organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-2-Hydr­­oxy-3-(4-meth­oxy­phen­yl)acrylic acid

aKey Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Jishou 416000, People's Republic of China
*Correspondence e-mail: shenyangzhou@163.com

(Received 20 November 2009; accepted 20 November 2009; online 28 November 2009)

In the structure of the title compound, C10H10O4, inversion dimers linked by pairs of O—H⋯O hydrogen bonds link the carboxylic acid groups. Further O—H⋯O links cross-link the dimers into sheets running along the b-axis direction.

Related literature

For 3-phenyl­acrylic acid as inter­mediates for compounds with biological activity, see: Chen et al. (1993[Chen, Y.-L., Chen, S.-J., Lee, K.-H., Huang, B.-R. & Tzeng, C.-C. (1993). Nucleosides Nucleotides Nucleic Acids, 12, 925-940.]); Igarashi et al. (1997[Igarashi, M., Kinoshita, N., Ikeda, T., Kameda, M., Hamada, M. & Takeuchi, T. (1997). J. Antibiot. 50, 1020-1025.]); Xiao et al. (2007[Xiao, Z.-P., Fang, R.-Q., Shi, L., Ding, H., Xu, C. & Zhu, H.-L. (2007). Can. J. Chem. 85, 951-957.]); Yu et al. (1991[Yu, J.-M., Xue, F. & Dai, H.-J. (1991). Yaoxue Xuebao, 26, 552-556.]). The title compound was synthesized during the course of our work on the synthesis of potential anti­cancer compounds, see: Xiao et al. (2008a[Xiao, Z.-P., Li, H.-Q., Shi, L., Lv, P.-C., Song, Z.-C. & Zhu, H.-L. (2008a). ChemMedChem, 3, 1077-1083.],b[Xiao, Z.-P., Lv, P.-C., Xu, S.-P., Zhu, T.-T. & Zhu, H.-L. (2008b). ChemMedChem, 3, 1516-1519.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10O4

  • Mr = 194.18

  • Monoclinic, P 21 /c

  • a = 6.7440 (13) Å

  • b = 5.4290 (11) Å

  • c = 24.933 (5) Å

  • β = 93.28 (3)°

  • V = 911.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.995

  • 1783 measured reflections

  • 1634 independent reflections

  • 1062 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.229

  • S = 1.07

  • 1634 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O4ii 0.85 1.78 2.626 (4) 177
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Derivatives of 3-phenylacrylic acid are key intermediates for tanshinol (Yu et al. 1991), resormycin (Igarashi et al. 1997; Xiao et al. 2007) and benzylazauracil (Chen et al. 1993), which show anti-platelet aggregation, antifungal and antiviral activities, respectively. In the course of our work on screening for anticancers (Xiao, et al. 2008a; Xiao, et al. 2008b), we synthesized the title compound and herein reported its crystal structure.

In the title compound (I), (Z)-2-hydroxy-3-(4-methoxyphenyl)acrylic acid, the plane of benzene ring (with mean dieviation deviation of 0.0053 Å) and the plane of hydroxy acrylic moiety (with mean deviation of 0.0049 Å) make a dihedral angle of 18.001 (97) Å. The benzene ring and the carboxy group occur on opposite side of the C8C9 double bond with torsion angle of 179.8 (4) ° (Fig. 1). The molecules are linked into dimers by the intermolecular hydrogen bonds occurring the carboxylic acid groups, which lie on crystallographic centres of inversion. These dimers are further cross-linked by intermolecular hydrogen bonds between enolic hydroxy groups and carboxylic acid groups to form sheets running parallel to the crystallographic b axis direction (Table 1 and Fig. 2).

Related literature top

For 3-phenylacrylic acid as intermediates for compounds with biological activityrelated literature, see: Chen et al. (1993); Igarashi et al. (1997); Xiao et al. (2007); Yu et al. (1991). The title compound was synthesized during the course of our work on screening for anticancer compounds, see: Xiao et al. (2008a,b).

Experimental top

The mixture of alpha-acetoamido-4-methoxycinnamic acid (2.35 g, 10 mmol) in 0.5M HCl (60 mL) was refluxed for 6 h. The resulting mixture was allowed to cool to room temperature and the resulting precipitate was collected by filtration. The crude product was dissolved in EtOAc and twofold volume of petroleum was added carefully. Colorless blocks of (I) suitable for single-crystal structure determination was furnished after 2 d.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H of 0.93 Å for the aromatic H atoms and CH groups, 0.96 Å for the CH3 groups and with O—H of 0.82 Å for the OH groups. Uiso(H) values were set at 1.2 times Ueq(C) for aromatic C groups, 1.5 times Ueq(C) for CH3, 1.2 times Ueq(O) for enolic O—H groups and 1.5 times Ueq(O) for carboxylic O—H groups.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The independent components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Pattern forms through intermolecular O—H···O hydrogen bonds. Dashed lines indicate hydrogen bonds.
(Z)-2-Hydroxy-3-(4-methoxyphenyl)acrylic acid top
Crystal data top
C10H10O4F(000) = 408
Mr = 194.18Dx = 1.415 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 6.7440 (13) Åθ = 10–13°
b = 5.4290 (11) ŵ = 0.11 mm1
c = 24.933 (5) ÅT = 298 K
β = 93.28 (3)°Block, colorless
V = 911.4 (3) Å30.20 × 0.10 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
1634 independent reflections
Radiation source: fine-focus sealed tube1062 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scanθmax = 25.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.978, Tmax = 0.995k = 06
1783 measured reflectionsl = 029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.229H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1176P)2 + 0.6125P]
where P = (Fo2 + 2Fc2)/3
1634 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C10H10O4V = 911.4 (3) Å3
Mr = 194.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.7440 (13) ŵ = 0.11 mm1
b = 5.4290 (11) ÅT = 298 K
c = 24.933 (5) Å0.20 × 0.10 × 0.05 mm
β = 93.28 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1634 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1062 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.995Rint = 0.025
1783 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.229H-atom parameters constrained
S = 1.07Δρmax = 0.34 e Å3
1634 reflectionsΔρmin = 0.25 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2792 (4)0.2913 (6)0.29127 (12)0.0686 (10)
C10.3926 (7)0.0765 (10)0.2992 (2)0.0735 (14)
H1A0.51170.08160.27620.110*
H1B0.42680.06810.33600.110*
H1C0.31630.06620.29070.110*
O20.5210 (4)0.0927 (5)0.44683 (13)0.0627 (9)
H2A0.61470.00660.43520.075*
C20.1051 (6)0.3189 (8)0.32160 (16)0.0511 (10)
O30.7993 (4)0.6459 (5)0.45988 (12)0.0625 (9)
H3B0.91340.66910.47540.094*
C30.0063 (6)0.5256 (9)0.30978 (18)0.0641 (13)
H3A0.03850.63120.28230.077*
O40.8501 (4)0.2652 (5)0.49281 (11)0.0554 (8)
C40.1819 (7)0.5746 (9)0.33834 (18)0.0622 (12)
H4A0.25290.71550.33040.075*
C50.2557 (5)0.4185 (7)0.37875 (15)0.0461 (9)
C60.1417 (6)0.2101 (8)0.38927 (16)0.0517 (10)
H6A0.18820.10060.41580.062*
C70.0345 (6)0.1624 (8)0.36199 (17)0.0552 (11)
H7A0.10770.02410.37050.066*
C80.4431 (6)0.4777 (7)0.40817 (15)0.0484 (10)
H8A0.48390.64070.40560.058*
C90.5639 (5)0.3336 (7)0.43806 (16)0.0479 (9)
C100.7504 (5)0.4146 (8)0.46618 (16)0.0483 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0498 (16)0.078 (2)0.074 (2)0.0062 (16)0.0308 (15)0.0012 (17)
C10.057 (2)0.077 (3)0.084 (3)0.006 (3)0.019 (2)0.015 (3)
O20.0473 (15)0.0473 (17)0.090 (2)0.0052 (13)0.0239 (15)0.0071 (16)
C20.0456 (19)0.051 (2)0.055 (2)0.0079 (19)0.0146 (18)0.0052 (19)
O30.0499 (16)0.0494 (17)0.085 (2)0.0063 (14)0.0251 (15)0.0020 (15)
C30.053 (2)0.070 (3)0.065 (3)0.008 (2)0.027 (2)0.008 (2)
O40.0408 (14)0.0575 (18)0.0655 (17)0.0033 (14)0.0187 (13)0.0021 (15)
C40.056 (2)0.054 (3)0.075 (3)0.002 (2)0.013 (2)0.008 (2)
C50.0430 (19)0.0406 (19)0.052 (2)0.0067 (18)0.0200 (17)0.0055 (18)
C60.049 (2)0.052 (2)0.051 (2)0.0037 (19)0.0200 (17)0.0046 (19)
C70.045 (2)0.052 (2)0.066 (3)0.004 (2)0.0200 (19)0.002 (2)
C80.044 (2)0.044 (2)0.055 (2)0.0037 (18)0.0130 (18)0.0002 (18)
C90.0402 (19)0.046 (2)0.056 (2)0.0004 (18)0.0125 (17)0.0007 (18)
C100.0343 (17)0.049 (2)0.060 (2)0.0007 (18)0.0080 (17)0.000 (2)
Geometric parameters (Å, º) top
O1—C21.368 (5)C3—H3A0.9300
O1—C11.415 (6)O4—C101.225 (4)
C1—H1A0.9600C4—C51.387 (6)
C1—H1B0.9600C4—H4A0.9300
C1—H1C0.9600C5—C61.401 (6)
O2—C91.360 (5)C5—C81.460 (5)
O2—H2A0.8500C6—C71.360 (5)
C2—C71.381 (6)C6—H6A0.9300
C2—C31.391 (6)C7—H7A0.9300
O3—C101.310 (5)C8—C91.327 (5)
O3—H3B0.8499C8—H8A0.9300
C3—C41.372 (6)C9—C101.472 (5)
C2—O1—C1117.8 (3)C4—C5—C6116.9 (3)
O1—C1—H1A109.5C4—C5—C8119.7 (4)
O1—C1—H1B109.5C6—C5—C8123.5 (3)
H1A—C1—H1B109.5C7—C6—C5122.2 (4)
O1—C1—H1C109.5C7—C6—H6A118.9
H1A—C1—H1C109.5C5—C6—H6A118.9
H1B—C1—H1C109.5C6—C7—C2120.2 (4)
C9—O2—H2A107.7C6—C7—H7A119.9
O1—C2—C7125.8 (4)C2—C7—H7A119.9
O1—C2—C3115.4 (4)C9—C8—C5129.7 (4)
C7—C2—C3118.8 (4)C9—C8—H8A115.2
C10—O3—H3B108.4C5—C8—H8A115.2
C4—C3—C2120.5 (4)C8—C9—O2121.9 (3)
C4—C3—H3A119.8C8—C9—C10124.9 (4)
C2—C3—H3A119.8O2—C9—C10113.2 (3)
C3—C4—C5121.4 (4)O4—C10—O3124.4 (3)
C3—C4—H4A119.3O4—C10—C9119.2 (4)
C5—C4—H4A119.3O3—C10—C9116.3 (3)
C1—O1—C2—C74.2 (6)O1—C2—C7—C6179.9 (4)
C1—O1—C2—C3176.1 (4)C3—C2—C7—C60.4 (6)
O1—C2—C3—C4178.8 (4)C4—C5—C8—C9161.8 (4)
C7—C2—C3—C40.9 (7)C6—C5—C8—C918.8 (7)
C2—C3—C4—C51.4 (7)C5—C8—C9—O21.9 (7)
C3—C4—C5—C60.5 (7)C5—C8—C9—C10179.8 (4)
C3—C4—C5—C8180.0 (4)C8—C9—C10—O4179.8 (4)
C4—C5—C6—C70.9 (6)O2—C9—C10—O41.8 (5)
C8—C5—C6—C7178.5 (4)C8—C9—C10—O31.2 (6)
C5—C6—C7—C21.4 (7)O2—C9—C10—O3179.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O20.932.332.931 (5)122
C8—H8A···O30.932.462.813 (5)103
O2—H2A···O3i0.852.383.073 (4)139
O3—H3B···O4ii0.851.782.626 (4)177
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H10O4
Mr194.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.7440 (13), 5.4290 (11), 24.933 (5)
β (°) 93.28 (3)
V3)911.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
1783, 1634, 1062
Rint0.025
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.229, 1.07
No. of reflections1634
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.25

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O20.932.332.931 (5)121.7
C8—H8A···O30.932.462.813 (5)102.9
O2—H2A···O3i0.852.383.073 (4)138.7
O3—H3B···O4ii0.851.782.626 (4)176.9
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1.
 

Acknowledgements

We thank the Key Laboratory of Hunan Forest Products and Chemical Industry Engineering of Hunan Province (grant No. JDZ200905).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-L., Chen, S.-J., Lee, K.-H., Huang, B.-R. & Tzeng, C.-C. (1993). Nucleosides Nucleotides Nucleic Acids, 12, 925–940.  CrossRef CAS Google Scholar
First citationIgarashi, M., Kinoshita, N., Ikeda, T., Kameda, M., Hamada, M. & Takeuchi, T. (1997). J. Antibiot. 50, 1020–1025.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z.-P., Fang, R.-Q., Shi, L., Ding, H., Xu, C. & Zhu, H.-L. (2007). Can. J. Chem. 85, 951–957.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiao, Z.-P., Li, H.-Q., Shi, L., Lv, P.-C., Song, Z.-C. & Zhu, H.-L. (2008a). ChemMedChem, 3, 1077–1083.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXiao, Z.-P., Lv, P.-C., Xu, S.-P., Zhu, T.-T. & Zhu, H.-L. (2008b). ChemMedChem, 3, 1516–1519.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, J.-M., Xue, F. & Dai, H.-J. (1991). Yaoxue Xuebao, 26, 552–556.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds