metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N,N-Bis(2-pyridylmeth­yl)glycinato-κ4N,N′,N′′,O]di­chloridoiron(III)–[N,N-bis­­(2-pyridylmeth­yl)glycine-κ4N,N′,N′′,O]di­chloridozinc(II) (1/1)

aUniversity of Southern Denmark, Department of Physics and Chemistry, Campusvej 55, 5230 Odense M, Denmark
*Correspondence e-mail: adb@chem.sdu.dk

(Received 25 November 2009; accepted 26 November 2009; online 28 November 2009)

The title compound, [Fe(C14H14N3O2)Cl2]·[ZnCl2(C14H15N3O2)], is formulated as [FeIII(bpg)Cl2][ZnIICl2(bpgH)], where bpg is the tetra­dentate ligand N,N-bis­(2-pyridylmeth­yl)glycine. The structure contains one crystallographically distinct complex with FeIII and ZnII atoms present in a 50:50 ratio in a single-atom site. The non-coordinated O atoms of the carboxyl groups of bpg meet across crystallographic inversion centres, forming O—H⋯O hydrogen bonds that include only one H atom per two complexes, consistent with the 1:1 disorder of FeIII and ZnII.

Related literature

For related FeIII structures of bpg, see: Mortensen et al. (2004[ Mortensen, M. N., Jensen, B., Hazell, A., Bond, A. D. & McKenzie, C. J. (2004). Dalton Trans. pp. 3396-3402.]). For details of the synthesis, see: Suzuki et al. (1988[ Suzuki, M., Senda, H., Kobayashi, Y., Oshio, H. & Uehara, A. (1988). Chem. Lett. pp. 1763-1766.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C14H14N3O2)Cl2]·[ZnCl2(C14H15N3O2)]

  • Mr = 776.59

  • Monoclinic, P 21 /c

  • a = 8.8710 (3) Å

  • b = 13.1898 (5) Å

  • c = 13.3983 (4) Å

  • β = 91.737 (2)°

  • V = 1566.97 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 180 K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Bruker–Nonius X8APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[ Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.701, Tmax = 0.794

  • 32580 measured reflections

  • 4775 independent reflections

  • 4248 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.132

  • S = 1.36

  • 4775 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O2i 0.93 1.64 2.559 (6) 169
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[ Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[ Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Crystallization of the title compound, [FeCl2(bpg)][ZnCl2(bpgH)] (where bpg denotes the tetradentate ligand N,N-bis(2-pyridylmethyl)glycine), was surprising given the presence of water in its preparation. In our hands, simple binary mixtures of bpgH and FeCl3 in water-containing solutions do not yield the complex [FeCl2(bpg)]. If only chloride ions but not ZnII are present in equivalent reaction mixtures (i.e. aerobic conditions and containing water), oligomeric (hydr)oxo-bridged FeIII complexes are formed, such as [Fe2(O)(bpg)2(H2O)2](ClO4)2 and [Fe3(O)2(OH)(bpg)3](ClO4) (Mortensen et al., 2004). Addition of ZnII has in this case enabled isolation of [FeCl2(bpg)] from water as one component of the co-crystal.

Related literature top

For related FeIII structures of bpg, see: Mortensen et al. (2004). For details of the synthesis, see: Suzuki et al. (1988).

Experimental top

N,N-Bis(2-pyridylmethyl)glycine (bpgH) was prepared according to a literature method (Suzuki et al., 1988). BpgH (125 mg, 49 mmol) was then dissolved in hot acetonitrile (5 ml) and water (0.5 ml), before Fe(NO3)3.9H2O (99 mg, 24 mmol), ZnCl2 (67 mg, 49 mmol) and NH4Cl (78 mg, 15 mmol) were added. A few yellow crystals of the title compound were deposited overnight.

Refinement top

H atoms bound to C atoms were placed in idealized positions with C—H = 0.95 or 0.99 Å and refined as riding with Uiso(H) = 1.2Ueq(C). The H atom of the OH group was included in a position identified from a difference Fourier map, then allowed to ride on atom O2 with Uiso(H) = 1.5Ueq(O). The 50:50 disorder of atoms Fe1 and Zn1 is required for charge balance in the structure, but it is also supported by the diffraction data: refinement of the atom solely as Fe gives a comparatively small displacement ellipsoid while refinement solely as Zn gives a comparatively large ellipsoid. In both cases, the R-factors increase compared to the disordered refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids shown at 50% probability for non-H atoms.
[Figure 2] Fig. 2. Projection along the a axis showing hydrogen bonds (dashed lines) formed between bpg(H) ligands across crystallographic inversion centres.
[N,N-Bis(2-pyridylmethyl)glycinato- κ4N,N',N'',O]dichloridoiron(III)– [N,N-bis(2-pyridylmethyl)glycine- κ4N,N',N'',O]dichloridozinc(II) (1/1) top
Crystal data top
[Fe(C14H14N3O2)Cl2]·[ZnCl2(C14H15N3O2)]F(000) = 790
Mr = 776.59Dx = 1.646 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5945 reflections
a = 8.8710 (3) Åθ = 2.3–29.9°
b = 13.1898 (5) ŵ = 1.62 mm1
c = 13.3983 (4) ÅT = 180 K
β = 91.737 (2)°Block, yellow
V = 1566.97 (9) Å30.20 × 0.20 × 0.15 mm
Z = 2
Data collection top
Bruker–Nonius X8APEXII CCD
diffractometer
4775 independent reflections
Radiation source: fine-focus sealed tube4248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Thin–slice ω and ϕ scansθmax = 30.5°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.701, Tmax = 0.794k = 1818
32580 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.36 w = 1/[σ2(Fo2) + 7.0062P]
where P = (Fo2 + 2Fc2)/3
4775 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Fe(C14H14N3O2)Cl2]·[ZnCl2(C14H15N3O2)]V = 1566.97 (9) Å3
Mr = 776.59Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.8710 (3) ŵ = 1.62 mm1
b = 13.1898 (5) ÅT = 180 K
c = 13.3983 (4) Å0.20 × 0.20 × 0.15 mm
β = 91.737 (2)°
Data collection top
Bruker–Nonius X8APEXII CCD
diffractometer
4775 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4248 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.794Rint = 0.031
32580 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.36Δρmax = 0.55 e Å3
4775 reflectionsΔρmin = 0.71 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.30263 (5)0.42993 (3)0.31348 (3)0.01709 (11)0.50
Zn10.30263 (5)0.42993 (3)0.31348 (3)0.01709 (11)0.50
Cl10.19027 (10)0.35846 (7)0.45311 (7)0.02319 (19)
Cl20.30370 (13)0.59544 (7)0.35454 (8)0.0290 (2)
O10.3982 (4)0.4689 (2)0.1686 (2)0.0295 (6)
O20.4679 (4)0.4082 (2)0.0219 (2)0.0326 (7)
H20.47900.47590.00500.049*0.50
N10.5237 (4)0.3803 (2)0.3539 (2)0.0204 (6)
N20.3235 (3)0.2778 (2)0.2375 (2)0.0171 (6)
N30.0989 (4)0.4170 (3)0.2225 (2)0.0215 (6)
C10.6376 (4)0.4414 (3)0.3838 (3)0.0245 (8)
H1A0.61840.51170.39270.029*
C20.7825 (5)0.4048 (4)0.4022 (3)0.0291 (9)
H2A0.86170.44930.42280.035*
C30.8095 (5)0.3026 (4)0.3899 (3)0.0320 (10)
H3A0.90810.27590.40100.038*
C40.6917 (5)0.2392 (3)0.3615 (3)0.0280 (8)
H4A0.70760.16840.35480.034*
C50.5506 (4)0.2805 (3)0.3429 (3)0.0208 (7)
C60.4167 (4)0.2175 (3)0.3096 (3)0.0202 (7)
H6A0.45120.15430.27750.024*
H6B0.35640.19890.36780.024*
C70.1677 (4)0.2401 (3)0.2253 (3)0.0215 (7)
H7A0.13230.21500.29010.026*
H7B0.16470.18290.17740.026*
C80.0656 (4)0.3237 (3)0.1875 (3)0.0230 (7)
C90.0583 (5)0.3063 (4)0.1241 (3)0.0340 (10)
H9A0.07970.23990.10010.041*
C100.1499 (6)0.3865 (5)0.0964 (4)0.0445 (13)
H10A0.23550.37590.05340.053*
C110.1162 (6)0.4821 (4)0.1318 (4)0.0465 (14)
H11A0.17840.53820.11370.056*
C120.0097 (5)0.4952 (4)0.1942 (4)0.0336 (10)
H12A0.03380.56130.21780.040*
C130.3965 (4)0.2893 (3)0.1407 (3)0.0198 (7)
H13A0.33370.25530.08830.024*
H13B0.49560.25480.14420.024*
C140.4195 (4)0.3982 (3)0.1113 (3)0.0190 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0191 (2)0.0150 (2)0.0172 (2)0.00111 (17)0.00049 (15)0.00011 (17)
Zn10.0191 (2)0.0150 (2)0.0172 (2)0.00111 (17)0.00049 (15)0.00011 (17)
Cl10.0217 (4)0.0273 (5)0.0207 (4)0.0020 (3)0.0013 (3)0.0032 (3)
Cl20.0400 (6)0.0201 (4)0.0272 (5)0.0007 (4)0.0063 (4)0.0067 (4)
O10.0351 (16)0.0169 (13)0.0363 (17)0.0000 (12)0.0006 (13)0.0069 (12)
O20.0476 (19)0.0233 (15)0.0271 (15)0.0051 (13)0.0057 (13)0.0043 (12)
N10.0204 (15)0.0210 (15)0.0196 (14)0.0020 (12)0.0012 (11)0.0008 (12)
N20.0173 (14)0.0162 (14)0.0178 (13)0.0016 (11)0.0002 (11)0.0006 (11)
N30.0205 (15)0.0223 (16)0.0216 (15)0.0013 (12)0.0015 (12)0.0004 (12)
C10.0231 (18)0.0261 (19)0.0243 (18)0.0055 (15)0.0003 (14)0.0037 (15)
C20.0209 (18)0.041 (2)0.0253 (19)0.0060 (17)0.0018 (15)0.0064 (17)
C30.0211 (19)0.047 (3)0.028 (2)0.0080 (18)0.0049 (15)0.0064 (19)
C40.026 (2)0.031 (2)0.0268 (19)0.0081 (16)0.0041 (15)0.0039 (16)
C50.0213 (17)0.0243 (18)0.0166 (15)0.0013 (14)0.0013 (13)0.0016 (13)
C60.0226 (17)0.0161 (16)0.0218 (17)0.0015 (13)0.0010 (13)0.0005 (13)
C70.0208 (17)0.0186 (17)0.0249 (17)0.0041 (14)0.0034 (13)0.0010 (14)
C80.0193 (17)0.0273 (19)0.0223 (17)0.0033 (15)0.0014 (13)0.0025 (15)
C90.027 (2)0.040 (3)0.034 (2)0.0024 (18)0.0101 (17)0.0074 (19)
C100.030 (2)0.057 (3)0.045 (3)0.010 (2)0.018 (2)0.011 (2)
C110.036 (3)0.051 (3)0.052 (3)0.022 (2)0.020 (2)0.011 (2)
C120.031 (2)0.029 (2)0.041 (3)0.0087 (18)0.0066 (18)0.0021 (19)
C130.0267 (18)0.0161 (16)0.0168 (15)0.0002 (13)0.0028 (13)0.0007 (12)
C140.0204 (16)0.0185 (16)0.0179 (16)0.0000 (13)0.0005 (13)0.0019 (13)
Geometric parameters (Å, º) top
Fe1—N12.122 (3)C3—H3A0.950
Fe1—N32.156 (3)C4—C51.381 (5)
Fe1—O12.202 (3)C4—H4A0.950
Fe1—Cl22.2512 (11)C5—C61.506 (5)
Fe1—N22.260 (3)C6—H6A0.990
Fe1—Cl12.3441 (10)C6—H6B0.990
O1—C141.226 (5)C7—C81.505 (5)
O2—C141.291 (5)C7—H7A0.990
O2—H20.927C7—H7B0.990
N1—C11.345 (5)C8—C91.387 (5)
N1—C51.346 (5)C9—C101.378 (7)
N2—C71.473 (5)C9—H9A0.950
N2—C131.475 (5)C10—C111.377 (8)
N2—C61.483 (5)C10—H10A0.950
N3—C81.347 (5)C11—C121.386 (6)
N3—C121.348 (5)C11—H11A0.950
C1—C21.388 (6)C12—H12A0.950
C1—H1A0.950C13—C141.504 (5)
C2—C31.381 (7)C13—H13A0.990
C2—H2A0.950C13—H13B0.990
C3—C41.382 (6)
N1—Fe1—N3150.70 (12)C3—C4—H4A120.5
N1—Fe1—O185.37 (12)N1—C5—C4121.9 (4)
N3—Fe1—O181.87 (12)N1—C5—C6115.5 (3)
N1—Fe1—Cl2103.88 (9)C4—C5—C6122.6 (4)
N3—Fe1—Cl2102.26 (9)N2—C6—C5108.4 (3)
O1—Fe1—Cl289.45 (8)N2—C6—H6A110.0
N1—Fe1—N275.71 (11)C5—C6—H6A110.0
N3—Fe1—N275.74 (12)N2—C6—H6B110.0
O1—Fe1—N276.77 (11)C5—C6—H6B110.0
Cl2—Fe1—N2166.22 (8)H6A—C6—H6B108.4
N1—Fe1—Cl194.84 (9)N2—C7—C8110.1 (3)
N3—Fe1—Cl192.86 (9)N2—C7—H7A109.6
O1—Fe1—Cl1168.98 (8)C8—C7—H7A109.6
Cl2—Fe1—Cl1101.17 (4)N2—C7—H7B109.6
N2—Fe1—Cl192.57 (8)C8—C7—H7B109.6
C14—O1—Fe1116.5 (3)H7A—C7—H7B108.2
C14—O2—H2111.5N3—C8—C9121.7 (4)
C1—N1—C5119.0 (3)N3—C8—C7115.4 (3)
C1—N1—Fe1124.9 (3)C9—C8—C7122.8 (4)
C5—N1—Fe1116.1 (2)C10—C9—C8119.2 (4)
C7—N2—C13111.8 (3)C10—C9—H9A120.4
C7—N2—C6113.2 (3)C8—C9—H9A120.4
C13—N2—C6112.1 (3)C11—C10—C9119.4 (4)
C7—N2—Fe1105.1 (2)C11—C10—H10A120.3
C13—N2—Fe1110.4 (2)C9—C10—H10A120.3
C6—N2—Fe1103.6 (2)C10—C11—C12119.0 (5)
C8—N3—C12118.7 (4)C10—C11—H11A120.5
C8—N3—Fe1116.2 (3)C12—C11—H11A120.5
C12—N3—Fe1125.0 (3)N3—C12—C11122.0 (5)
N1—C1—C2121.9 (4)N3—C12—H12A119.0
N1—C1—H1A119.1C11—C12—H12A119.0
C2—C1—H1A119.1N2—C13—C14113.3 (3)
C3—C2—C1118.8 (4)N2—C13—H13A108.9
C3—C2—H2A120.6C14—C13—H13A108.9
C1—C2—H2A120.6N2—C13—H13B108.9
C2—C3—C4119.4 (4)C14—C13—H13B108.9
C2—C3—H3A120.3H13A—C13—H13B107.7
C4—C3—H3A120.3O1—C14—O2124.4 (4)
C5—C4—C3119.0 (4)O1—C14—C13122.5 (3)
C5—C4—H4A120.5O2—C14—C13113.1 (3)
N1—Fe1—O1—C1477.2 (3)C5—N1—C1—C21.1 (6)
N3—Fe1—O1—C1476.3 (3)Fe1—N1—C1—C2175.2 (3)
Cl2—Fe1—O1—C14178.8 (3)N1—C1—C2—C30.5 (6)
N2—Fe1—O1—C140.8 (3)C1—C2—C3—C41.0 (7)
Cl1—Fe1—O1—C1414.3 (7)C2—C3—C4—C52.0 (6)
N3—Fe1—N1—C1144.7 (3)C1—N1—C5—C40.1 (6)
O1—Fe1—N1—C180.4 (3)Fe1—N1—C5—C4176.5 (3)
Cl2—Fe1—N1—C17.9 (3)C1—N1—C5—C6179.8 (3)
N2—Fe1—N1—C1157.9 (3)Fe1—N1—C5—C63.7 (4)
Cl1—Fe1—N1—C1110.7 (3)C3—C4—C5—N11.5 (6)
N3—Fe1—N1—C531.7 (4)C3—C4—C5—C6178.7 (4)
O1—Fe1—N1—C596.0 (3)C7—N2—C6—C5160.8 (3)
Cl2—Fe1—N1—C5175.7 (3)C13—N2—C6—C571.5 (4)
N2—Fe1—N1—C518.5 (3)Fe1—N2—C6—C547.5 (3)
Cl1—Fe1—N1—C573.0 (3)N1—C5—C6—N236.7 (4)
N1—Fe1—N2—C7154.6 (2)C4—C5—C6—N2143.5 (4)
N3—Fe1—N2—C732.0 (2)C13—N2—C7—C875.2 (4)
O1—Fe1—N2—C7116.9 (2)C6—N2—C7—C8157.0 (3)
Cl2—Fe1—N2—C7115.3 (4)Fe1—N2—C7—C844.6 (3)
Cl1—Fe1—N2—C760.3 (2)C12—N3—C8—C90.5 (6)
N1—Fe1—N2—C1384.6 (2)Fe1—N3—C8—C9176.8 (3)
N3—Fe1—N2—C1388.7 (2)C12—N3—C8—C7178.1 (4)
O1—Fe1—N2—C133.9 (2)Fe1—N3—C8—C75.6 (4)
Cl2—Fe1—N2—C135.4 (5)N2—C7—C8—N335.6 (5)
Cl1—Fe1—N2—C13179.0 (2)N2—C7—C8—C9146.9 (4)
N1—Fe1—N2—C635.6 (2)N3—C8—C9—C100.2 (7)
N3—Fe1—N2—C6151.1 (2)C7—C8—C9—C10177.2 (4)
O1—Fe1—N2—C6124.1 (2)C8—C9—C10—C110.3 (8)
Cl2—Fe1—N2—C6125.6 (3)C9—C10—C11—C120.2 (9)
Cl1—Fe1—N2—C658.8 (2)C8—N3—C12—C111.1 (7)
N1—Fe1—N3—C828.4 (4)Fe1—N3—C12—C11177.0 (4)
O1—Fe1—N3—C893.5 (3)C10—C11—C12—N31.0 (9)
Cl2—Fe1—N3—C8178.8 (3)C7—N2—C13—C14109.1 (3)
N2—Fe1—N3—C815.2 (3)C6—N2—C13—C14122.4 (3)
Cl1—Fe1—N3—C876.7 (3)Fe1—N2—C13—C147.5 (4)
N1—Fe1—N3—C12147.6 (3)Fe1—O1—C14—O2176.6 (3)
O1—Fe1—N3—C1282.5 (4)Fe1—O1—C14—C135.8 (5)
Cl2—Fe1—N3—C125.2 (4)N2—C13—C14—O19.3 (5)
N2—Fe1—N3—C12160.8 (4)N2—C13—C14—O2172.8 (3)
Cl1—Fe1—N3—C12107.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O2i0.931.642.559 (6)169
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Fe(C14H14N3O2)Cl2]·[ZnCl2(C14H15N3O2)]
Mr776.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)180
a, b, c (Å)8.8710 (3), 13.1898 (5), 13.3983 (4)
β (°) 91.737 (2)
V3)1566.97 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerBruker–Nonius X8APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.701, 0.794
No. of measured, independent and
observed [I > 2σ(I)] reflections
32580, 4775, 4248
Rint0.031
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.132, 1.36
No. of reflections4775
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.71

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O2i0.931.642.559 (6)169.4
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

We are grateful to the Danish Natural Sciences Research Council and the Carlsberg Foundation for provision of the X-ray equipment.

References

First citation Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citation Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citation Mortensen, M. N., Jensen, B., Hazell, A., Bond, A. D. & McKenzie, C. J. (2004). Dalton Trans. pp. 3396–3402.  Web of Science CSD CrossRef Google Scholar
First citation Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Suzuki, M., Senda, H., Kobayashi, Y., Oshio, H. & Uehara, A. (1988). Chem. Lett. pp. 1763–1766.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds