organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{2-[(2,4-Di­chloro­benzyl­­idene)amino]eth­yl}-3-methyl­imidazolium hexa­fluoro­phosphate

aDepartment of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: tlyq@jnu.edu.cn

(Received 26 September 2009; accepted 28 October 2009; online 4 November 2009)

In the title Schiff base compound, C13H14Cl2N3+·PF6, the dihedral angle between the aromatic ring and imidazole ring in the cation is 6.10 (2)°. Inter­molecular C—H⋯F hydrogen-bonding inter­actions and ππ stacking inter­actions [centoid–centroid distance = 3.7203 (12) Å] help stabilize the crystal packing.

Related literature

For bound-length data, see: Allen et al. (1987[Allen, F. H., Hennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Pradeep (2005[Pradeep, C. P. (2005). Acta Cryst. E61, o3825-o3827.]); Li et al. (2009[Li, B., Li, Y.-Q., Liu, J. & Zheng, W.-J. (2009). Acta Cryst. E65, o1427.]). For ionic liquids and their applications, see: Wasserscheid & Keim (2000[Wasserscheid, P. & Keim, W. (2000). Angew Chem. Int. Ed. 39, 3772-3789.]); Singh & Sekhon (2005[Singh, B. & Sekhon, S. S. (2005). Chem. Phys. Lett. 414, 34-39.]); Noda & Watanabe (2000[Noda, A. & Watanabe, M. (2000). Electrochim. Acta, 45, 1265-1270.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14Cl2N3+·PF6

  • Mr = 428.14

  • Triclinic, [P \overline 1]

  • a = 8.3465 (13) Å

  • b = 10.1419 (16) Å

  • c = 11.0310 (17) Å

  • α = 78.899 (2)°

  • β = 76.523 (2)°

  • γ = 67.834 (2)°

  • V = 835.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 173 K

  • 0.32 × 0.24 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.844, Tmax = 0.894

  • 3566 measured reflections

  • 3566 independent reflections

  • 3151 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.093

  • S = 1.10

  • 3566 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯F3 0.95 2.51 3.324 (2) 143
C10—H10⋯F3i 0.95 2.33 3.203 (2) 152
C10—H10⋯F5i 0.95 2.54 3.373 (2) 147
C11—H11⋯F6 0.95 2.46 3.275 (2) 143
C12—H12⋯F2 0.95 2.48 3.239 (2) 137
C13—H13C⋯F5ii 0.98 2.54 3.464 (2) 158
Symmetry codes: (i) x-1, y+1, z; (ii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ionic liquids are attracting much interest in many fields of chemistry and industry, due to their potential as green solvents for a wide range of applications in synthesis, catalysis, electrochemistry, and liquid-liquid extractions (Wasserscheid et al., 2000; Singh, 2005; Noda, 2000). Schiff base compounds are one of most prevalent mixed-donor ligands in the field of coordination chemistry (Li et al., 2009). As part of our program aimed at developing a novel functionalized ionic liquid, we now report the crystal structure of a novel ionic liquid-supported Schiff base (I).

The asymmetric unit of the title compond, (I), a Schiff base derived ionic liquid, is comprised of an organic cation and a PF6 counter anion, Fig. 1. Bond lengths and angels are generally within normal ranges (Allen et al., 1987). The dihedral angle between the mean planes of the imidazole and benzene rings in the cation is 6.10°. The crystal structure exhibits weak C–H···Cl intramolecular and C–H···F intermolecular hydrogen bonding interactions as well as aromatic ππ stacking interactions between the imidazole and benzene rings of neighbouring cations [Cg1···Cg2 = 3.7203 (12)Å; 1-x, 1-y, 1-z, where Cg1 and Cg2 are centroids of the imidazole (N1/C10/N2/C11/C12) and benzene (C1–C6) rings, respectively, Fig. 2].

Related literature top

For bound-length data, see: Allen et al. (1987). For related structures, see: Pradeep (2005); Li et al. (2009). For ionic liquids and their applications, see: Wasserscheid & Keim (2000); Singh & Sekhon (2005); Noda & Watanabe (2000).

Experimental top

A mixture of the ionic liquid 1-(2-aminoethyl)-3-methylimidazolium hexafluorophosphate (4 mmol) and 2,4-dichlorobenzaldehyde (3 mmol) was stirred for 4 h at room temperature under solvent-free conditions. After completion ofthe reaction, ethanol (30 ml) was added to the reaction mixture, filtered off the solid product and washed with cold ethanol. The crude product was purified by recrystallization in ethanol/ethyl acetate(3:1 v/v). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution of the complex at room temperature.

Refinement top

All H atoms were located in a difference Fourier maps and were refined as ridingatoms: C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound in (I) showing the atom numbering Scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I) viewed down the b axis. Weak C–H···Cl intramolecular and C–H···F intermolecular hydrogen bonding interactions are shown as dashed lines.
1-{2-[(2,4-Dichlorobenzylidene)amino]ethyl}-3-methylimidazolium hexafluorophosphate top
Crystal data top
C13H14Cl2N3+·PF6Z = 2
Mr = 428.14F(000) = 432
Triclinic, P1Dx = 1.702 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3465 (13) ÅCell parameters from 5376 reflections
b = 10.1419 (16) Åθ = 2.7–27.0°
c = 11.0310 (17) ŵ = 0.55 mm1
α = 78.899 (2)°T = 173 K
β = 76.523 (2)°Block, colorless
γ = 67.834 (2)°0.32 × 0.24 × 0.21 mm
V = 835.3 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3566 independent reflections
Radiation source: fine-focus sealed tube3151 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ϕ and ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.844, Tmax = 0.894k = 1212
3566 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.047P)2 + 0.3955P]
where P = (Fo2 + 2Fc2)/3
3566 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C13H14Cl2N3+·PF6γ = 67.834 (2)°
Mr = 428.14V = 835.3 (2) Å3
Triclinic, P1Z = 2
a = 8.3465 (13) ÅMo Kα radiation
b = 10.1419 (16) ŵ = 0.55 mm1
c = 11.0310 (17) ÅT = 173 K
α = 78.899 (2)°0.32 × 0.24 × 0.21 mm
β = 76.523 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3566 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3151 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.894Rint = 0.000
3566 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.10Δρmax = 0.25 e Å3
3566 reflectionsΔρmin = 0.34 e Å3
227 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3066 (2)0.34376 (17)0.75848 (15)0.0220 (3)
C20.3555 (2)0.30042 (17)0.87666 (15)0.0227 (3)
C30.4986 (2)0.17904 (17)0.90058 (15)0.0241 (3)
H30.52960.15130.98170.029*
C40.5944 (2)0.09983 (17)0.80205 (16)0.0240 (3)
C50.5499 (2)0.13684 (18)0.68374 (16)0.0270 (3)
H50.61670.07960.61800.032*
C60.4071 (2)0.25808 (18)0.66287 (15)0.0257 (3)
H60.37610.28410.58180.031*
C70.1562 (2)0.47512 (17)0.73301 (15)0.0237 (3)
H70.09010.53230.79890.028*
C80.0351 (2)0.64629 (18)0.61084 (16)0.0283 (4)
H8A0.09110.68070.69390.034*
H8B0.12350.62820.57650.034*
C90.0251 (2)0.76060 (18)0.52316 (16)0.0297 (4)
H9A0.07390.85330.52470.036*
H9B0.12110.77190.55390.036*
C100.0061 (2)0.79621 (17)0.29722 (15)0.0244 (3)
H100.10030.87650.30200.029*
C110.2433 (2)0.62263 (18)0.22472 (17)0.0295 (4)
H110.33130.56090.16880.035*
C120.2369 (2)0.61583 (18)0.34869 (17)0.0285 (4)
H120.31970.54830.39680.034*
C130.0537 (3)0.7880 (2)0.06825 (17)0.0368 (4)
H13A0.06310.86270.07410.055*
H13B0.05390.70810.03040.055*
H13C0.14100.82760.01610.055*
Cl10.23667 (6)0.39837 (5)1.00213 (4)0.03149 (12)
Cl20.78059 (6)0.04833 (5)0.82692 (4)0.03387 (13)
F10.44475 (17)0.19348 (17)0.31806 (17)0.0655 (4)
F20.58081 (16)0.32801 (12)0.36186 (12)0.0436 (3)
F30.70635 (18)0.08681 (13)0.38373 (11)0.0492 (3)
F40.82315 (14)0.21845 (14)0.22679 (11)0.0412 (3)
F50.68843 (16)0.08228 (12)0.18313 (11)0.0423 (3)
F60.56548 (19)0.32368 (14)0.15939 (13)0.0555 (4)
N10.08759 (18)0.72527 (14)0.39294 (13)0.0243 (3)
N20.09752 (19)0.73655 (15)0.19419 (13)0.0262 (3)
N30.11363 (19)0.51306 (15)0.62537 (13)0.0263 (3)
P10.63280 (5)0.20636 (5)0.27210 (4)0.02671 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0223 (7)0.0219 (8)0.0212 (7)0.0075 (6)0.0039 (6)0.0016 (6)
C20.0239 (7)0.0235 (8)0.0204 (7)0.0080 (6)0.0019 (6)0.0049 (6)
C30.0259 (8)0.0241 (8)0.0227 (8)0.0088 (6)0.0070 (6)0.0002 (6)
C40.0216 (7)0.0178 (7)0.0298 (8)0.0042 (6)0.0047 (6)0.0016 (6)
C50.0284 (8)0.0242 (8)0.0259 (8)0.0062 (7)0.0016 (6)0.0070 (6)
C60.0280 (8)0.0272 (8)0.0204 (7)0.0075 (7)0.0048 (6)0.0027 (6)
C70.0235 (8)0.0223 (8)0.0233 (8)0.0057 (6)0.0038 (6)0.0031 (6)
C80.0278 (8)0.0279 (9)0.0233 (8)0.0011 (7)0.0079 (6)0.0032 (6)
C90.0379 (9)0.0236 (8)0.0257 (8)0.0038 (7)0.0120 (7)0.0050 (6)
C100.0256 (8)0.0197 (7)0.0260 (8)0.0053 (6)0.0062 (6)0.0019 (6)
C110.0259 (8)0.0229 (8)0.0361 (9)0.0073 (7)0.0005 (7)0.0053 (7)
C120.0217 (8)0.0223 (8)0.0373 (9)0.0034 (6)0.0060 (7)0.0013 (7)
C130.0491 (11)0.0397 (10)0.0220 (8)0.0165 (9)0.0065 (8)0.0017 (7)
Cl10.0345 (2)0.0313 (2)0.0223 (2)0.00086 (17)0.00639 (16)0.00879 (16)
Cl20.0295 (2)0.0252 (2)0.0392 (2)0.00147 (16)0.00988 (17)0.00417 (17)
F10.0325 (7)0.0723 (10)0.0967 (12)0.0247 (7)0.0080 (7)0.0315 (9)
F20.0411 (6)0.0347 (6)0.0488 (7)0.0033 (5)0.0004 (5)0.0202 (5)
F30.0676 (9)0.0348 (6)0.0269 (6)0.0002 (6)0.0056 (5)0.0010 (5)
F40.0279 (6)0.0566 (7)0.0404 (6)0.0150 (5)0.0001 (5)0.0158 (5)
F50.0519 (7)0.0373 (6)0.0390 (6)0.0120 (5)0.0087 (5)0.0140 (5)
F60.0626 (9)0.0399 (7)0.0548 (8)0.0017 (6)0.0332 (7)0.0033 (6)
N10.0253 (7)0.0194 (6)0.0269 (7)0.0046 (5)0.0080 (5)0.0027 (5)
N20.0282 (7)0.0245 (7)0.0249 (7)0.0092 (6)0.0028 (5)0.0028 (5)
N30.0277 (7)0.0235 (7)0.0244 (7)0.0038 (6)0.0072 (5)0.0024 (5)
P10.0213 (2)0.0254 (2)0.0292 (2)0.00174 (17)0.00511 (16)0.00594 (17)
Geometric parameters (Å, º) top
C1—C21.397 (2)C9—H9B0.9900
C1—C61.401 (2)C10—N21.324 (2)
C1—C71.479 (2)C10—N11.330 (2)
C2—C31.387 (2)C10—H100.9500
C2—Cl11.7414 (16)C11—C121.345 (3)
C3—C41.383 (2)C11—N21.382 (2)
C3—H30.9500C11—H110.9500
C4—C51.383 (2)C12—N11.380 (2)
C4—Cl21.7394 (16)C12—H120.9500
C5—C61.378 (2)C13—N21.466 (2)
C5—H50.9500C13—H13A0.9800
C6—H60.9500C13—H13B0.9800
C7—N31.266 (2)C13—H13C0.9800
C7—H70.9500F1—P11.5798 (13)
C8—N31.462 (2)F2—P11.5991 (12)
C8—C91.521 (3)F3—P11.6059 (12)
C8—H8A0.9900F4—P11.5945 (12)
C8—H8B0.9900F5—P11.6077 (12)
C9—N11.474 (2)F6—P11.5903 (13)
C9—H9A0.9900
C2—C1—C6117.32 (15)N1—C10—H10125.6
C2—C1—C7122.19 (14)C12—C11—N2106.95 (15)
C6—C1—C7120.49 (14)C12—C11—H11126.5
C3—C2—C1122.51 (15)N2—C11—H11126.5
C3—C2—Cl1116.75 (12)C11—C12—N1107.24 (15)
C1—C2—Cl1120.74 (12)C11—C12—H12126.4
C4—C3—C2117.56 (15)N1—C12—H12126.4
C4—C3—H3121.2N2—C13—H13A109.5
C2—C3—H3121.2N2—C13—H13B109.5
C3—C4—C5122.21 (15)H13A—C13—H13B109.5
C3—C4—Cl2118.75 (13)N2—C13—H13C109.5
C5—C4—Cl2119.02 (13)H13A—C13—H13C109.5
C6—C5—C4118.87 (15)H13B—C13—H13C109.5
C6—C5—H5120.6C10—N1—C12108.39 (14)
C4—C5—H5120.6C10—N1—C9124.53 (14)
C5—C6—C1121.51 (15)C12—N1—C9127.08 (14)
C5—C6—H6119.2C10—N2—C11108.67 (14)
C1—C6—H6119.2C10—N2—C13125.07 (15)
N3—C7—C1121.45 (15)C11—N2—C13126.20 (15)
N3—C7—H7119.3C7—N3—C8116.53 (14)
C1—C7—H7119.3F1—P1—F691.02 (9)
N3—C8—C9110.67 (14)F1—P1—F4179.50 (9)
N3—C8—H8A109.5F6—P1—F489.48 (8)
C9—C8—H8A109.5F1—P1—F290.12 (7)
N3—C8—H8B109.5F6—P1—F291.08 (7)
C9—C8—H8B109.5F4—P1—F289.81 (6)
H8A—C8—H8B108.1F1—P1—F390.46 (9)
N1—C9—C8112.47 (14)F6—P1—F3178.38 (8)
N1—C9—H9A109.1F4—P1—F389.04 (7)
C8—C9—H9A109.1F2—P1—F389.56 (7)
N1—C9—H9B109.1F1—P1—F590.54 (7)
C8—C9—H9B109.1F6—P1—F589.83 (7)
H9A—C9—H9B107.8F4—P1—F589.52 (6)
N2—C10—N1108.75 (14)F2—P1—F5178.86 (7)
N2—C10—H10125.6F3—P1—F589.51 (7)
C6—C1—C2—C30.9 (2)N3—C8—C9—N167.10 (18)
C7—C1—C2—C3178.59 (15)N2—C11—C12—N10.05 (19)
C6—C1—C2—Cl1179.03 (12)N2—C10—N1—C120.11 (18)
C7—C1—C2—Cl11.5 (2)N2—C10—N1—C9179.91 (15)
C1—C2—C3—C40.0 (2)C11—C12—N1—C100.03 (19)
Cl1—C2—C3—C4179.95 (12)C11—C12—N1—C9179.99 (16)
C2—C3—C4—C51.1 (2)C8—C9—N1—C10111.90 (18)
C2—C3—C4—Cl2177.09 (12)C8—C9—N1—C1268.1 (2)
C3—C4—C5—C61.1 (3)N1—C10—N2—C110.14 (18)
Cl2—C4—C5—C6177.02 (13)N1—C10—N2—C13177.43 (15)
C4—C5—C6—C10.1 (3)C12—C11—N2—C100.12 (19)
C2—C1—C6—C50.8 (2)C12—C11—N2—C13177.41 (16)
C7—C1—C6—C5178.67 (15)C1—C7—N3—C8178.82 (14)
C2—C1—C7—N3179.95 (16)C9—C8—N3—C7113.18 (17)
C6—C1—C7—N30.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl10.952.693.0846 (17)106
C12—H12···F20.952.483.239 (2)137
C5—H5···F30.952.513.324 (2)143
C11—H11···F60.952.463.275 (2)143
C10—H10···F3i0.952.333.203 (2)152
C10—H10···F5i0.952.543.373 (2)147
C13—H13C···F5ii0.982.543.464 (2)158
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H14Cl2N3+·PF6
Mr428.14
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.3465 (13), 10.1419 (16), 11.0310 (17)
α, β, γ (°)78.899 (2), 76.523 (2), 67.834 (2)
V3)835.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.32 × 0.24 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.844, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
3566, 3566, 3151
Rint0.000
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.093, 1.10
No. of reflections3566
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.34

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl10.952.693.0846 (17)105.8
C12—H12···F20.952.483.239 (2)136.7
C5—H5···F30.952.513.324 (2)143.4
C11—H11···F60.952.463.275 (2)143.3
C10—H10···F3i0.952.333.203 (2)152.4
C10—H10···F5i0.952.543.373 (2)147.0
C13—H13C···F5ii0.982.543.464 (2)157.7
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y+1, z.
 

Acknowledgements

We are grateful to the National Natural Science Foundation of China (No. 20672046) and the Guangdong Natural Science Foundation (No. 8151063201000016) for financial support.

References

First citationAllen, F. H., Hennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, B., Li, Y.-Q., Liu, J. & Zheng, W.-J. (2009). Acta Cryst. E65, o1427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNoda, A. & Watanabe, M. (2000). Electrochim. Acta, 45, 1265–1270.  Web of Science CrossRef CAS Google Scholar
First citationPradeep, C. P. (2005). Acta Cryst. E61, o3825–o3827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, B. & Sekhon, S. S. (2005). Chem. Phys. Lett. 414, 34–39.  Web of Science CrossRef CAS Google Scholar
First citationWasserscheid, P. & Keim, W. (2000). Angew Chem. Int. Ed. 39, 3772–3789.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds