,7-tetrahydro-1,3-thiazolo[4,5-d]pyrimidine-2-thione top
Crystal data top
C19H15FN4S2F(000) = 792
Mr = 382.47Dx = 1.435 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.6449 (13) ÅCell parameters from 5242 reflections
b = 12.3780 (19) Åθ = 2.5–27.9°
c = 16.546 (3) ŵ = 0.32 mm1
β = 91.531 (3)°T = 298 K
V = 1769.9 (5) Å3Block, colorless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4047 independent reflections
Radiation source: fine-focus sealed tube3442 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1111
Tmin = 0.910, Tmax = 0.939k = 1516
13207 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.063P)2 + 0.3948P]
where P = (Fo2 + 2Fc2)/3
4047 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C19H15FN4S2V = 1769.9 (5) Å3
Mr = 382.47Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6449 (13) ŵ = 0.32 mm1
b = 12.3780 (19) ÅT = 298 K
c = 16.546 (3) Å0.30 × 0.20 × 0.20 mm
β = 91.531 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4047 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3442 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.939Rint = 0.023
13207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.31 e Å3
4047 reflectionsΔρmin = 0.24 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4958 (2)1.34258 (14)0.58804 (13)0.0535 (5)
C20.4537 (2)1.33892 (14)0.50835 (13)0.0542 (5)
H20.48631.39170.47260.065*
C30.3607 (2)1.25414 (15)0.48189 (11)0.0502 (4)
H30.33061.25030.42760.060*
C40.31153 (19)1.17484 (13)0.53462 (11)0.0429 (4)
C50.3617 (2)1.18055 (15)0.61453 (11)0.0504 (4)
H50.33351.12650.65030.060*
C60.4530 (2)1.26536 (16)0.64208 (12)0.0572 (5)
H60.48461.26970.69610.069*
C70.2083 (2)1.08369 (14)0.50454 (11)0.0482 (4)
H7A0.12031.11330.47450.058*
H7B0.16961.04390.55030.058*
C80.29661 (19)1.00780 (14)0.45073 (12)0.0467 (4)
H8A0.34501.04960.40870.056*
H8B0.37820.97320.48270.056*
C90.10871 (19)0.95138 (14)0.34270 (10)0.0422 (4)
C100.03504 (19)0.85689 (13)0.30865 (10)0.0411 (4)
C110.04789 (18)0.75959 (13)0.34560 (9)0.0379 (3)
C120.1989 (2)0.82329 (14)0.44484 (11)0.0458 (4)
H120.25670.81350.49250.055*
C130.0990 (2)0.70793 (14)0.23294 (10)0.0445 (4)
C140.02508 (18)0.56612 (13)0.33171 (10)0.0402 (4)
C150.0719 (3)0.49373 (17)0.29640 (13)0.0621 (5)
H150.13410.51460.25410.075*
C160.0753 (3)0.38912 (19)0.32496 (16)0.0780 (7)
H160.13980.33860.30140.094*
C170.0147 (3)0.35897 (17)0.38718 (18)0.0776 (8)
H170.01160.28810.40580.093*
C180.1101 (3)0.4326 (2)0.42259 (16)0.0739 (7)
H180.17110.41170.46530.089*
C190.1156 (2)0.53768 (16)0.39494 (12)0.0554 (5)
H190.17960.58820.41880.066*
N10.19862 (15)0.92398 (11)0.41267 (8)0.0411 (3)
N20.12708 (17)0.73932 (11)0.41615 (9)0.0459 (3)
N30.1072 (2)1.04959 (13)0.31970 (11)0.0605 (4)
H3A0.052 (3)1.0564 (19)0.2764 (15)0.073*
N40.02702 (16)0.67676 (11)0.30352 (8)0.0397 (3)
F10.58230 (17)1.42773 (10)0.61527 (9)0.0823 (4)
S10.07386 (6)0.84673 (4)0.21932 (3)0.05356 (16)
S20.19713 (7)0.63041 (4)0.16868 (3)0.06299 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0557 (10)0.0390 (9)0.0653 (12)0.0015 (7)0.0051 (9)0.0124 (8)
C20.0649 (11)0.0400 (9)0.0579 (12)0.0030 (8)0.0053 (9)0.0022 (8)
C30.0616 (11)0.0468 (10)0.0418 (9)0.0013 (8)0.0036 (8)0.0013 (7)
C40.0455 (9)0.0374 (8)0.0457 (9)0.0022 (7)0.0017 (7)0.0069 (7)
C50.0657 (11)0.0424 (9)0.0431 (10)0.0013 (8)0.0027 (8)0.0003 (7)
C60.0738 (13)0.0516 (11)0.0456 (10)0.0017 (9)0.0113 (9)0.0088 (8)
C70.0463 (9)0.0461 (9)0.0523 (10)0.0049 (7)0.0040 (8)0.0077 (8)
C80.0384 (8)0.0437 (9)0.0576 (11)0.0028 (7)0.0038 (7)0.0108 (8)
C90.0456 (9)0.0420 (9)0.0391 (8)0.0044 (7)0.0005 (7)0.0010 (7)
C100.0478 (9)0.0415 (8)0.0337 (8)0.0036 (7)0.0048 (7)0.0028 (6)
C110.0403 (8)0.0388 (8)0.0344 (8)0.0022 (6)0.0019 (6)0.0006 (6)
C120.0493 (9)0.0426 (9)0.0448 (10)0.0028 (7)0.0131 (7)0.0014 (7)
C130.0541 (10)0.0429 (9)0.0361 (8)0.0027 (7)0.0056 (7)0.0005 (7)
C140.0455 (8)0.0356 (8)0.0390 (8)0.0024 (6)0.0096 (7)0.0015 (6)
C150.0763 (14)0.0584 (12)0.0516 (11)0.0159 (10)0.0021 (10)0.0024 (9)
C160.1057 (19)0.0501 (12)0.0772 (16)0.0275 (12)0.0187 (14)0.0099 (11)
C170.0875 (16)0.0422 (11)0.101 (2)0.0070 (11)0.0404 (15)0.0170 (11)
C180.0622 (12)0.0699 (15)0.0891 (17)0.0130 (11)0.0077 (11)0.0346 (13)
C190.0493 (10)0.0549 (11)0.0621 (12)0.0020 (8)0.0031 (8)0.0128 (9)
N10.0389 (7)0.0388 (7)0.0453 (8)0.0018 (5)0.0053 (6)0.0052 (6)
N20.0560 (8)0.0401 (7)0.0409 (8)0.0006 (6)0.0147 (6)0.0024 (6)
N30.0840 (12)0.0420 (8)0.0547 (10)0.0113 (8)0.0114 (9)0.0082 (7)
N40.0479 (7)0.0373 (7)0.0335 (7)0.0034 (5)0.0060 (5)0.0010 (5)
F10.0964 (10)0.0541 (7)0.0954 (10)0.0209 (7)0.0147 (8)0.0206 (7)
S10.0767 (3)0.0453 (3)0.0377 (3)0.0082 (2)0.0170 (2)0.00820 (18)
S20.0860 (4)0.0531 (3)0.0483 (3)0.0078 (2)0.0276 (3)0.0050 (2)
Geometric parameters (Å, º) top
C1—C21.359 (3)C10—S11.7356 (16)
C1—F11.362 (2)C11—N21.361 (2)
C1—C61.367 (3)C11—N41.390 (2)
C2—C31.386 (3)C12—N21.294 (2)
C2—H20.9300C12—N11.355 (2)
C3—C41.387 (3)C12—H120.9300
C3—H30.9300C13—N41.364 (2)
C4—C51.382 (2)C13—S21.6501 (17)
C4—C71.515 (2)C13—S11.7472 (18)
C5—C61.384 (3)C14—C151.369 (3)
C5—H50.9300C14—C191.369 (3)
C6—H60.9300C14—N41.447 (2)
C7—C81.515 (2)C15—C161.378 (3)
C7—H7A0.9700C15—H150.9300
C7—H7B0.9700C16—C171.359 (4)
C8—N11.470 (2)C16—H160.9300
C8—H8A0.9700C17—C181.371 (4)
C8—H8B0.9700C17—H170.9300
C9—N31.274 (2)C18—C191.379 (3)
C9—N11.418 (2)C18—H180.9300
C9—C101.439 (2)C19—H190.9300
C10—C111.354 (2)N3—H3A0.86 (2)
C2—C1—F1118.50 (18)C10—C11—N2125.78 (15)
C2—C1—C6122.77 (17)C10—C11—N4113.49 (14)
F1—C1—C6118.72 (18)N2—C11—N4120.72 (14)
C1—C2—C3118.01 (18)N2—C12—N1126.76 (15)
C1—C2—H2121.0N2—C12—H12116.6
C3—C2—H2121.0N1—C12—H12116.6
C2—C3—C4121.47 (17)N4—C13—S2127.02 (13)
C2—C3—H3119.3N4—C13—S1109.46 (12)
C4—C3—H3119.3S2—C13—S1123.52 (10)
C5—C4—C3118.15 (16)C15—C14—C19121.81 (18)
C5—C4—C7121.30 (16)C15—C14—N4118.95 (17)
C3—C4—C7120.54 (16)C19—C14—N4119.19 (15)
C4—C5—C6121.04 (18)C14—C15—C16118.4 (2)
C4—C5—H5119.5C14—C15—H15120.8
C6—C5—H5119.5C16—C15—H15120.8
C1—C6—C5118.50 (18)C17—C16—C15120.7 (2)
C1—C6—H6120.7C17—C16—H16119.7
C5—C6—H6120.7C15—C16—H16119.7
C4—C7—C8110.67 (14)C16—C17—C18120.3 (2)
C4—C7—H7A109.5C16—C17—H17119.9
C8—C7—H7A109.5C18—C17—H17119.9
C4—C7—H7B109.5C17—C18—C19120.1 (2)
C8—C7—H7B109.5C17—C18—H18120.0
H7A—C7—H7B108.1C19—C18—H18120.0
N1—C8—C7113.30 (14)C14—C19—C18118.7 (2)
N1—C8—H8A108.9C14—C19—H19120.6
C7—C8—H8A108.9C18—C19—H19120.6
N1—C8—H8B108.9C12—N1—C9122.40 (13)
C7—C8—H8B108.9C12—N1—C8119.05 (14)
H8A—C8—H8B107.7C9—N1—C8118.54 (14)
N3—C9—N1118.24 (15)C12—N2—C11113.08 (14)
N3—C9—C10131.12 (16)C9—N3—H3A110.2 (16)
N1—C9—C10110.63 (14)C13—N4—C11114.58 (13)
C11—C10—C9121.06 (15)C13—N4—C14123.01 (13)
C11—C10—S1110.87 (12)C11—N4—C14122.39 (12)
C9—C10—S1128.06 (12)C10—S1—C1391.60 (8)
F1—C1—C2—C3177.55 (17)C17—C18—C19—C140.3 (3)
C6—C1—C2—C31.4 (3)N2—C12—N1—C93.5 (3)
C1—C2—C3—C40.1 (3)N2—C12—N1—C8175.59 (17)
C2—C3—C4—C51.9 (3)N3—C9—N1—C12175.35 (18)
C2—C3—C4—C7179.23 (16)C10—C9—N1—C125.8 (2)
C3—C4—C5—C62.7 (3)N3—C9—N1—C85.6 (2)
C7—C4—C5—C6178.48 (17)C10—C9—N1—C8173.26 (14)
C2—C1—C6—C50.7 (3)C7—C8—N1—C12100.26 (19)
F1—C1—C6—C5178.28 (18)C7—C8—N1—C980.6 (2)
C4—C5—C6—C11.4 (3)N1—C12—N2—C111.3 (3)
C5—C4—C7—C8109.01 (19)C10—C11—N2—C123.2 (3)
C3—C4—C7—C869.8 (2)N4—C11—N2—C12175.53 (15)
C4—C7—C8—N1173.93 (15)S2—C13—N4—C11179.73 (13)
N3—C9—C10—C11177.3 (2)S1—C13—N4—C110.73 (19)
N1—C9—C10—C114.0 (2)S2—C13—N4—C141.2 (3)
N3—C9—C10—S14.0 (3)S1—C13—N4—C14179.28 (13)
N1—C9—C10—S1174.59 (13)C10—C11—N4—C130.2 (2)
C9—C10—C11—N20.3 (3)N2—C11—N4—C13178.63 (15)
S1—C10—C11—N2179.18 (14)C10—C11—N4—C14178.81 (15)
C9—C10—C11—N4178.47 (15)N2—C11—N4—C140.1 (2)
S1—C10—C11—N40.37 (19)C15—C14—N4—C1376.3 (2)
C19—C14—C15—C161.2 (3)C19—C14—N4—C13106.2 (2)
N4—C14—C15—C16178.58 (18)C15—C14—N4—C11102.1 (2)
C14—C15—C16—C170.5 (4)C19—C14—N4—C1175.4 (2)
C15—C16—C17—C180.2 (4)C11—C10—S1—C130.66 (14)
C16—C17—C18—C190.3 (4)C9—C10—S1—C13178.08 (17)
C15—C14—C19—C181.1 (3)N4—C13—S1—C100.78 (14)
N4—C14—C19—C18178.46 (17)S2—C13—S1—C10179.66 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N3i0.932.613.486 (3)156
C19—H19···Cg3ii0.932.743.637 (2)161
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H15FN4S2
Mr382.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.6449 (13), 12.3780 (19), 16.546 (3)
β (°) 91.531 (3)
V3)1769.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.910, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
13207, 4047, 3442
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.119, 1.05
No. of reflections4047
No. of parameters238
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N3i0.932.613.486 (3)156.4
C19—H19···Cg3ii0.932.743.637 (2)161
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+1, z.
 

Acknowledgements

We gratefully acknowledge the financial support of this work by the National Basic Research Program of China (2003CB114400) and the National Natural Science Foundation of China (No. 20372023).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBalkan, A., Goren, Z. & Urgan, H. (2002). Arzneim. Forsch. 52, 462–467.  CAS Google Scholar
First citationBekhit, A. A., Fahmy, H. T. Y., Rostom, S. A. F. & Baraka, A. M. (2003). Eur. J. Med. Chem. 38, 27–34.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDanel, K., Pedersen, E. B. & Nielsen, C. (1998). J. Med. Chem. 41, 191–198.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFahmy, H. T. Y., Rostom, S. A. F., Saudi, M. N. & Zjawiony, J. K. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 216–225.  Web of Science CrossRef CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationLiang, Y., Fang, S., Mo, W. Y. & He, H. W. (2007). J. Fluorine Chem. 128, 879–884.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds