organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hydr­­oxy-N′-(2-meth­oxy­benzyl­­idene)-2-naphthohydrazide

aDepartment of Chemistry, Baicheng Normal University, Baicheng 137000, People's Republic of China
*Correspondence e-mail: jyxygzb@163.com

(Received 7 September 2009; accepted 19 October 2009; online 4 November 2009)

In the title Schiff base compound, C19H16N2O3, the dihedral angle between the mean planes of the benzene ring and the naphthyl ring system is 0.8 (2)°. The mean plane of the hydrazide group forms dihedral angles of 2.0 (2) and 2.2 (2)°, respectively, with the mean planes of the benzene ring and the naphthyl ring system. A strong intra­molecular N—H⋯O hydrogen bond is present. In the crystal, inter­molecular O—H⋯O hydrogen bonds form chains along the c axis and help to provide stability in the crystal packing.

Related literature

For the pharmaceutical and medicinal activities of Schiff bases, see: Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]). For the coordination chemistry of Schiff bases, see: Ali et al. (2008[Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718-m719.]); Kargar et al. (2009[Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403-m404.]); Yeap et al. (2009[Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570-m571.]). For the crystal structures of Schiff base compounds, see: Fun et al. (2009[Fun, H.-K., Kia, R., Vijesh, A. M. & Isloor, A. M. (2009). Acta Cryst. E65, o349-o350.]); Nadeem et al. (2009[Nadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65, o897.]); Eltayeb et al. (2008[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576-o577.]); Hao (2009a[Hao, Y.-M. (2009a). Acta Cryst. E65, o1400.],b[Hao, Y.-M. (2009b). Acta Cryst. E65, o2098.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16N2O3

  • Mr = 320.34

  • Monoclinic, P 21 /c

  • a = 7.4990 (6) Å

  • b = 15.4256 (13) Å

  • c = 13.3903 (12) Å

  • β = 96.709 (4)°

  • V = 1538.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.983, Tmax = 0.984

  • 9323 measured reflections

  • 3349 independent reflections

  • 2520 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 1.04

  • 3349 reflections

  • 223 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.892 (9) 1.929 (14) 2.6613 (14) 138.3 (16)
O3—H3⋯O2i 0.82 1.86 2.6689 (13) 167
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds, important to the pharmaceutical and medicinal fields (Dao et al., 2000; Sriram et al., 2006; Karthikeyan et al., 2006), have been used as versatile ligands in a variety of coordination chemistry applications (Ali et al., 2008; Kargar et al., 2009; Yeap et al., 2009). A number of contributions to these areas have been recently reported (Fun et al., 2009; Nadeem et al., 2009; Eltayeb et al., 2008). With our continued interest in the structural chararcterization of these compounds (Hao, 2009a,b) the title compound, C19H16N2O3, (I), is reported.

In the title compound,(I), the mean plane of the hydrazide group, O2/C9/N2/N1/C8, forms dihedral angles of 2.0 (2) and 2.2 (2)°, with the mean planes of the benzene (C1–C6) and naphthyl rings (C10–C19), respectively (Fig. 1). The dihedral angle between the mean planes of the benzene and naphthyl rings is 0.9 (2)°, indicating the planarity of the molecule. All the bond lengths and angles are within normal values (Allen et al., 1987). Crystal packing is enhanced by strong intramolecular N—H···O and intermolecular O—H···O hydrogen bonds (Table 1), forming infinite one-dimensional chains running along the c axis of the unit cell (Fig. 2).

Related literature top

For the pharmaceutical and medicinal activities of Schiff bases, see: Dao et al. (2000); Sriram et al. (2006); Karthikeyan et al. (2006). For the coordination chemistry of Schiff bases, see: Ali et al. (2008); Kargar et al. (2009); Yeap et al. (2009). For the crystal structures of Schiff base compounds, see: Fun et al. (2009); Nadeem et al. (2009); Eltayeb et al. (2008); Hao (2009a,b). For bond-length data, see: Allen et al. (1987).

Experimental top

2-Methoxybenzaldehyde (0.1 mmol, 13.6 mg) and 3-hydroxy-2-naphthohydrazide (0.1 mmol) were refluxed in a 30 ml methanol solution for 30 min to give a clear colorless solution. Colorless block-shaped single crystals of the compound were formed by slow evaporation of the solvent over several days at room temperature.

Refinement top

H2 was located from a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1)Å, and with Uiso restrained to 0.08Å2. Other H atoms were constrained to ideal geometries, with d(C—H) = 0.93-0.96 Å, d(O—H) = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O3 and C7).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability ellipsoids. A strong intramolecular N—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Molecular packing of the title compound. Strong intramolecular N—H···O and intermolecular O—H···O hydrogen bonds (shown as dashed lines) form chains of molecules along the c axis of the unit cell help to provide stability in crystal packing. .
3-Hydroxy-N'-(2-methoxybenzylidene)-2-naphthohydrazide top
Crystal data top
C19H16N2O3F(000) = 672
Mr = 320.34Dx = 1.383 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3028 reflections
a = 7.4990 (6) Åθ = 2.6–30.0°
b = 15.4256 (13) ŵ = 0.10 mm1
c = 13.3903 (12) ÅT = 298 K
β = 96.709 (4)°Block, yellow
V = 1538.3 (2) Å30.18 × 0.17 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3349 independent reflections
Radiation source: fine-focus sealed tube2520 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.983, Tmax = 0.984k = 1919
9323 measured reflectionsl = 1714
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.2454P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3349 reflectionsΔρmax = 0.20 e Å3
223 parametersΔρmin = 0.16 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0080 (13)
Crystal data top
C19H16N2O3V = 1538.3 (2) Å3
Mr = 320.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4990 (6) ŵ = 0.10 mm1
b = 15.4256 (13) ÅT = 298 K
c = 13.3903 (12) Å0.18 × 0.17 × 0.17 mm
β = 96.709 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3349 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2520 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.984Rint = 0.023
9323 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
3349 reflectionsΔρmin = 0.16 e Å3
223 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12815 (15)1.07729 (7)0.87156 (7)0.0541 (3)
O20.53258 (17)0.75013 (6)1.13388 (7)0.0558 (3)
O30.43652 (16)0.74188 (7)0.81939 (7)0.0526 (3)
H30.45250.73910.75990.079*
N10.36704 (15)0.89208 (7)1.04707 (8)0.0409 (3)
N20.41657 (16)0.82106 (7)0.99432 (8)0.0408 (3)
C10.23017 (18)1.03244 (9)1.03531 (10)0.0394 (3)
C20.14420 (18)1.09540 (9)0.97151 (10)0.0399 (3)
C30.0791 (2)1.17049 (10)1.01086 (12)0.0502 (4)
H3A0.02211.21220.96820.060*
C40.0989 (3)1.18316 (11)1.11277 (13)0.0663 (5)
H40.05421.23341.13910.080*
C50.1840 (3)1.12260 (12)1.17626 (12)0.0731 (6)
H50.19761.13211.24530.088*
C60.2491 (2)1.04788 (10)1.13819 (11)0.0553 (4)
H60.30671.00711.18180.066*
C70.0339 (3)1.13737 (12)0.80462 (11)0.0631 (5)
H7A0.08671.14360.82100.095*
H7B0.03131.11660.73690.095*
H7C0.09341.19250.81070.095*
C80.29350 (19)0.95271 (9)0.99292 (10)0.0422 (3)
H80.27950.94600.92340.051*
C90.49987 (18)0.75329 (8)1.04213 (9)0.0371 (3)
C100.55517 (17)0.68060 (8)0.97827 (9)0.0348 (3)
C110.52607 (18)0.67543 (9)0.87108 (9)0.0381 (3)
C120.5848 (2)0.60516 (9)0.82249 (10)0.0439 (3)
H120.56550.60300.75260.053*
C130.67397 (19)0.53573 (9)0.87531 (10)0.0410 (3)
C140.7369 (2)0.46152 (10)0.82747 (12)0.0561 (4)
H140.72060.45770.75770.067*
C150.8204 (2)0.39614 (10)0.88198 (14)0.0615 (5)
H150.85990.34800.84900.074*
C160.8481 (2)0.39985 (10)0.98705 (13)0.0558 (4)
H160.90600.35461.02350.067*
C170.79016 (19)0.46984 (9)1.03570 (11)0.0459 (3)
H170.80840.47201.10560.055*
C180.70267 (17)0.53921 (8)0.98165 (10)0.0370 (3)
C190.64040 (17)0.61253 (9)1.02959 (9)0.0376 (3)
H190.65790.61501.09940.045*
H20.398 (2)0.8200 (12)0.9273 (7)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0763 (8)0.0503 (6)0.0362 (5)0.0137 (5)0.0089 (5)0.0025 (4)
O20.0943 (9)0.0461 (6)0.0267 (5)0.0082 (5)0.0067 (5)0.0025 (4)
O30.0792 (8)0.0541 (6)0.0249 (5)0.0150 (5)0.0074 (5)0.0044 (4)
N10.0482 (7)0.0378 (6)0.0375 (6)0.0002 (5)0.0085 (5)0.0037 (5)
N20.0546 (7)0.0381 (6)0.0302 (6)0.0043 (5)0.0072 (5)0.0025 (5)
C10.0418 (7)0.0381 (7)0.0388 (7)0.0053 (6)0.0063 (6)0.0028 (6)
C20.0435 (8)0.0392 (7)0.0375 (7)0.0052 (6)0.0059 (6)0.0016 (6)
C30.0600 (9)0.0390 (8)0.0502 (8)0.0048 (7)0.0007 (7)0.0027 (6)
C40.0891 (13)0.0515 (10)0.0554 (10)0.0164 (9)0.0042 (9)0.0200 (8)
C50.1083 (15)0.0666 (12)0.0402 (9)0.0207 (11)0.0087 (9)0.0189 (8)
C60.0726 (11)0.0507 (9)0.0398 (8)0.0091 (8)0.0047 (7)0.0034 (7)
C70.0817 (12)0.0653 (11)0.0412 (8)0.0150 (9)0.0030 (8)0.0094 (8)
C80.0514 (8)0.0423 (8)0.0338 (7)0.0004 (6)0.0087 (6)0.0007 (6)
C90.0471 (8)0.0370 (7)0.0279 (6)0.0065 (6)0.0071 (5)0.0007 (5)
C100.0398 (7)0.0376 (7)0.0274 (6)0.0055 (5)0.0060 (5)0.0005 (5)
C110.0457 (8)0.0412 (7)0.0279 (6)0.0021 (6)0.0063 (5)0.0036 (5)
C120.0595 (9)0.0474 (8)0.0261 (6)0.0037 (7)0.0102 (6)0.0022 (6)
C130.0468 (8)0.0398 (7)0.0385 (7)0.0054 (6)0.0137 (6)0.0024 (6)
C140.0767 (11)0.0485 (9)0.0469 (9)0.0011 (8)0.0237 (8)0.0075 (7)
C150.0700 (11)0.0409 (9)0.0788 (12)0.0036 (8)0.0303 (9)0.0059 (8)
C160.0529 (9)0.0421 (9)0.0737 (11)0.0035 (7)0.0128 (8)0.0066 (8)
C170.0446 (8)0.0430 (8)0.0498 (8)0.0024 (6)0.0039 (6)0.0051 (6)
C180.0362 (7)0.0372 (7)0.0381 (7)0.0056 (5)0.0068 (5)0.0009 (5)
C190.0427 (7)0.0415 (7)0.0280 (6)0.0058 (6)0.0023 (5)0.0003 (5)
Geometric parameters (Å, º) top
O1—C21.3587 (16)C7—H7B0.9600
O1—C71.4190 (18)C7—H7C0.9600
O2—C91.2253 (15)C8—H80.9300
O3—C111.3683 (16)C9—C101.4978 (18)
O3—H30.8200C10—C191.3713 (18)
N1—C81.2693 (17)C10—C111.4287 (17)
N1—N21.3778 (15)C11—C121.3635 (19)
N2—C91.3415 (17)C12—C131.409 (2)
N2—H20.892 (9)C12—H120.9300
C1—C61.3889 (19)C13—C181.4160 (18)
C1—C21.4000 (19)C13—C141.419 (2)
C1—C81.4571 (19)C14—C151.355 (2)
C2—C31.385 (2)C14—H140.9300
C3—C41.369 (2)C15—C161.399 (2)
C3—H3A0.9300C15—H150.9300
C4—C51.369 (2)C16—C171.358 (2)
C4—H40.9300C16—H160.9300
C5—C61.373 (2)C17—C181.4101 (19)
C5—H50.9300C17—H170.9300
C6—H60.9300C18—C191.4069 (19)
C7—H7A0.9600C19—H190.9300
C2—O1—C7117.92 (11)O2—C9—N2122.48 (12)
C11—O3—H3109.5O2—C9—C10120.42 (12)
C8—N1—N2114.72 (11)N2—C9—C10117.10 (11)
C9—N2—N1120.89 (11)C19—C10—C11117.92 (12)
C9—N2—H2118.3 (12)C19—C10—C9115.53 (11)
N1—N2—H2120.7 (12)C11—C10—C9126.54 (12)
C6—C1—C2118.21 (13)C12—C11—O3121.40 (11)
C6—C1—C8122.06 (13)C12—C11—C10120.25 (12)
C2—C1—C8119.71 (12)O3—C11—C10118.34 (11)
O1—C2—C3123.52 (13)C11—C12—C13121.71 (12)
O1—C2—C1116.10 (12)C11—C12—H12119.1
C3—C2—C1120.38 (13)C13—C12—H12119.1
C4—C3—C2119.77 (14)C12—C13—C18118.92 (12)
C4—C3—H3A120.1C12—C13—C14123.37 (13)
C2—C3—H3A120.1C18—C13—C14117.71 (13)
C3—C4—C5120.65 (15)C15—C14—C13120.96 (15)
C3—C4—H4119.7C15—C14—H14119.5
C5—C4—H4119.7C13—C14—H14119.5
C4—C5—C6120.15 (15)C14—C15—C16121.09 (15)
C4—C5—H5119.9C14—C15—H15119.5
C6—C5—H5119.9C16—C15—H15119.5
C5—C6—C1120.84 (15)C17—C16—C15119.77 (15)
C5—C6—H6119.6C17—C16—H16120.1
C1—C6—H6119.6C15—C16—H16120.1
O1—C7—H7A109.5C16—C17—C18120.85 (14)
O1—C7—H7B109.5C16—C17—H17119.6
H7A—C7—H7B109.5C18—C17—H17119.6
O1—C7—H7C109.5C19—C18—C17122.36 (12)
H7A—C7—H7C109.5C19—C18—C13118.02 (12)
H7B—C7—H7C109.5C17—C18—C13119.62 (12)
N1—C8—C1122.61 (12)C10—C19—C18123.16 (12)
N1—C8—H8118.7C10—C19—H19118.4
C1—C8—H8118.7C18—C19—H19118.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.89 (1)1.93 (1)2.6613 (14)138 (2)
O3—H3···O2i0.821.862.6689 (13)167
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H16N2O3
Mr320.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.4990 (6), 15.4256 (13), 13.3903 (12)
β (°) 96.709 (4)
V3)1538.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.18 × 0.17 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.983, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
9323, 3349, 2520
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.04
No. of reflections3349
No. of parameters223
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.16

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.892 (9)1.929 (14)2.6613 (14)138.3 (16)
O3—H3···O2i0.821.862.6689 (13)166.8
Symmetry code: (i) x, y+3/2, z1/2.
 

References

First citationAli, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576–o577.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R., Vijesh, A. M. & Isloor, A. M. (2009). Acta Cryst. E65, o349–o350.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHao, Y.-M. (2009a). Acta Cryst. E65, o1400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHao, Y.-M. (2009b). Acta Cryst. E65, o2098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65, o897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds